
«Calcul formel avancé et application». Very brief lecture notes.

21.09.2023. Lecture 2.

1. Discussion of the homework.
The exercise about an optimal sorting for k = 4 and k = 5 objects remains unsolved.

2. The game guess a number revisited. We discussed the version of the game “guess a number,” where
the first player choses at random an integer number between 1 and k with (some fixed and known in advance)
probabilities p1, . . . , pk, and the second player should reveal this number by asking questions with answers
yes or no, with the minimal on average number of questions.
Proposition 1. For every random variable α distributed on a set of n values

0 ≤ H(α) ≤ log n.

Moreover, H(α) = 0 if and only if the distribution is concentrated at one point (one probability pi is equal
to 1, and the other pj for j 6= i are equal to 0), and H(α) = log n if and only if the distribution is uniform
(p1 = . . . = pn = 1

n ).
Sketch of proof : We use the concavity of the function log x and Jensen’s inequality for the concave functions.
Proposition 2. For every random variable α and for every (deterministic) function F , Shannon’s entropy
of the random variable β = F (α) is not greater than Shannon’s entropy of α.
Sketch of proof : First of all, we observed that H(α) = H(β), if F is a bijection. Then, we proved that the
entropy of a distribution decreases, when we merge together two points in this distribution ; in other words,
H(α) ≥ H(F (α)), if F merges together two points from the range of α and leaves distinct the other values
of α. By iterating the basic “merging” operations, we prove the inequality H(α) ≥ H(F (α)) for an arbitrary
function F .
Given a pair of jointly distributed random variables (α, β) we can apply the definition of Shannon’s en-
tropy three times, with three protentially different distributions : we have Shannon’s entropy of the entire
distribution (denoted H(α, β)) and the entropies of two marginals, H(α) and H(β).
We have proved earlier that
Proposition 1. In the game “guess a number,” where the first player choses at random an integer number
between 1 and k with (known in advance) probabilities p1, . . . , pk, the average number of questions cannot be
less than

k∑
i=1

pi log
1

pi

Now we proved an upper bound for the same game :
Proposition 2. For the game “guess a number,” where the first player choses at random an integer number
between 1 and k with (known in advance) probabilities p1, . . . , pk, there exists a strategy that requires on
average less than

k∑
i=1

pi log
1

pi
+ 1

questions.
Sketch of the proof : W.l.o.g. we assume that p1 ≥ p2 ≥ . . . ≥ pn. We define `i = dlog2 1

p i
e. Observe that∑

2−`i ≤ 1. Then, we construct a binary tree with n leaves and branches of length `1, . . . , `n.
On the first stage we choose the leftmost branch of length `1, then we choose the leftmost branch of `2

that is incompatible with the first branch, and so on. On the k-th step we choose the leftmost a branch of
length `i that is not a continuation of any branch chosen on the stages 1, . . . , (k − 1). We show that this
procedure can be repeated until stage n due to two key facts :



— the sum
∑

2−`i is nit greater than 1,
— `1 ≤ `2 ≤ . . . ≤ `n.

End of proof.
We observed that strategies in the guessing number game are equivalent to prefix-free binary codes. Thus,

we have shown that for every probability distribution (p1, . . . , pn) the minimal average length of a binary

code
∑
pi|ci| is a number between

k∑
i=1

pi log
1
pi

and
k∑

i=1

pi log
1
pi

+ 1.

3. Huffman’s encoding. We discussed the construction of Huffman’s code and proved its optimality. For
a detailed explanation see the textbook Elements of information theory by T. M. Cover and J. A. Thomas.

Exercise 2.1. Construct Huffman’s code for the distribution of probabilities (0.33, 0.34, 0.2, 0.1, 0.05) and
find the average length of the codewords for this code.

4. Block coding. We discussed the problem of optimal compression for texts of length N over an alphabet
{a1, . . . , ak} with known frequencies of letters (p1, . . . , pk). Using a counting (based on Stirling’s formula) we
showed that we need (

k∑
i=1

pi log
1

pi

)
·N + o(N)

binary digits.

2


