«Calcul formel avancé et application». Very brief lecture notes.

21.09.2023. Lecture 2.

1. Discussion of the homework.

The exercise about an optimal sorting for k = 4 and k = 5 objects remains unsolved.

2. The game guess a number revisited. We discussed the version of the game "guess a number," where the first player choses at random an integer number between 1 and k with (some fixed and known in advance) probabilities p_1, \ldots, p_k , and the second player should reveal this number by asking questions with answers yes or no, with the minimal on average number of questions.

Proposition 1. For every random variable α distributed on a set of n values

$$0 \le H(\alpha) \le \log n.$$

Moreover, $H(\alpha) = 0$ if and only if the distribution is concentrated at one point (one probability p_i is equal to 1, and the other p_j for $j \neq i$ are equal to 0), and $H(\alpha) = \log n$ if and only if the distribution is uniform $(p_1 = \ldots = p_n = \frac{1}{n}).$

Sketch of proof: We use the concavity of the function $\log x$ and Jensen's inequality for the concave functions. **Proposition 2.** For every random variable α and for every (deterministic) function F, Shannon's entropy of the random variable $\beta = F(\alpha)$ is not greater than Shannon's entropy of α .

Sketch of proof : First of all, we observed that $H(\alpha) = H(\beta)$, if F is a bijection. Then, we proved that the entropy of a distribution decreases, when we merge together two points in this distribution; in other words, $H(\alpha) \ge H(F(\alpha))$, if F merges together two points from the range of α and leaves distinct the other values of α . By iterating the basic "merging" operations, we prove the inequality $H(\alpha) \ge H(F(\alpha))$ for an arbitrary function F.

Given a pair of jointly distributed random variables (α, β) we can apply the definition of Shannon's entropy three times, with three protentially different distributions : we have Shannon's entropy of the entire distribution (denoted $H(\alpha, \beta)$) and the entropies of two marginals, $H(\alpha)$ and $H(\beta)$.

We have proved earlier that

Proposition 1. In the game "guess a number," where the first player choses at random an integer number between 1 and k with (known in advance) probabilities p_1, \ldots, p_k , the average number of questions cannot be less than

$$\sum_{i=1}^{k} p_i \log \frac{1}{p_i}$$

Now we proved an upper bound for the same game :

Proposition 2. For the game "guess a number," where the first player choses at random an integer number between 1 and k with (known in advance) probabilities p_1, \ldots, p_k , there exists a strategy that requires on average less than

$$\sum_{i=1}^{k} p_i \log \frac{1}{p_i} + 1$$

questions.

Sketch of the proof : W.l.o.g. we assume that $p_1 \ge p_2 \ge \ldots \ge p_n$. We define $\ell_i = \lceil \log_2 \frac{1}{p_i} \rceil$. Observe that $\sum 2^{-\ell_i} \le 1$. Then, we construct a binary tree with n leaves and branches of length ℓ_1, \ldots, ℓ_n .

On the first stage we choose the leftmost branch of length ℓ_1 , then we choose the leftmost branch of ℓ_2 that is incompatible with the first branch, and so on. On the k-th step we choose the leftmost a branch of length ℓ_i that is not a continuation of any branch chosen on the stages $1, \ldots, (k-1)$. We show that this procedure can be repeated until stage n due to two key facts :

- the sum $\sum 2^{-\ell_i}$ is nit greater than 1,

$$-\ell_1 \leq \ell_2 \leq \ldots \leq \ell_n.$$

End of proof.

We observed that strategies in the guessing number game are equivalent to prefix-free binary codes. Thus, we have shown that for every probability distribution (p_1, \ldots, p_n) the minimal average length of a binary code $\sum p_i |c_i|$ is a number between $\sum_{i=1}^k p_i \log \frac{1}{p_i}$ and $\sum_{i=1}^k p_i \log \frac{1}{p_i} + 1$.

3. Huffman's encoding. We discussed the construction of Huffman's code and proved its optimality. For a detailed explanation see the textbook *Elements of information theory* by T. M. Cover and J. A. Thomas.

Exercise 2.1. Construct Huffman's code for the distribution of probabilities (0.33, 0.34, 0.2, 0.1, 0.05) and find the average length of the codewords for this code.

4. Block coding. We discussed the problem of optimal compression for texts of length N over an alphabet $\{a_1, \ldots, a_k\}$ with known frequencies of letters (p_1, \ldots, p_k) . Using a counting (based on Stirling's formula) we showed that we need

$$\left(\sum_{i=1}^{k} p_i \log \frac{1}{p_i}\right) \cdot N + o(N)$$

binary digits.