«Calcul formel avancé et application». Very brief lecture notes.

21.09.2023. Lecture 2.

1. Discussion of the homework.

The exercise about an optimal sorting for $k=4$ and $k=5$ objects remains unsolved.
2. The game guess a number revisited. We discussed the version of the game "guess a number," where the first player choses at random an integer number between 1 and k with (some fixed and known in advance) probabilities p_{1}, \ldots, p_{k}, and the second player should reveal this number by asking questions with answers yes or no, with the minimal on average number of questions.
Proposition 1. For every random variable α distributed on a set of n values

$$
0 \leq H(\alpha) \leq \log n
$$

Moreover, $H(\alpha)=0$ if and only if the distribution is concentrated at one point (one probability p_{i} is equal to 1 , and the other p_{j} for $j \neq i$ are equal to 0), and $H(\alpha)=\log n$ if and only if the distribution is uniform $\left(p_{1}=\ldots=p_{n}=\frac{1}{n}\right)$.
Sketch of proof: We use the concavity of the function $\log x$ and Jensen's inequality for the concave functions.
Proposition 2. For every random variable α and for every (deterministic) function F, Shannon's entropy of the random variable $\beta=F(\alpha)$ is not greater than Shannon's entropy of α.
Sketch of proof : First of all, we observed that $H(\alpha)=H(\beta)$, if F is a bijection. Then, we proved that the entropy of a distribution decreases, when we merge together two points in this distribution; in other words, $H(\alpha) \geq H(F(\alpha))$, if F merges together two points from the range of α and leaves distinct the other values of α. By iterating the basic "merging" operations, we prove the inequality $H(\alpha) \geq H(F(\alpha))$ for an arbitrary function F.
Given a pair of jointly distributed random variables (α, β) we can apply the definition of Shannon's entropy three times, with three protentially different distributions : we have Shannon's entropy of the entire distribution (denoted $H(\alpha, \beta)$) and the entropies of two marginals, $H(\alpha)$ and $H(\beta)$.
We have proved earlier that
Proposition 1. In the game "guess a number," where the first player choses at random an integer number between 1 and k with (known in advance) probabilities p_{1}, \ldots, p_{k}, the average number of questions cannot be less than

$$
\sum_{i=1}^{k} p_{i} \log \frac{1}{p_{i}}
$$

Now we proved an upper bound for the same game :
Proposition 2. For the game "guess a number," where the first player choses at random an integer number between 1 and k with (known in advance) probabilities p_{1}, \ldots, p_{k}, there exists a strategy that requires on average less than

$$
\sum_{i=1}^{k} p_{i} \log \frac{1}{p_{i}}+1
$$

questions.
Sketch of the proof: W.l.o.g. we assume that $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$. We define $\ell_{i}=\left\lceil\log _{2} \frac{1}{p_{i}}\right\rceil$. Observe that $\sum 2^{-\ell_{i}} \leq 1$. Then, we construct a binary tree with n leaves and branches of length $\ell_{1}, \ldots, \ell_{n}$.

On the first stage we choose the leftmost branch of length ℓ_{1}, then we choose the leftmost branch of ℓ_{2} that is incompatible with the first branch, and so on. On the k-th step we choose the leftmost a branch of length ℓ_{i} that is not a continuation of any branch chosen on the stages $1, \ldots,(k-1)$. We show that this procedure can be repeated until stage n due to two key facts :

- the sum $\sum 2^{-\ell_{i}}$ is nit greater than 1,
$-\ell_{1} \leq \ell_{2} \leq \ldots \leq \ell_{n}$.

End of proof.

We observed that strategies in the guessing number game are equivalent to prefix-free binary codes. Thus, we have shown that for every probability distribution $\left(p_{1}, \ldots, p_{n}\right)$ the minimal average length of a binary code $\sum p_{i}\left|c_{i}\right|$ is a number between $\sum_{i=1}^{k} p_{i} \log \frac{1}{p_{i}}$ and $\sum_{i=1}^{k} p_{i} \log \frac{1}{p_{i}}+1$.
3. Huffman's encoding. We discussed the construction of Huffman's code and proved its optimality. For a detailed explanation see the textbook Elements of information theory by T. M. Cover and J. A. Thomas.

Exercise 2.1. Construct Huffman's code for the distribution of probabilities ($0.33,0.34,0.2,0.1,0.05$) and find the average length of the codewords for this code.
4. Block coding. We discussed the problem of optimal compression for texts of length N over an alphabet $\left\{a_{1}, \ldots, a_{k}\right\}$ with known frequencies of letters $\left(p_{1}, \ldots, p_{k}\right)$. Using a counting (based on Stirling's formula) we showed that we need

$$
\left(\sum_{i=1}^{k} p_{i} \log \frac{1}{p_{i}}\right) \cdot N+o(N)
$$

binary digits.

