HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

27/11/2023. Homework for Lecture 11.

Exercise 1. Show that the function mapping every natural number to is square is not a one-way function.
Exercise 2. Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a one-way function.
(a) Prive that the function f^{\prime} defined as $f^{\prime}(x):=f(x) 0$ (a suffix ' 0 ' is added) is also a one-way function.
(b) Prive that the function $f^{\prime \prime}$ defined as $f^{\prime \prime}(x):=f(x) f(x)$ (the value $f(x)$ repeated twice) is also a one-way function.

Exercise 3. (a) Show that if there exists a one-way functions, then there exists a one-way function such that $f(\underbrace{00 \ldots 0}_{n})=\underbrace{00 \ldots 0}_{n}$ for every n.
(b) Show that if there exist one-way functions, then some of them are are not pseudo-random generators.

Exercise 4. Show that there exists a length-preserving one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that $g(x):=x \oplus f(x)$ (bitwise XOR of x and $f(x)$) is not a one-way function.

