HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

04/12/2023. Homework for Lecture 12.

Exercise 1. Let $n=323=17 \cdot 19$. Find (without a computer) four numbers x in the set $\{1, \ldots, n-1\}$ such that $x^{2}=16 \bmod n$.

Exercise 2. Prove that if $\mathrm{P}=\mathrm{NP}$ then there exists a deterministic polynomial-time algorithm that finds for every input n (an integer numbers given by its binary expansion) the list of all its prime factors.

Exercise 3. Let $p>2$ be an prime number. Show that the number -1 is a quadratic residue modulo p (i.e., there exists an integer number x such that $x^{2}=-1 \bmod p$) if and only if p can be represented as $p=4 k+1$ for some integer k. For example, -1 is a quadratic residue modulo $5,13,17$ (prime numbers of the form $4 k+1$) but not a quadratic residue modulo $3,7,11$ (prime numbers of the form $4 k+3$).

Exercise 4 (optional). Let p be a prime number and p can be represented as $p=4 k+3$ for some integer k. Show that the mapping

$$
x \mapsto x^{2} \quad \bmod p
$$

restricted on the set of quadratic residues modulo p is a bijection.
For example, for $p=7$ the (non-zero) quadratic residues are the numbers 1 (since $1=1 \cdot 1=6 \cdot 6$ $\bmod 7$), $2($ since $2=3 \cdot 3 \bmod 7=4 \cdot 4 \bmod 7)$, and $4($ since $4=2 \cdot 2 \bmod 7=5 \cdot 5 \bmod 7)$. Observe that

$$
1^{2}=1,2^{2}=4,4^{2}=2 \quad \bmod 7,
$$

i.e., the operation $\left[x \mapsto x^{2} \bmod 7\right]$ induces a bijection on the set of quadratic residues. We propose to prove that a similar property holds for all primes represented $p=4 k+3$ (we do not claim this for the other prime numbers).

