HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

2 18/09/2023. Homework for Lecture 2.

Exercise 1. Let p be a prime number. A polynomial $f(x)=k+c_{1} x+c_{2} x^{2}$ is evaluated et pairwise distinct points a_{1}, a_{2}, a_{3} modulo p,

$$
\begin{array}{ll}
s_{1}=f\left(a_{1}\right) & \bmod p, \\
s_{2}=f\left(a_{2}\right) & \bmod p, \\
s_{3}=f\left(a_{3}\right) & \bmod p .
\end{array}
$$

Find a formula that returns the value of k given a_{1}, a_{2}, a_{3} and s_{1}, s_{2}, s_{3} (you may use in this formula the usual arithmetic operations of addition, subtractions, multiplication, and inversion modulo p).

Exercise 2. Find a quadratic polynomial $f(x)=c_{0}+c_{x}+c_{2} x^{2}$ with integer coefficients (not all coefficients are equal to 0 modulo 35) that has at least three different roots modulo 35 , i.e.,

$$
f\left(x_{1}\right)=0 \bmod 35, f\left(x_{2}\right)=0 \bmod 35, f\left(x_{3}\right)=0 \bmod 35 .
$$

Exercise 3. Let $f(x)=c_{0}+c_{x}+\ldots+c_{d} x^{d}$ be a polynomial with integer coefficients such that for some $a \in\{0,1, \ldots n-1\}$

$$
f(a)=0 \quad \bmod n .
$$

Prove that there exists a polynomial with integer coefficients $g(x)$ such that

$$
f(x)=(x-a) \cdot g(x) \quad \bmod n .
$$

