HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

23/10/2023. Homework for Lecture 7.

Exercise 1. Let $\Pi=(G e n, E n c, D e c)$ be a computationally secure encryption scheme. We consider the following experiment:

- Alice produces a random secret key k for the security parameter n,

$$
k \leftarrow \operatorname{Gen}\left(1^{n}\right)
$$

- Alice produces a random open messages $m=x_{1} \ldots x_{n}$ of length n bits (with the uniform distribution, i.e., each message can be chosen with the probability $1 / 2^{n}$)
- Alice computes an encrypted message $e=\operatorname{Enc}(m, k)$
- Adversary obtains the encrypted message e and one more bits that is equal to the parity of all bits of the open message, i.e., $x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$, and tries to guess x_{n},

$$
j \leftarrow \operatorname{Adv}\left(1^{n}, e\right) .
$$

The success of Adversary is defined as

$$
\text { success }= \begin{cases}1, & \text { if } j=x_{n} \\ 0, & \text { otherwise }\end{cases}
$$

Prove that for every poly-time computable algorithm $A d v$

$$
\mid \operatorname{Prob}[\text { success }=1]-1 / 2 \mid
$$

is a negligibly small function.
Exercise 2. Let $\Pi=(G e n, E n c, D e c)$ be a computationally secure encryption scheme. We consider the following experiment:

- Alice produces a random secret key k for the security parameter n, $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Alice produces a random open messages $m=x_{1} \ldots x_{n}$ of length n bits (with the uniform distribution, i.e., each message can be chosen with the probability $1 / 2^{n}$)
- Alice computes an encrypted message $e=\operatorname{Enc}(m, k)$
- Adversary obtains the encrypted message e, and tries to guess $x_{1} x_{2}$, $j \leftarrow \operatorname{Adv}\left(1^{n}, e\right)$, where $j \in\{00,01,10,11\}$.

The success of Adversary is defined as

$$
\text { success }= \begin{cases}1, & \text { if } j=x_{1} x_{2} \\ 0, & \text { otherwise. }\end{cases}
$$

Prove that for every poly-time computable algorithm $A d v$

$$
\mid \operatorname{Prob}[\text { success }=1]-1 / 4 \mid
$$

is a negligibly small function.

Exercise 3. Using the theorem on semantic security give a new proof of the fact that for every computationally secure encryption scheme $\Pi=(G e n, E n c, D e c)$, in each of the attacks 2-4 discussed in the class, for every Adversary computable in polynomial time,
the probability of success differs from $1 / 2$ by only a negligibly small function.
Exercise 4. Find an integer number g such that the sequence

$$
g \quad \bmod 17, g^{2} \quad \bmod 17, g^{3} \bmod 17, \ldots
$$

covers the entire set $\{1,2, \ldots, 16\}$.

