
HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

27/11/2023. Lecture 11.

1 One-way functions.

In the class we defined the fundamental cryptographic notions: a one-way function, a weak one-way func-
tion, a one way function with a hard core bit.

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is called a (strong) one way function (fonction à sens unique)
if
(1) there is a deterministic algorithm that given x ∈ {0, 1}∗ computes the value of f(x) in time poly(n),
and
(2) it is impossible to in invert f in polynomial time. To make the second condition more precise, we
consider the following experiment:

• we choose uniformly a random x ∈ {0, 1}n and compute y = f(x)

• an opponent’s algorithm ADV takes 1n and y and returns a string x′ ← ADV(y, 1n)

We say that the opponent succeeds if f(x′) = y. The condition (2) of the definition (non-invertibility of
f ) means that for every polynomial-time (deterministic or randomized) algorithm ADV , its probability to
succeed is negligibly small.

Exercise 1. Show that every pseudo-random generator is a one-way function.

It is conjectures that one-way functions bits exist, but the hypothesis remains unproven. Most known
constructions of functions that are believed to be one-way are based on the following definition.

Definition 2. A function f : {0, 1}∗ → {0, 1}∗ is called a weak one way function if
(1) there is a deterministic algorithm that given x ∈ {0, 1}∗ computes the value of f(x) in time poly(n),
and
(2) for a significant fraction of x, it is impossible to in invert f(x) in polynomial time. To make the second
condition more precise, we consider the same experiment as in the previous definition:

• we choose uniformly a random x ∈ {0, 1}n and compute y = f(x)

• an opponent’s algorithm ADV takes 1n and y and returns a string x′ ← ADV(y, 1n)

We say that the opponent succeeds if f(x′) = y. The condition (2) of the definition (weak non-invertibility
of f ) means that there exists a polynomial q(n) such that for every polynomial-time (deterministic or ran-
domized) algorithm ADV , its probability to succeed is not greater than 1− 1/q(n).

Definition 3. A function f : {0, 1}∗ → {0, 1}∗ is called length-preserving if for every x ∈ {0, 1}∗ the length
(the number of bits) of f(x) is equal to the length of x. A function is called one-to-one (or injective) if it
maps distinct elements of the domain to distinct images. (In what follows we will need one-way functions
that are length-preserving one-to-one functions.)

1



Example 1. One of the most famous examples of a function candidate that possibly satisfies the definition
of a weak one-way function is the product of integers:

f : [x, y] 7→ x · y

The input of this function is a concatenation of binary expansions of two natural numbers x, y (if the input
has length n, then the first n/2 bits represent x and the last n/2 bits represent y). It is believed that given
the product of two prime numbers n = x · y it is (typically) hard to reconstruct the factors x, y. However,
the problem of factorisation may be much simpler of x and y are not prime.

In the previous lecture we have seen that among all k-bit integers the set of prime numbers take a fraction
of size ≥ const

k . It follows that among all strings of length n, the set of inputs for f representing a pair of
numbers (x, y) where both x and y are prime (with n/2 bits for each number) is ≥ const

n2 . This explains
why the function f is probably hard to invert for at least a fraction 1/poly(n) of all inputs of length n. (One
again, this is an unproven conjecture.)

Remark 1. There exist a deterministic polynomial-time algorithm (Agrawal–Kayal–Saxena) that tests pri-
mality of a natural number. Thus, given a pair (x, y) we can verify whether both of them are prime. We can
modify the function from Example 1 and let

f([x, y]) =


x · y if x < y, x and y are prime numbers and their binary expansions

contain the same number of binary digits
[x, y] otherwise.

It is conjectured that such a “regularized” version of the product function is a still a weak one-way function.

Example 2. Another example of a function that seems to be a good candidate for a weak one way function
is

f : [x, g, n] 7→ [gx mod n, g, n],

where [x, g, n] is a code of a triple of natural numbers (the exponent modulo n). The inversion of this
function (discrete logarithm) seems to be hard, at least in the case when n is a prime number and g is a
generator of the multiplicative group (Z/nZ)×. Thus, it is believed that for a non-negligible fraction of
possible inputs, this function is hard to invert, and it satisfies the definition of a weak one-way function.

Remark 2. Similarly to Remark 1, we can modify the definition of the modular exponentiation so that
the function is non-trivial only on the triples [x, g, n] with a “regularly behaving” of n and g (for which
the discrete logarithm is believed to be intractable), and make the function be identity for other inputs.
Such a modified version is still believed to be a weak one way-function; moreover, such a function (with
a reasonably chosen encoding of inputs and outputs) can be made length preserving and one-to-one weak
one-way permutation, see [1] for details.

Theorem 1. If there exists a weak one-way function f , then there exists a (strong) one-way function f ′.

A formal proof of Theorem 1 will be given in the next lecture notes. In the class we did not prove this
theorem but we mentioned that the strong one-way function f ′ can be constructed as follows. We choose a
suitable polynomial k(n) = poly(n) and for each n and for all xi ∈ {0, 1}n (i = 1, . . . , k(n)) we let

f ′(x1 ◦ x2 ◦ . . . ◦ xk) := f(x1) ◦ . . . ◦ f(xk)

(where ◦ denotes concatenation). This constructive is pretty intuitive: if the initial function f(x) is hard to
invert on a non-negligible fraction fo inputs x, than in a typical lists of inputs x1, . . . , xk there is at least one
xi such that f(xi) is hard to invert; therefore, f ′ is hard to invert on an overwhelming fraction of all possible
inputs.

2



Example 3. Let us re-discuss the problem of factorisation. We believe that the function

[x, y] 7→ x · y

is hard to invert for a non-negligible fraction of n-bit integers x, y. So it seems plausible to assume that for
k(n) = n2, in a randomly chosen list of pairs

(x1, y1), . . . , (xk, yk)

(where all xi and all yi are integer numbers between 2n and 2n+1) with an overwhelming probability at least
one pairs (xi, yi) consists of two prime numbers. Thus, the mapping

[(x1, y1), . . . (xk, yk)] 7→ [x1 · y1, . . . , xk · yk]

is hard to invert for almost all inputs (since typically there is at last one component (xi · yi) for which the
factorisation is hard).

Remark 3. Using a length-preserving one-to-one weak one-way function one can construct a length-
preserving one-to-one strong one-way functions.

In some cryptographic applications it is not enough to have a (strong) one-way functions f ; we my need
to assume that some specific “piece of information” in x cannot be reconstructed from y = f(x). This idea
is captured in the following definition.

Definition 4. A one-way functions with a hard code predicate is a pair of functions f : {0, 1}∗ → {0, 1}∗
and h : {0, 1}∗ → {0, 1} such that
(1) there are deterministic algorithms that given an x ∈ {0, 1}n comput the value of f(x) and h(x) in time
poly(n), and
(2) given y, it is impossible to compute in polynomial time the value b such that for some x′ such that f(x′) =
y and h(x′) = b. To make the second condition more precise, we consider the following experiment:

• we choose uniformly a random x ∈ {0, 1}n and compute y = f(x)

• an opponent’s algorithm ADV takes 1n and t and computes a bit value b← ADV(y, 1n)

We say that the opponent succeeds if there exists an x′ such that b = h(x′) and f(x′) = y. The condition (2)
of the definition technically means that for every polynomial-time (deterministic or randomized) algorithm
ADV there is a negligibly small functions g(n) such that the probability to succeed is less than 1

2 + g(n).

Theorem 2. If the exists a one-way function f , then there exists a one-way function f ′ with a hard core
predicate h.

The proof of this theorem is pretty involved. In the class we only discussed the construction of suitable
f ′ and h (the construction proposed by Goldreich and Levin). It is known that if f is a one-way function,
then

f ′(x1 . . . xn ◦ r1 . . . rn) = f(x1 . . . xn) ◦ [r1 . . . rn]

with
h(x1 . . . xn ◦ r1 . . . rn) = x1r1 + . . . xnrn mod 2

(where all xi and ri are zeros or ones) provide an example of a one-way function with a hard-core predicate.

3



Theorem 3. If there exists a length preserving one-to-one one-way function f with a hard core bit h, then
there exists a pseudo-random generator g.

The proof of this theorem is also pretty involved. But the idea of the construction can be sketched as
follows. If f is a length-preserving one-way function with a hard-core bit h, then to construct a pseudo-
random generator g : {0, 1}n → {0, 1}n+1, we may let

g(x) := f(x) ◦ h(x).

If we need a pseudo-random generator g : {0, 1}n → {0, 1}m for some m > n + 1 (in most applications
we need m much greater than n+ 1), we can iterate this construction many times (we omit the details).

In conclusion we observe that if the problem of integer factorisation or the problem of descret logarithm
is indeed computationally hard, then we have an instance of a weak one-way function. Starting from this
function, we can construct a strong one-way function, a one-way function with a hard-core predicate, and
eventually a pseudo-random generator.

It is known that one can construct a pseudo-random generator given an arbitrary one-way function
(not necessary a length preserving bijection), see [2]. However, this alternative construction is extremely
complicated and unpractical.

2 Playing heads or tails online.

In the class we discussed two protocols of bit commitment that allow for a pair of users (with polynomial
computational resources) that allow to play the game heads ot tails via a communication channel. The
first protocol was based a one-way permutation with a hard-core bit; the second protocol was based on a
pseudo-random generator g : {0, 1}n → {0, 1}3n.

The bit commitment is one of the most useful building blocks that is used in more involved cryptographic
protocols

Bibliography
[1] Goldreich, Oded, Leonid A. Levin, and Noam Nisan. ”On constructing 1-1 one-way functions.” In Stud-
ies in complexity and cryptography: miscellanea on the interplay between randomness and computation, pp.
13-25. 2011.

[2] Håstad, J., Impagliazzo, R., Levin, L.A. and Luby, M., 1999. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4), pp.1364-1396.

4


	One-way functions.
	Playing heads or tails online.

