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04/12/2023. Lecture 12.

1 Another construction of a one-way function

Let us consider a function
F : [x, n] 7→ [x2 mod n, n]

that transforms a pair of numbers (x, n) in another pair, where the first component is the square of x modulo
n, and does not change the second one. It is believed that this function is a weak one-way function. It is
known that F is easy to reverse in the special case of when n is a prime number (though we did not prove
this fact in the class). However, it is believed to be hard to reverse it in case when n is a product of two prime
numbers. In fact, the problem of inversion x2 mod n for n = p · q (where p and q are prime numbers) is
equivalent to factorisation of n. In the class we proved the following statement.

Proposition 1. Assume there exists a polynomial time algorithm A (deterministic or randomized) that can
invert the function

[x, n] 7→ [x2 mod n, n]

for all n that are products of two prime numbers. Then there exists a polynomial time (randomized) algo-
rithm B that finds prime factors of natural numbers n that are product of two primes.

2 Quadratic residues

An integer number v is called quadratic residue modulo n, if there exists an integer number w such that
v = w2 mod n. If n > 2 is a prime number, then exactly half of the numbers in the list {1, . . . , n− 1} are
quadratic residues. This follows from the fact that the equation

x2 = v mod n

for every v ∈ {1, . . . , n−1} has either 2 solutions (in the case when v is a quadratic residue) or no solutions
(if v is not a quadratic residue). Indeed, such an equation cannot have more than two different solutions
(modulo a prime number n, a polynomial of degree 2 cannot have more than 2 roots); the same time, if x is
a one root of this equation, then−x is another one (x and−x must be different if n is an odd prime number).

Exercise 1. Prove that −1 is a quadratic residue modulo a prime number p > 2, if p = 4k + 1 for some
integer k (and is not a quadratic residue modulo p, if p = 4k + 3 for some integer k).

Exercise 2. Let p > 2 be a prime number, and p = 4k + 3 for some integer k. Then the mapping

x 7→ x2 mod p

is a permutation (bijection) of the set of quadratic residues modulo p.
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3 Pseudo-random generator of Blum–Blum–Shub.

Assume we have a (strong) one-way function f : {0, 1}∗ → {0, 1}∗ such that for every n the restriction of
f on the inputs of length k,

f : {0, 1}k → {0, 1}k

is a bijection (a permutation of {0, 1}k). Assume also that this function has a hard-core predicate h. Then we
can use f and h to construct a pseudo-random generators. We can do it as follows: for a seed x0 ∈ {0, 1}k
we compute the sequence of strings

x1 = f(x0), x2 = f(x1), . . . , xn = f(xn−1)

and let
b1 = h(x1), . . . , bn = h(xn).

One can show that the defined mapping
x0 7→ b1 . . . bn

is a pseudo-random generator (assuming that n > k and n ≤ poly(k)).
The construction of a pseudo-random generator BBS (proposed by Lenore Blum, Manuel Blum, and

Michael Shub) employs a similar idea. Let m = p · q be a product of two prime numbers. In what follows
we assume that p and q are congruent to 3 modulo 4. For a seed x0 ∈ (Z/nZ)× we let

x1 = x20 mod m, x2 = x21 mod m, . . . , xn = x2n−1 mod m

(we assume that each xi is an integer number between 1 and n − 1). We define bi (for i = 1, . . . , n) as the
least significant bit of xi. The constructed function

x0 7→ b1 . . . bn

(for n = poly(log k)) is believed to be a pseudo-random generator. (To prove this hypothesis, we need to
prove that the problem of integer factorisation is computationally hard.)

Remark 1. If p and q are are congruent to 3 modulo 4, then the mapping

x 7→ x2 mod (pq)

is a bijection on the set o quadratic residues modulo p·q. An efficient algorithm for inversion of this mapping
would imply an efficient algorithm for the problem of integer factorisation of n of the form n = p · q (for p
and q as defined above).

4 Cryptographic Hash functions

In the class we defined the notion of a collision resistant family of cryptographic hash functions. We
discussed an application cryptographic hash functions to the scheme of electronic signature.

5 Zero Knowledge proofs

In the class we discussed a protocol of zero knowledge proof for the problem of 3-colorability of a graph
and its cryptographic interpretation: Prover can convince Verifier that Prover knows a “secret password”
(3-coloring of the given graph) without divulging any information on this coloring.
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