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04/12/2023. Lecture 12.

1 Another construction of a one-way function

Let us consider a function
F : [z,n] — [z* mod n,n]

that transforms a pair of numbers (x, n) in another pair, where the first component is the square of  modulo
n, and does not change the second one. It is believed that this function is a weak one-way function. It is
known that F' is easy to reverse in the special case of when n is a prime number (though we did not prove
this fact in the class). However, it is believed to be hard to reverse it in case when n is a product of two prime
numbers. In fact, the problem of inversion 22 mod n for n = p - ¢ (where p and ¢ are prime numbers) is
equivalent to factorisation of n. In the class we proved the following statement.

Proposition 1. Assume there exists a polynomial time algorithm A (deterministic or randomized) that can
invert the function
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[z,n] — [z mod n,n]

for all n that are products of two prime numbers. Then there exists a polynomial time (randomized) algo-
rithm B that finds prime factors of natural numbers n that are product of two primes.

2  Quadratic residues

An integer number v is called quadratic residue modulo n, if there exists an integer number w such that
v =w? mod n. If n > 2 is a prime number, then exactly half of the numbers in the list {1,...,n — 1} are

quadratic residues. This follows from the fact that the equation

22=v modn

forevery v € {1,...,n—1} has either 2 solutions (in the case when v is a quadratic residue) or no solutions
(if v is not a quadratic residue). Indeed, such an equation cannot have more than two different solutions
(modulo a prime number n, a polynomial of degree 2 cannot have more than 2 roots); the same time, if x is
a one root of this equation, then —x is another one (x and —x must be different if » is an odd prime number).

Exercise 1. Prove that —1 is a quadratic residue modulo a prime number p > 2, if p = 4k + 1 for some
integer k (and is not a quadratic residue modulo p, if p = 4k + 3 for some integer k).

Exercise 2. Let p > 2 be a prime number, and p = 4k + 3 for some integer k. Then the mapping
z— 22 mod p

is a permutation (bijection) of the set of quadratic residues modulo p.



3 Pseudo-random generator of Blum-Blum-Shub.

Assume we have a (strong) one-way function f : {0, 1}* — {0, 1}* such that for every n the restriction of
f on the inputs of length k,

£ {0, 1}* = {o,13*
is a bijection (a permutation of {0, 1}¥). Assume also that this function has a hard-core predicate /. Then we

can use f and h to construct a pseudo-random generators. We can do it as follows: for a seed xo € {0, l}k
we compute the sequence of strings

x1 = f(xo), v2 = f(x1), ..., Tp = f(Tn-1)

and let
bl = h(xl), ey bn = h(l‘n)

One can show that the defined mapping
o — b1 R bn
is a pseudo-random generator (assuming that n > k and n < poly(k)).
The construction of a pseudo-random generator BBS (proposed by Lenore Blum, Manuel Blum, and

Michael Shub) employs a similar idea. Let m = p - g be a product of two prime numbers. In what follows
we assume that p and g are congruent to 3 modulo 4. For a seed xg € (Z/nZ)* we let
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x1 =22 modm, xo =2} modm, ..., z, =22, modm

(we assume that each z; is an integer number between 1 and n — 1). We define b; (for¢ = 1,...,n) as the
least significant bit of x;. The constructed function

xor—>b1...bn

(for n = poly(log k)) is believed to be a pseudo-random generator. (To prove this hypothesis, we need to
prove that the problem of integer factorisation is computationally hard.)

Remark 1. If p and g are are congruent to 3 modulo 4, then the mapping
z+— z° mod (pq)

is a bijection on the set o quadratic residues modulo p-q. An efficient algorithm for inversion of this mapping
would imply an efficient algorithm for the problem of integer factorisation of n of the form n = p - ¢ (for p
and q as defined above).

4 Cryptographic Hash functions

In the class we defined the notion of a collision resistant family of cryptographic hash functions. We
discussed an application cryptographic hash functions to the scheme of electronic signature.

S Zero Knowledge proofs

In the class we discussed a protocol of zero knowledge proof for the problem of 3-colorability of a graph
and its cryptographic interpretation: Prover can convince Verifier that Prover knows a “secret password”
(3-coloring of the given graph) without divulging any information on this coloring.
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