HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

04/12/2023. Lecture 12.

1 Another construction of a one-way function

Let us consider a function

$$
F:[x, n] \mapsto\left[x^{2} \quad \bmod n, n\right]
$$

that transforms a pair of numbers (x, n) in another pair, where the first component is the square of x modulo n, and does not change the second one. It is believed that this function is a weak one-way function. It is known that F is easy to reverse in the special case of when n is a prime number (though we did not prove this fact in the class). However, it is believed to be hard to reverse it in case when n is a product of two prime numbers. In fact, the problem of inversion $x^{2} \bmod n$ for $n=p \cdot q$ (where p and q are prime numbers) is equivalent to factorisation of n. In the class we proved the following statement.

Proposition 1. Assume there exists a polynomial time algorithm \mathcal{A} (deterministic or randomized) that can invert the function

$$
[x, n] \mapsto\left[x^{2} \bmod n, n\right]
$$

for all n that are products of two prime numbers. Then there exists a polynomial time (randomized) algorithm \mathcal{B} that finds prime factors of natural numbers n that are product of two primes.

2 Quadratic residues

An integer number v is called quadratic residue modulo n, if there exists an integer number w such that $v=w^{2} \bmod n$. If $n>2$ is a prime number, then exactly half of the numbers in the list $\{1, \ldots, n-1\}$ are quadratic residues. This follows from the fact that the equation

$$
x^{2}=v \quad \bmod n
$$

for every $v \in\{1, \ldots, n-1\}$ has either 2 solutions (in the case when v is a quadratic residue) or no solutions (if v is not a quadratic residue). Indeed, such an equation cannot have more than two different solutions (modulo a prime number n, a polynomial of degree 2 cannot have more than 2 roots); the same time, if x is a one root of this equation, then $-x$ is another one (x and $-x$ must be different if n is an odd prime number).

Exercise 1. Prove that -1 is a quadratic residue modulo a prime number $p>2$, if $p=4 k+1$ for some integer k (and is not a quadratic residue modulo p, if $p=4 k+3$ for some integer k).

Exercise 2. Let $p>2$ be a prime number, and $p=4 k+3$ for some integer k. Then the mapping

$$
x \mapsto x^{2} \quad \bmod p
$$

is a permutation (bijection) of the set of quadratic residues modulo p.

3 Pseudo-random generator of Blum-Blum-Shub.

Assume we have a (strong) one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for every n the restriction of f on the inputs of length k,

$$
f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}
$$

is a bijection (a permutation of $\{0,1\}^{k}$). Assume also that this function has a hard-core predicate h. Then we can use f and h to construct a pseudo-random generators. We can do it as follows: for a seed $x_{0} \in\{0,1\}^{k}$ we compute the sequence of strings

$$
x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \ldots, x_{n}=f\left(x_{n-1}\right)
$$

and let

$$
b_{1}=h\left(x_{1}\right), \ldots, b_{n}=h\left(x_{n}\right) .
$$

One can show that the defined mapping

$$
x_{0} \mapsto b_{1} \ldots b_{n}
$$

is a pseudo-random generator (assuming that $n>k$ and $n \leq \operatorname{poly}(k)$).
The construction of a pseudo-random generator BBS (proposed by Lenore Blum, Manuel Blum, and Michael Shub) employs a similar idea. Let $m=p \cdot q$ be a product of two prime numbers. In what follows we assume that p and q are congruent to 3 modulo 4 . For a seed $x_{0} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$we let

$$
x_{1}=x_{0}^{2} \quad \bmod m, x_{2}=x_{1}^{2} \quad \bmod m, \ldots, x_{n}=x_{n-1}^{2} \quad \bmod m
$$

(we assume that each x_{i} is an integer number between 1 and $n-1$). We define b_{i} (for $i=1, \ldots, n$) as the least significant bit of x_{i}. The constructed function

$$
x_{0} \mapsto b_{1} \ldots b_{n}
$$

(for $n=\operatorname{poly}(\log k)$) is believed to be a pseudo-random generator. (To prove this hypothesis, we need to prove that the problem of integer factorisation is computationally hard.)
Remark 1. If p and q are are congruent to 3 modulo 4 , then the mapping

$$
x \mapsto x^{2} \quad \bmod (p q)
$$

is a bijection on the set o quadratic residues modulo $p \cdot q$. An efficient algorithm for inversion of this mapping would imply an efficient algorithm for the problem of integer factorisation of n of the form $n=p \cdot q$ (for p and q as defined above).

4 Cryptographic Hash functions

In the class we defined the notion of a collision resistant family of cryptographic hash functions. We discussed an application cryptographic hash functions to the scheme of electronic signature.

5 Zero Knowledge proofs

In the class we discussed a protocol of zero knowledge proof for the problem of 3-colorability of a graph and its cryptographic interpretation: Prover can convince Verifier that Prover knows a "secret password" (3-coloring of the given graph) without divulging any information on this coloring.

