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1 Secret sharing.

In this chapter we discuss the notion of secret sharing and discuss simple examples of secret sharing
schemes. We begin with a brief motivation. Assume that we want to distribute a secret k (it can be a
password, a secret code for a safebox, . . . ) among a group of n people (participants of the secret sharing
scheme). We do not want to let any individual participant know this secret; we require that only authorised
groups of participants are able to reveal it.

Example 1. We may require that only all n participants together can get the secret.

Example 2. We may require that only the majority of participants (i.e., every group that consists of more
than n/2 participants) can get the secret.

Example 3. We may fix a threshold t between 1 and n and require that every group of at least t participants
can get the secret. Observe that Example 1 above is a special case of this rule for t = n, and Example 2 is a
special case of this rule for t = d(n+ 1)/2e.

The groups of participants that are not authorised should not have any information about the secret. Let
us proceed with a more formal definition.

Let K be the space of all potential secrets. (In all our examples below we let K = {0, 1}m for some
integer m or K = Z/pZ for some integer number p.) A secret sharing scheme with n is a randomised
algorithm (Dealer) that samples for each k ∈ K a probability distribution pk(s1, . . . , sn)

Prob(k)[S1 = s1, . . . , Sn = sn] = pk(s1, . . . , sn),

the distribution of random shares compatible with the key k. These distributions must respect the following
two conditions.

(I) For every authorised group of participants {i1, . . . , ir}, the random variables 〈Si1 , . . . , Sit〉 con-
tain enough information to reconstruct the secret key k. This means that for every vector of value
(si1 , . . . , sit) there can be only one secret k ∈ K such that

Prob(k)[Si1 = si1 , . . . , Sit = sit ] > 0.

(II) For every non authorised group of participants {i1, . . . , i`}, the random variables 〈Si1 , . . . , Si`〉 con-
tain no information on k. This means that for all k ∈ K the restrictions of the distribution

Prob(k)[S1 = s1, . . . , Sn = sn]

on the coordinates i1, . . . , i` are identical1.

Example 1 revisited (only all n participants together know the secret). We let K = {0, 1}m and define
the scheme as follows. For every secret k = (k1 . . . km) ∈ {0, 1}m we sample the shares S1, . . . , Sn−1 as

1In the examples that we discuss below, the joint distributions (Si1 , . . . , Si`) for non authorised groups are always the uniform
distributions of ` random variables, though the general definition admits more complicated constructions.
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independent uniformly distributed binary strings in {0, 1}m. The last share Sn (for the n-th participant) is
defined as the bitwise XOR of S1, . . . , Sm−1 and the m-bit secret k1 . . . km.

Example 1′ (again, only all n participants together know the secret). We let K = Z/pZ and define the
scheme as follows. For every secret k ∈ Z/pZ we sample the shares S1, . . . , Sn−1 as independent uniformly
distributed random values in Z/pZ. The last share Sn (for the n-th participant) is defined as

k − S1 − . . .− Sn−1 mod p.

Example 2 revisited (threshold secret sharing scheme for n = 3 and t = 2, every two participants of three
know the secret). We fix a prime number p > 3 and letK = Z/pZ. We fix three (pairwise distinct) non-zero
elements a1, a2, a3 ∈ Z/pZ. For every secret k ∈ Z/pZ the Dealer sample the shares S1, S2, S3 as follows.
We choose a random element c ∈ Z/pZ, define a function (a polynomial of degree at most 1)

f(x) = cx+ k mod p

and let
S1 = f(a1), S2 = f(a2), S3 = f(a3).

In other words, we choose a random polynomial f(x) = cx+c0 incident to the point (0, k) (i.e., the constant
terms is equal to c0 = k) and take its values at the points ai as the shares of the secret Si for i = 1, 2, 3.

In the class we verified that this construction satisfies the definition of a secret sharing scheme.

Example 3 revisited: threshold secret sharing scheme for t = 3 and n = 5 (every three participants know
the secret). We fix a prime number p > 3 and let K = Z/pZ. We fix 5 (pairwise distinct) non-zero elements
a1, . . . , a5 ∈ Z/pZ. For every secret k ∈ Z/pZ we sample the shares S1, . . . , S5 as follows. We choose at
random (uniformly and independently) elements c1, c2 ∈ Z/pZ, define a function (a polynomial of degree
at most 2)

f(x) = c2x
2 + c1x+ k

and let Si = f(ai) for i = 1, . . . , 5.

In the class we proved that these schemes respect conditions (I) and (II) from the definition of a secret
sharing scheme.

Digression 1: arithmetic modulo a prime number. If p is a prime number then for every integer a 6= 0
mod p there exists an integer a′ such that a · a′ = 1 mod p. In other words, every non-zero element in
Z/pZ has an inverse.

Given p and a we can find such an a′ algorithmically. A naive is the brute-force search: we try all
numbers in the list 1, 2, . . . , p − 1 until we find a′ such that a · a′ = 1 mod p. A more efficient approach
uses the extended euclidean algorithm.

Digression 2: roots of a polynomial. To show that the secret sharing scheme defined above satisfies the
conditions (I) and (II), we used a well-known theorem from algebra:

Theorem 1. Let p be a prime number and c0, . . . , cd−1 be elements from Z/pZ. Then the polynomial

f(x) = c0 + c1x+ . . .+ cdx
d mod p

cannot have more than d roots in {0, 1, . . . , p− 1} (unless all ci are equal to zero).
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Corollary 1. The graphs of two polynomials g(x) and h(x) of degree ≥ d have at most d points of inter-
section in the arithmetic Z/pZ, i.e., there is at most d points ai ∈ {0, . . . , p− 1} such that

g(ai) = h(ai) mod p.

Sketch of the proof. The degree of the polynomial f(x) := g(x)− h(x) is at most d, and therefore it cannot
have more than d roots modulo p.

N.B.: We stress that Theorem 1 is true only for prime numbers p.
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