HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

18/09/2023. Lecture 2.

1 Secret sharing.

In this chapter we discuss the notion of secret sharing and discuss simple examples of secret sharing schemes. We begin with a brief motivation. Assume that we want to distribute a secret k (it can be a password, a secret code for a safebox, ...) among a group of n people (participants of the secret sharing scheme). We do not want to let any individual participant know this secret; we require that only authorised groups of participants are able to reveal it.
Example 1. We may require that only all n participants together can get the secret.
Example 2. We may require that only the majority of participants (i.e., every group that consists of more than $n / 2$ participants) can get the secret.

Example 3. We may fix a threshold t between 1 and n and require that every group of at least t participants can get the secret. Observe that Example 1 above is a special case of this rule for $t=n$, and Example 2 is a special case of this rule for $t=\lceil(n+1) / 2\rceil$.

The groups of participants that are not authorised should not have any information about the secret. Let us proceed with a more formal definition.

Let \mathcal{K} be the space of all potential secrets. (In all our examples below we let $\mathcal{K}=\{0,1\}^{m}$ for some integer m or $\mathcal{K}=\mathbb{Z} / p \mathbb{Z}$ for some integer number p.) A secret sharing scheme with n is a randomised algorithm (Dealer) that samples for each $k \in \mathcal{K}$ a probability distribution $p_{k}\left(s_{1}, \ldots, s_{n}\right)$

$$
\operatorname{Prob}^{(k)}\left[S_{1}=s_{1}, \ldots, S_{n}=s_{n}\right]=p_{k}\left(s_{1}, \ldots, s_{n}\right),
$$

the distribution of random shares compatible with the key k. These distributions must respect the following two conditions.
(I) For every authorised group of participants $\left\{i_{1}, \ldots, i_{r}\right\}$, the random variables $\left\langle S_{i_{1}}, \ldots, S_{i_{t}}\right\rangle$ contain enough information to reconstruct the secret key k. This means that for every vector of value $\left(s_{i_{1}}, \ldots, s_{i_{t}}\right)$ there can be only one secret $k \in \mathcal{K}$ such that

$$
\operatorname{Prob}^{(k)}\left[S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{t}}=s_{i_{t}}\right]>0 .
$$

(II) For every non authorised group of participants $\left\{i_{1}, \ldots, i_{\ell}\right\}$, the random variables $\left\langle S_{i_{1}}, \ldots, S_{i_{\ell}}\right\rangle$ contain no information on k. This means that for all $k \in \mathcal{K}$ the restrictions of the distribution

$$
\operatorname{Prob}^{(k)}\left[S_{1}=s_{1}, \ldots, S_{n}=s_{n}\right]
$$

on the coordinates i_{1}, \ldots, i_{ℓ} are identical ${ }^{1}$
Example 1 revisited (only all n participants together know the secret). We let $\mathcal{K}=\{0,1\}^{m}$ and define the scheme as follows. For every secret $k=\left(k_{1} \ldots k_{m}\right) \in\{0,1\}^{m}$ we sample the shares S_{1}, \ldots, S_{n-1} as

[^0]independent uniformly distributed binary strings in $\{0,1\}^{m}$. The last share S_{n} (for the n-th participant) is defined as the bitwise XOR of S_{1}, \ldots, S_{m-1} and the m-bit secret $k_{1} \ldots k_{m}$.
Example 1^{\prime} (again, only all n participants together know the secret). We let $\mathcal{K}=\mathbb{Z} / p \mathbb{Z}$ and define the scheme as follows. For every secret $k \in \mathbb{Z} / p \mathbb{Z}$ we sample the shares S_{1}, \ldots, S_{n-1} as independent uniformly distributed random values in $\mathbb{Z} / p \mathbb{Z}$. The last share S_{n} (for the n-th participant) is defined as
$$
k-S_{1}-\ldots-S_{n-1} \quad \bmod p .
$$

Example 2 revisited (threshold secret sharing scheme for $n=3$ and $t=2$, every two participants of three know the secret). We fix a prime number $p>3$ and let $\mathcal{K}=\mathbb{Z} / p \mathbb{Z}$. We fix three (pairwise distinct) non-zero elements $a_{1}, a_{2}, a_{3} \in \mathbb{Z} / p \mathbb{Z}$. For every secret $k \in \mathbb{Z} / p \mathbb{Z}$ the Dealer sample the shares S_{1}, S_{2}, S_{3} as follows. We choose a random element $c \in \mathbb{Z} / p \mathbb{Z}$, define a function (a polynomial of degree at most 1)

$$
f(x)=c x+k \quad \bmod p
$$

and let

$$
S_{1}=f\left(a_{1}\right), S_{2}=f\left(a_{2}\right), S_{3}=f\left(a_{3}\right) .
$$

In other words, we choose a random polynomial $f(x)=c x+c_{0}$ incident to the point $(0, k)$ (i.e., the constant terms is equal to $c_{0}=k$) and take its values at the points a_{i} as the shares of the secret S_{i} for $i=1,2,3$.
In the class we verified that this construction satisfies the definition of a secret sharing scheme.
Example 3 revisited: threshold secret sharing scheme for $t=3$ and $n=5$ (every three participants know the secret). We fix a prime number $p>3$ and let $\mathcal{K}=\mathbb{Z} / p \mathbb{Z}$. We fix 5 (pairwise distinct) non-zero elements $a_{1}, \ldots, a_{5} \in \mathbb{Z} / p \mathbb{Z}$. For every secret $k \in \mathbb{Z} / p \mathbb{Z}$ we sample the shares S_{1}, \ldots, S_{5} as follows. We choose at random (uniformly and independently) elements $c_{1}, c_{2} \in \mathbb{Z} / p \mathbb{Z}$, define a function (a polynomial of degree at most 2)

$$
f(x)=c_{2} x^{2}+c_{1} x+k
$$

and let $S_{i}=f\left(a_{i}\right)$ for $i=1, \ldots, 5$.
In the class we proved that these schemes respect conditions (I) and (II) from the definition of a secret sharing scheme.

Digression 1: arithmetic modulo a prime number. If p is a prime number then for every integer $a \neq 0$ $\bmod p$ there exists an integer a^{\prime} such that $a \cdot a^{\prime}=1 \bmod p$. In other words, every non-zero element in $\mathbb{Z} / p \mathbb{Z}$ has an inverse.

Given p and a we can find such an a^{\prime} algorithmically. A naive is the brute-force search: we try all numbers in the list $1,2, \ldots, p-1$ until we find a^{\prime} such that $a \cdot a^{\prime}=1 \bmod p$. A more efficient approach uses the extended euclidean algorithm.

Digression 2: roots of a polynomial. To show that the secret sharing scheme defined above satisfies the conditions (I) and (II), we used a well-known theorem from algebra:

Theorem 1. Let p be a prime number and c_{0}, \ldots, c_{d-1} be elements from $\mathbb{Z} / p \mathbb{Z}$. Then the polynomial

$$
f(x)=c_{0}+c_{1} x+\ldots+c_{d} x^{d} \quad \bmod p
$$

cannot have more than d roots in $\{0,1, \ldots, p-1\}$ (unless all c_{i} are equal to zero).

Corollary 1. The graphs of two polynomials $g(x)$ and $h(x)$ of degree $\geq d$ have at most d points of intersection in the arithmetic $\mathbb{Z} / p \mathbb{Z}$, i.e., there is at most d points $a_{i} \in\{0, \ldots, p-1\}$ such that

$$
g\left(a_{i}\right)=h\left(a_{i}\right) \quad \bmod p .
$$

Sketch of the proof. The degree of the polynomial $f(x):=g(x)-h(x)$ is at most d, and therefore it cannot have more than d roots modulo p.
N.B.: We stress that Theorem 1 is true only for prime numbers p.

References

[1] B. Martin. Codage, cryptologie et applications. PPUR presses polytechniques, 2004
[2] V. V. Yaschenko, Cryptography: An Introduction, AMS, 2002
[3] C. Walter. Arithmétique. Univ. de Nice, 2011. Chapitre 3. https://math.unice.fr/~walter/L1_Arith/

[^0]: ${ }^{1}$ In the examples that we discuss below, the joint distributions $\left(S_{i_{1}}, \ldots, S_{i_{\ell}}\right)$ for non authorised groups are always the uniform distributions of ℓ random variables, though the general definition admits more complicated constructions.

