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1 A few algebraic facts

Lemma 1. Let n be an integer number and

f(x) = c0 + c1x+ . . .+ cdx
d

be a polynomial with integer coefficient. Assume that f(a) = 0 mod n for some a ∈ Z/Z. Then there
exists another polynomial g(x) with integer coefficients such that

f(x) = (x− a)g(x) mod n.

Theorem 1. Let p be a prime number and

f(x) = c0 + c1x+ . . .+ cdx
d

be a polynomial with integer coefficient. Then there is at most d different ai ∈ {0, 1, . . . p− 1} such that

f(ai) = 0 mod p.

In other words, polynomial of degree ≤ d has at most d different roots modulo p.

This theorem can be reformulated as follows: if f(x) = c0 + c1x + . . . + cdx
d has (d + 1) different roots

modulo p, then c0 = c1 = . . . = cd = 0.

Corollary 1. Let p be a prime number, and

f(x) = c0 + c1x+ . . .+ cdx
d

and
g(x) = ĉ0 + ĉ1x+ . . .+ ĉdx

d

be two polynomials with integer coefficients, and degrees of these polynomials are not greater than d. As-
sume that there exists (d+ 1) numbers ai ∈ {0, 1, . . . , p− 1} such that

f(ai) = g(ai) mod p.

Then c0 = ĉ0 mod p, . . . , cd = ĉd mod p (i.e., these polynomials are identical modulo p).
In other words, graph of two different polynomials of degree d cannot have more than d points of

intersection (in the arithmetic modulo of Z/pZ for a prime p).

Corollary 2. Let p be a prime number and a1, . . . , ad be pairwise different numbers from {0, . . . , p − 1}
and b1, . . . , bd be arbitrary numbers from the same set. Then there exists a unique array of coefficients
c0, . . . cd−1 ∈ {0, . . . , p− 1} such that for the polynomial

f(x) = c0 + c1x+ . . . cd−1x
d−1

we have f(ai) = bi mod p. In other words, a polynomial of degree < d is uniquely defined by its values in
d points.

(Uniqueness follows from the previous corollary; existence was proved using the Lagrange interpolation
formula.)
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2 Secret sharing revisited: Shamir’s scheme

Let p be a prime number, n (n < p) and t (1 ≤ t ≤ n) be integer numbers. We construct a secret sharing
scheme with participants so that every t (or more) participants can reconstruct the secret, but any t − 1 (or
less) participants have no information on the secret.

We assume that a secret is integer number k ∈ {0, 1, . . . , p − 1}. To describe the scheme, we fix in
advance n pairwise different numbers ai ∈ {1, . . . , p − 1} (these numbers and p are known to everyone,
including the potential attacker). To share the key k Dealer chooses at random ci ∈ {0, 1, . . . , p − 1} for
i = 1, . . . , t− 1, defines

f(x) = k + c1x+ c2x
2 + . . .+ ct−1x

t−1.

The i-th participant receives the share Si = f(ai) mod p
In the class we proved that

• given any t values Si, we can reconstruct the polynomial f(x) (Lagrange interpolation) and find the
secret k, which is the lowest term of this polynomial;

• if we know less than t values Si, then we have no information on the value of k.

This secret sharing scheme is called Shamir’s scheme.

Exercise 1. We want to share a secret between four participants, A,B,C,D so that the groups

{A,B}, {B,C}, {C,D}

(and all extensions of these sets) know the secret, and every group of participants that does not contain these
minimal authorised sets get no information on the secret.

(a) Construct some secret sharing scheme for the given classes of authorised and non-authorised groups.

(b)∗ Construct some secret sharing scheme for the given classes of authorised and non-authorised groups so
that the size of each share Si (measured in bits) is at most 3/2 of the size of the secret (also measure in bits).

(c)∗∗ Prove that the factor 3/2 is optimal: in this setting we cannot share the secret so that the size of each
share is is strictly less than (3/2) · size of the secret.

3 Shannon’s entropy and text compression.

Definition 1. Let Code : {a1, . . . , am} → {0, 1}∗ be a function mapping each letter ai to a binary word. We
extend this mapping to all words over the same alphabet: for eachm-letter word w1 . . . wn ∈ {a1, . . . , am}∗
we let

Code+(w1 . . . wn) = Code(w1) . . .Code(wn)

(a concatenation of codes assigned to the letters of the word). We say that this code is prefix-free if for every
two letters ai 6= ai Code(ai) is not a prefix of Code(aj).

A prefix-free code is uniquely decodable: given a binary string s we can reconstruct uniquely the se-
quence of letters wi1 . . . wis such that

Code+(wi1 . . . wis) = s.

(if such a word wi1 . . . wis exists).
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If we want to encode text in the most economical way, it is natural to choose short codewords for the
most common letters and longer codewords for rarer letters. However, it is not clear exactly how to establish
the trade-off between the frequency of a letter and the length of the corresponding codeword. The answer to
this question helps to find the concept of entropy.

Definition 2. For a random variable α with n possible values a1, . . . , an such that Prob[α = ai] = pi, we
define its Shannon’s entropy as

H(α) :=
n∑

i=1

pi log
1

pi

(with the usual convention 0 · log 1
0 = 0).

The value H(α) can be understood as the “amount of information” in a random message α. The fol-
lowing two theorems show that H(α) represents the average number of bits needed to encode a random
message H(α).

Theorem 2. For every distribution of probabilities (p1, . . . , pm), if

Code : {a1, . . . , am} → {0, 1}∗

is uniquely decodable then
m∑
i=1

pi|Code(ai)| ≥
m∑
i=1

pi log2
1

pi

(the average length of the codewords cannot be less than entropy).

Theorem 3. For every distribution of probabilities (p1, . . . , pm) there exists a uniquely decodable Code :
{a1, . . . , am} → {0, 1}∗ such that

m∑
i=1

pi|Code(ai)| <
m∑
i=1

pi log2
1

pi
+ 1

(the average length of the codewords can be made close to the value of entropy, with an overhead smaller
than one bit).

In the class we did not proved Theorem 2. The proof was based on concavity of logarithm, which implies
the following lemma.

Lemma 2 (Jensen’s inequality). Let p1, . . . , pk be positive numbers such that
∑
pi = 1, and x1, . . . , xk be

any positive numbers. Then
k∑

i=1

pi log2 xi ≤ log2

(
k∑

i=1

pi · xi

)
.

Moreover, this inequality terms into equality if and only if x1 = . . . = xk.

Another tool in the proof of Theorem 2 was the following fact about prefix-free codes.

Lemma 3. If c1, . . . , ck are codewords of a prefix-free code, then

k∑
i=1

2−|ci| ≤ 1.
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The proof of Theorem 3 is postponed to the next lecture.

We proved the basic properties of Shannon’s entropy that follow directly from the definition.

Proposition 1. For every random variable α distributed on a set of n values

0 ≤ H(α) ≤ log n.

Moreover, H(α) = 0 if and only if the distribution is concentrated at one point (one probability pi is equal
to 1, and the other pj for j 6= i are equal to 0), and H(α) = log n if and only if the distribution is uniform
(p1 = . . . = pn = 1

n ).

Idea of the proof: The first inequality is simple. To prove the second one, we used again Jensen’s inequality.
(In the class we discussed the proof in more detail.)
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