HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

02/10/2023. Lecture 4.

1 Text compression

In the class we rediscussed the proof of the following fact.

Lemma 1. If a set of binary words $\{c_1, \ldots, c_k\}$ is a prefix-free code, then $\sum_{i=1}^k 2^{-|c_i|} \le 1$.

We also discussed in which case the sum $\sum_{i=1}^{k} 2^{-|c_i|}$ is strictly less than 1.

Another useful lemma claims that the inequality $\sum_{i=1}^{k} 2^{-|c_i|}$ is not only necessary but also sufficient to build a prefix-free code with the given lengths of codewords.

Lemma 2. For every set of natural number ℓ_1, \ldots, ℓ_k , if $\sum i = 1^k 2^{-\ell_i} \leq 1$, then there exists a prefix-free code $\{c_1, \ldots, c_k\}$ such that $|c_i| = \ell_i$ for $i = 1, \ldots, k$.

Reminder of the proof: First of all, we sorted the lengths ℓ_i . In what follows we assume w.l.o.g. that $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_k$. Then for each $i = 1, \ldots, k$ we choose the binary word c_i of length ℓ_i that is lexicographically first among all possible (i.e., non-extending any of the words c_1, \ldots, c_{i-1} fixed before). We verified that the construction works properly until i = k if $\sum i = 1^k 2^{-\ell_i} \leq 1$.

We used these lemmas to prove the theorem on optimal compression:

Theorem 1. For any distribution of probabilities (p_1, \ldots, p_k) there exists a prefix-free codeword $\{c_1, \ldots, c_k\}$ such that

$$\sum_{i=1}^{k} p_c |c_i| < \sum_{i=1}^{k} p_i \log \frac{1}{p_i} + 1.$$

Idea of the proof discussed in the class: We let $\ell_i = \lceil \log \frac{1}{p_i} \rceil$. It is not difficult to verify that $\sum_{i=1}^{k} 2^{-|c_i|} \le 1$. So we can use Lemma 2 and constructed a prefix-free code with $|c_i| = \ell_i$. It remains to show that with the chosen ℓ_i we have

$$\sum_{i=1}^{k} p_i \ell_i < \sum_{i=1}^{k} p_i \log \frac{1}{p_i} + 1.$$

2 Properties of Shannon's entropy

The joint distribution of a pair of random variables (X, Y) is a table of numbers p_{ij} such that

$$p_{ij} = \operatorname{Prob}[X = a_i \text{ et } Y = b_j]$$

We use the notation

$$p_{i*} = \sum_{j} p_{ij} = \operatorname{Prob}[X = a_i]$$

and

$$p_{*j} = \sum_{i} p_{ij} = \operatorname{Prob}[Y = y_j].$$

By definition of conditional probability,

$$\operatorname{Prob}[\mathbf{Y} = \mathbf{b}_{\mathbf{j}} \mid \mathbf{X} = \mathbf{x}_{\mathbf{i}}] = \frac{p_{ij}}{p_{i*}}.$$

In the last lecture we defined the notion of Shannon's entropy for an individual random variable,

Definition 1. For a random variable A with n possible values a_1, \ldots, a_n such that $Prob[A = a_i] = p_i$, we define its Shannon's entropy as

$$H(A) := \sum_{i=1}^{n} p_i \log \frac{1}{p_i}$$

(with the usual convention $0 \cdot \log \frac{1}{0} = 0$).

Now we discuss properties of pairs of jointly distributed random variables. Given a pair of jointly distributed random variables (X, Y) we can apply the definition of Shannon's entropy three times, with three protentially different distributions: we have Shannon's entropy of the entire distribution of the pair denoted H(X, Y), and the entropies of two marginal distributions X and Y, denoted H(X) and H(Y).

Proposition 1. For every pair of jointly distributed random variables X and Y

$$H(X,Y) \le H(X) + H(Y).$$

Moreover, the equality

$$H(X,Y) = H(X) + H(Y)$$

holds if and only if A and Y are independent, i.e., for all i and j

$$\operatorname{Prob}[X = a_i \text{ and } Y = b_j] = \operatorname{Prob}[X = a_i] \cdot \operatorname{Prob}[Y = b_j]$$

Idea of the proof: We used one more time the concavity of the function of logarithm and Jensen's inequality.

Definition 2. Let (X, Y) be jointly distributed random variables, with

$$p_{ij} = \operatorname{Prob}[X = a_i \text{ and } Y = b_j].$$

For each value A_j with a positive probability we have the *conditional distribution* on the values of Y with probabilities

$$p'_{j} = \operatorname{Prob}[Y = b_{i} \mid X = a_{i}] = \frac{\operatorname{Prob}[X = a_{i} \text{ and } Y = b_{j}]}{\operatorname{Prob}[X = a_{i}]}.$$

This conditional distribution has its own Shannon's entropy; we denote it $H(Y \mid A = a_i)$.

Definition 3. We define the entropy of Y conditional on X as the average

$$H(Y \mid X) := \sum_{i} \operatorname{Prob}[X = a_i] \cdot H(Y \mid X = a_i).$$

In the class we proved the following properties of *conditional entropy*.

Proposition 2. For all jointly distributed random variables (X, Y)

(a) $H(X, Y) = H(X) + H(Y \mid X),$

 $(b) H(X \mid Y) \le H(X).$

(c) Moreover, H(X | Y) = H(X) if and only if X and Y are independent.

Definition 4. For a pair of jointly distributed random variables (X, Y) we define the information in X on Y as

$$I(X:Y) = H(Y) - H(Y \mid X).$$

Proposition 3. For all jointly distributed (X, Y)

- I(X:Y) = I(Y:X) = H(X) + H(Y) H(X,Y),
- moreover, I(X : Y) = 0 is and only if X and Y are independent.

(the proofs discussed in the class)

Exercise 1. Prove that for all jointly distributed (X, Y, Z)

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

3 Limits on compression of the secret key

The next theorem claims that we cannot make the secret key "too well-compressible" (below the threshold H(clear message)) without loosing security of the encryption scheme.

Theorem 2. Let (M, K, E) (a clear message, a secret key, an encrypted message) be a triple of jointly distributed random variables satisfying two properties:

- (i) $H(M \mid K, E) = 0$ (the clear message can be uniquely reconstructed given the secret key and the encoded message)
- (ii) $H(M \mid E) = H(M)$ (the encrypted message gives no information on the open message).

Then $H(K) \ge H(M)$ (Shannon's entropy of the secret key is not less than Shannon's entropy of the clear message).

Proof. We consider Shannon's entropy of the triple H(M, K, E). On the one hand, we have

$$H(M, K, E) = H(K, E) + H(M \mid K, E) = H(K, E) + 0 \le H(K) + H(E)$$

(we used here Property (i)). On the other hand,

$$H(M, K, E) = H(M, E) + H(K \mid M, E) \ge H(M, E) = H(M \mid E) + H(E) = H(M) + H(E).$$

(this time we used Property (ii)). Combining these two observations we obtain $H(K) \ge H(M)$.

References

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.
- [2] V. V. Yaschenko, Cryptography: An Introduction, AMS, 2002
- [3] B. Martin. Codage, cryptologie et applications. PPUR presses polytechniques, 2004