
HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023
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1 Text compression

In the class we rediscussed the proof of the following fact.

Lemma 1. If a set of binary words {c1, . . . , ck} is a prefix-free code, then
k∑

i=1
2−|ci| ≤ 1.

We also discussed in which case the sum
k∑

i=1
2−|ci| is strictly less than 1.

Another useful lemma claims that the inequality
k∑

i=1
2−|ci| is not only necessary but also sufficient to

build a prefix-free code with the given lengths of codewords.

Lemma 2. For every set of natural number `1, . . . , `k, if
∑

i = 1k2−`i ≤ 1, then there exists a prefix-free
code {c1, . . . , ck} such that |ci| = `i for i = 1, . . . , k.

Reminder of the proof: First of all, we sorted the lengths `i. In what follows we assume w.l.o.g. that
`1 ≤ `2 ≤ . . . ≤ `k. Then for each i = 1, . . . , k we choose the binary word ci of length `i that is
lexicographically first among all possible (i.e., non-extending any of the words c1, . . . ci−1 fixed before).
We verified that the construction works properly until i = k if

∑
i = 1k2−`i ≤ 1.

We used these lemmas to prove the theorem on optimal compression:

Theorem 1. For any distribution of probabilities (p1, . . . , pk) there exists a prefix-free codeword {c1, . . . , ck}
such that

k∑
i=1

pc|ci| <
k∑

i=1

pi log
1

p i

+ 1.

Idea of the proof discussed in the class: We let `i = dlog 1
p i
e. It is not difficult to verify that

k∑
i=1

2−|ci| ≤ 1.

So we can use Lemma 2 and constructed a prefix-free code with |ci| = `i. It remains to show that with the
chosen `i we have

k∑
i=1

pi`i <
k∑

i=1

pi log
1

p i

+ 1.

2 Properties of Shannon’s entropy

The joint distribution of a pair of random variables (X,Y ) is a table of numbers pij such that

pij = Prob[X = ai et Y = bj ].

We use the notation
pi∗ =

∑
j

pij = Prob[X = ai]

1



and
p∗j =

∑
i

pij = Prob[Y = yj ].

By definition of conditional probability,

Prob[Y = bj | X = xi] =
pij
pi∗

.

In the last lecture we defined the notion of Shannon’s entropy for an individual random variable,

Definition 1. For a random variable A with n possible values a1, . . . , an such that Prob[A = ai] = pi, we
define its Shannon’s entropy as

H(A) :=

n∑
i=1

pi log
1

pi

(with the usual convention 0 · log 1
0 = 0).

Now we discuss properties of pairs of jointly distributed random variables. Given a pair of jointly
distributed random variables (X,Y ) we can apply the definition of Shannon’s entropy three times, with
three protentially different distributions: we have Shannon’s entropy of the entire distribution of the pair
denoted H(X,Y ), and the entropies of two marginal distributions X and Y , denoted H(X) and H(Y ).

Proposition 1. For every pair of jointly distributed random variables X and Y

H(X,Y ) ≤ H(X) +H(Y ).

Moreover, the equality
H(X,Y ) = H(X) +H(Y )

holds if and only if A and Y are independent, i.e., for all i and j

Prob[X = ai and Y = bj ] = Prob[X = ai] · Prob[Y = bj ]

Idea of the proof: We used one more time the concavity of the function of logarithm and Jensen’s inequality.

Definition 2. Let (X,Y ) be jointly distributed random variables, with

pij = Prob[X = ai and Y = bj ].

For each value Aj with a positive probability we have the conditional distribution on the values of Y with
probabilities

p′j = Prob[Y = bi | X = ai] =
Prob[X = ai and Y = bj ]

Prob[X = ai]
.

This conditional distribution has its own Shannon’s entropy; we denote it H(Y | A = ai).

Definition 3. We define the entropy of Y conditional on X as the average

H(Y | X) :=
∑
i

Prob[X = ai] ·H(Y | X = ai).
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In the class we proved the following properties of conditional entropy.

Proposition 2. For all jointly distributed random variables (X,Y )

(a) H(X,Y ) = H(X) +H(Y | X),

(b) H(X | Y ) ≤ H(X).

(c) Moreover, H(X | Y ) = H(X) if and only if X and Y are independent.

Definition 4. For a pair of jointly distributed random variables (X,Y ) we define the information in X on
Y as

I(X : Y ) = H(Y )−H(Y | X).

Proposition 3. For all jointly distributed (X,Y )

• I(X : Y ) = I(Y : X) = H(X) +H(Y )−H(X,Y ),

• moreover, I(X : Y ) = 0 is and only if X and Y are independent.

(the proofs discussed in the class)

Exercise 1. Prove that for all jointly distributed (X,Y, Z)

2H(X,Y, Z) ≤ H(X,Y ) +H(X,Z) +H(Y,Z).

3 Limits on compression of the secret key

The next theorem claims that we cannot make the secret key “too well-compressible” (below the threshold
H(clear message)) without loosing security of the encryption scheme.

Theorem 2. Let (M,K,E) (a clear message, a secret key, an encrypted message) be a triple of jointly
distributed random variables satisfying two properties:

(i) H(M | K,E) = 0 (the clear message can be uniquely reconstructed given the secret key and the
encoded message)

(ii) H(M | E) = H(M) (the encrypted message gives no information on the open message).

Then H(K) ≥ H(M) (Shannon’s entropy of the secret key is not less than Shannon’s entropy of the clear
message).

Proof. We consider Shannon’s entropy of the triple H(M,K,E). On the one hand, we have

H(M,K,E) = H(K,E) +H(M | K,E) = H(K,E) + 0 ≤ H(K) +H(E)

(we used here Property (i)). On the other hand,

H(M,K,E) = H(M,E) +H(K |M,E) ≥ H(M,E) = H(M | E) +H(E) = H(M) +H(E).

(this time we used Property (ii)). Combining these two observations we obtain H(K) ≥ H(M).
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