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02/10/2023. Lecture 4.

1 Text compression

In the class we rediscussed the proof of the following fact.

k
Lemma 1. If a set of binary words {c1, . .., cy} is a prefix-free code, then 2~ leil < 1.
i=1

k
We also discussed in which case the sum 2 leil s strictly less than 1.
i=1
k
Another useful lemma claims that the inequality 2-l¢il is not only necessary but also sufficient to

i=1
build a prefix-free code with the given lengths of codewords.

Lemma 2. For every set of natural number (1, ... Ly, if S i = 1¥27% < 1, then there exists a prefix-free
code {ci,...,c} suchthat |c;| = {; fori=1,... k.

Reminder of the proof: First of all, we sorted the lengths ¢;. In what follows we assume w.l.0.g. that
b < 0y < ... < {. Then for each ¢« = 1,...,k we choose the binary word ¢; of length ¢; that is
lexicographically first among all possible (i.e., non-extending any of the words c1,...c;—1 fixed before).
We verified that the construction works properly until i = k if "4 = 1¥274 < 1.

We used these lemmas to prove the theorem on optimal compression:

Theorem 1. For any distribution of probabilities (p1, . . . , i) there exists a prefix-free codeword {c1, ..., c}
such that
k k 1
ch\ci] < Zpi log — + 1.
i=1 i=1 Pi

k
Idea of the proof discussed in the class: We let ¢; = [log %Z] It is not difficult to verify that S 274l < 1.
i=1
So we can use Lemma 2 and constructed a prefix-free code with |¢;| = ¢;. It remains to show that with the

chosen ¢; we have
k k 1
> piti <) pilog- +1L
i=1 i=1 P

2 Properties of Shannon’s entropy
The joint distribution of a pair of random variables (X, Y") is a table of numbers p;; such that
Dij = PI‘Ob[X =q; ety = b]]

We use the notation
Pi» = Y _pij = Prob[X = aj]
J



and
Dsj = Zpij = ProblY = y;].
i
By definition of conditional probability,

Prob[Y = b; | X = x;] = 2.
DPix
In the last lecture we defined the notion of Shannon’s entropy for an individual random variable,

Definition 1. For a random variable A with n possible values ay, . .., a, such that Prob[A = a;] = p;, we
define its Shannon’s entropy as
n
1
A) = Z p; log —
i=1 pi

(with the usual convention O - log % =0).

Now we discuss properties of pairs of jointly distributed random variables. Given a pair of jointly
distributed random variables (X,Y") we can apply the definition of Shannon’s entropy three times, with
three protentially different distributions: we have Shannon’s entropy of the entire distribution of the pair
denoted H (X,Y"), and the entropies of two marginal distributions X and Y, denoted H (X ) and H(Y).

Proposition 1. For every pair of jointly distributed random variables X and Y
H(X,Y) < H(X) + H(Y).

Moreover, the equality
HX,)Y)=H(X)+ H(Y)

holds if and only if A and'Y are independent, i.e., for all i and j
Prob[X = a; andY = bj] = Prob[X = q;] - Prob[Y = bj]

Idea of the proof: We used one more time the concavity of the function of logarithm and Jensen’s inequality.
O

Definition 2. Let (X, Y") be jointly distributed random variables, with
pij = Prob[X = a; and Y = b;].

For each value A; with a positive probability we have the conditional distribution on the values of Y with
probabilities
Prob[X = Qa; and Y = bj]

Prob[X = a;] '

pj =ProblY =b; | X = a;] =
This conditional distribution has its own Shannon’s entropy; we denote it H(Y | A = a;).

Definition 3. We define the entropy of Y conditional on X as the average

HY | X): ZProb HY | X = a).



In the class we proved the following properties of conditional entropy.

Proposition 2. For all jointly distributed random variables (X,Y)

(@ H(X,Y) = H(X) + H(Y | X),

(b) H(X | Y) < H(X).

(¢) Moreover, H(X | Y) = H(X) ifand only if X and Y are independent.

Definition 4. For a pair of jointly distributed random variables (X,Y") we define the information in X on
Y as
I(X:Y)=HY)-HY|X).

Proposition 3. For all jointly distributed (X,Y)
o [(X:Y)=I(Y:X)=HX)+H(Y)-H(X.,Y),
e moreover, (X :Y) = 0isand only if X and Y are independent.

(the proofs discussed in the class)

Exercise 1. Prove that for all jointly distributed (X, Y, Z)

2H(X,Y,Z) < H(X,Y)+ H(X,Z)+ H(Y, Z).

3 Limits on compression of the secret key

The next theorem claims that we cannot make the secret key “too well-compressible” (below the threshold
H (clear message)) without loosing security of the encryption scheme.

Theorem 2. Let (M, K, E) (a clear message, a secret key, an encrypted message) be a triple of jointly
distributed random variables satisfying two properties:

(i) H(M | K,E) = 0 (the clear message can be uniquely reconstructed given the secret key and the
encoded message)

(ii) H(M | E) = H(M) (the encrypted message gives no information on the open message).

Then H(K) > H(M) (Shannon’s entropy of the secret key is not less than Shannon’s entropy of the clear
message).

Proof. We consider Shannon’s entropy of the triple H (M, K, E). On the one hand, we have
H(M,K,F)=H(K,E)+ HM | K,E)=H(K,E)+0< H(K)+ H(E)
(we used here Property (i)). On the other hand,
HM,K,E)=H(M,E)+ HK|M,E)>H(M,E)=H(M |E)+ HE)=H(M)+ H(FE).

(this time we used Property (ii)). Combining these two observations we obtain H (K) > H(M). O
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