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09/10/2023. Lecture 5.

1 Inequalities for Shannon’s entropy

In the previous lectures we proved several basic properties of Shannon’s entropy, e.g.,

• H(A,B) = H(A) + H(B | A)

• H(A,B) ≤ H(A) + H(B)

• H(A | B) ≤ H(A)

We used this properties to prove several more involved inequalities for entropy.

Example 1. For any triple of jointly distributed random variables (X,Y, Z) we have

H(X,Y | Z) ≤ H(X | Z) + H(Y | Z).

Indeed, the inequality H(A,B) ≤ H(A) + H(B) is true for any distribution of two random variables.
In particular, this inequality applies to each conditional distribution of (X,Y ) given the assumption that
Z = c` (for each value c` of Z with a positive probability). In the usual notation, this means that

H(X,Y | Z = c`) ≤ H(X | Z = c`) + H(Y | Z = c`).

Therefore∑
`

Prob[Z = c`]·H(X,Y | Z = c`) ≤
∑
`

Prob[Z = c`]·H(X | Z = c`)+
∑
`

Prob[Z = c`]·H(Y | Z = c`),

which gives H(X,Y | Z) ≤ H(X | Z) + H(Y | Z).

Example 2. For any triple of jointly distributed random variables (X,Y, Z) we have

H(X,Y, Z) + H(Z) ≤ H(X,Z) + H(Y, Z).

Let us observe that this inequality is equivalent to

H(X,Y | Z) + 2H(Z) ≤ H(X | Z) + H(Y | Z) + 2H(Z),

and we get again the inequality from Example 1.

Example 3. For any triple of jointly distributed random variables (X,Y, Z) we have

H(X | Y, Z) ≤ H(X | Z)

Indeed, this inequality rewrites to H(X,Y, Z) − H(Y,Z) ≤ H(X,Y ) − H(Z), which is equivalent to
Example 2 above.

Example 4. For any triple of jointly distributed random variables (X,Y, Z) we have

I(X : Y ) ≤ I(X : 〈Y,Z〉).
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(proven in the class).
In the class we discussed DM

2H(X,Y, Z) ≤ H(X,Y ) + H(X,Z) + H(Y,Z).

We also discussed the relation between

I(X : Z) + I(Y : Z) and I(〈X,Y 〉 : Z).

It turns out that for some distributions (X,Y, Z) we have I(X : Z) + I(Y : Z) < I(〈X,Y 〉 : Z) while for
others I(X : Z) + I(Y : Z) > I(〈X,Y 〉 : Z).

Exercise 1. Show that for any triple of jointly distributed random variables (X,Y, Z)

H(Z) ≤ H(Z | X) + H(Z | Y ) + I(X : Y ).

Exercise 2. Show that for any triple of jointly distributed random variables (X,Y, Z)

I(X : 〈Y,Z〉) ≤ I(X : Y ) + H(Z | Y ).

2 Compression of clear texts and of a secret key

We briefly discussed theoretical limits of compression for an open text (the optimal compression Shannon
entropy can be define din terms of Shannon’s entropy) and for a secret key for any secure encryption scheme
(cannot be made shorter than Shannon’s entropy of the clear text).

3 Attack with a chosen pair of clear messages

Let Π = 〈Gen(),Enc(),Dec()〉 be an encryption scheme, whereM, E ,K are the spaces of clear messages,
encrypted messages, and secret key respectively. Let us consider the following game between an adversary
and Alice.

• Adversary uses an algorithm Adv1() that chooses two clear messages ma,mb ∈M;

• Alice chooses at random i ∈ {a, b} (with equal probabilities), samples a secret key k ← Gen(), and
computes the encrypted message e = Enc(mi, k);

• Adversary computes j ∈ {a, b} using another algorithm j ← Adv2(ma,mb, e).

The success of the adversary is defined as follows:

success =

{
1, if i = j,
0, otherwise.

In words: the adversary prepared a pair of messages ma,mb; Alice decides which message to encrypt; then
the adversary tries to understand which of the messages was encrypted.

Theorem 1. If Π = 〈Gen(),Enc(),Dec()〉 is a secure encryption scheme, then

Prob[success = 1] = 1/2.

In words: the adversary has no better strategy than simply toss a coin and suggest an answer at random

(We proved this theorem in the class.)
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4 Practical algorithms and admissibly small errors

We say that an algorithm is computationally efficient (feasible) if it stops in time at most poly(n) for all
inputs of size n (for some polynomial poly(n)). This definition applies to deterministic and to randomized
algorithms. This definition defines the same class of algorithm for many popular models of computation,
such as Turing machines with one or many tapes, random-access machine, and many other models.

We say that a function f : N → R+ is negligible, if for any polynomial poly(n) there is a natural
number n0 such that for all n > n0 we have |f(n)| < 1/|poly(n)|. In words: a negligible function goes to
0 faster than any inverted polynomial.

Exercise 3.
(a) If f(n) and g(n) are negligible functions, then f(n) + g(n) and f(n) · g(n) are also negligible.
(b) If f(n) is negligible function and C is a real number, then C · f(n) is also a negligible number.
(c) The functions e−n, e−n/10, e

√
n, n− logn are negligible.

(d) The functions 1/ log n, 1/
√
n, 1/(n + 5)2, 1/n10 are not negligible.

5 Computational security: basic definiions

Definition 1. An encryption scheme Π = 〈Gen(),Enc(),Dec()〉 is poly-time computable if

• Gen(11 . . . 1︸ ︷︷ ︸
n

) samples a key k ∈ Kn (a secret key used for messages of length n)

• Enc(m, k) applied to a clear message m ∈ Mn of length n and a secret key k ∈ Kn returns an
encrypted message e ∈ En

• Dec(m, k) applied to an encrypted message e ∈ En and a secret key k ∈ Kn returns either m ∈ Mn

such that Enc(m, k) = e or the symbol ⊥

• each of the algorithms 〈Gen(),Enc(),Dec()〉 terminates in polynomial time

• for every m ∈Mn, for a randomly chosen k ← Gen(11 . . . 1︸ ︷︷ ︸
n

), the probability

Prob[Dec(Enc(m, k), k) = ⊥]

is a negligible function.

Definition 2. An encryption scheme Π = 〈Gen(),Enc(),Dec()〉 is computationally secure (sûr au sens
calculatoire), if for every game between Adversary and Alice (following the protocol explained in Section 3)
such that the adversary’s algorithms Adv1 and Adv2 are computable in polynomial time, the gap∣∣∣∣Prob[succes]− 1
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∣∣∣∣
is a negligible function.

In the next lecture we will discuss properties of poly-time computable and computationally secure en-
cryption schemes and their potential advantages compared to absolutely secure schemes.
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