HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

16/10/2023. Lecture 6.

1 Fast exponentiation

In the class we discussed one standard algebraic algorithm - the algorithm of fast exponentiation. This algorithm takes as the input a triple of integer numbers, (a, k, p), and returns the value $a^{k} \bmod p$. The problem of exponentiation may look trivial: we can take the number a, multiply it by itself k times,

$$
\underbrace{a \times a \times \ldots \times a}_{k}
$$

and the reduce the obtained result modulo p. However, this naive scheme is too expensive. Indeed, this procedure requires k operations of multiplication. If the binary expansion of k consists of s binary digits, then the suggested procedure runs in time exponential in s (i.e., exponential in the length of the input). Fortunately, there exists a much more efficient algorithm. We will explain it in to different way.
The first explanation (adapted for the human perception). We begin with a representation of the number k by it binary expansion, $(k)_{2}=\overline{k_{s} k_{s-1} \ldots k_{1} k_{0}}$, which means that

$$
k=k_{0}+2 k_{1}+4 k_{2}+8 k_{3}+\ldots+2^{s} k_{s}
$$

(each k_{i} is a binary digit, i.e., either 0 or 1). Then a^{k} can be represented as follows:

$$
a^{k}=a^{k_{0}} \cdot a^{2 k_{1}} \cdot a^{4 k_{2}} \cdot a^{8 k_{3}} \cdot \ldots \cdot a^{2^{s} k_{s}}=\prod_{j: k_{j}=1} a^{2^{j}} .
$$

Now it is clear that we can compute $a^{k} \bmod p$ in two stages:
(i) Compute sequentially the values $a^{2^{j}} \bmod p$ for $j=1,2, \ldots, s$. Each next value can be computed as $a^{2^{j+1}}=\left(a^{2^{j}}\right)^{2} \bmod p$.
(ii) Compute the product $\prod_{j: k_{j}=1} a^{2^{j}} \bmod p$, combining the values $a^{2^{j}}$ such that $k_{j}=1$.

The first stage consists of exactly s multiplications, the second stage consists of at most s multiplications (where s is the number of binary digits in k, i.e., $s=\left\lceil\log _{2} k\right\rceil$). Each operation of multiplication modulo p requires poly $(\log p)$ elementary operation (on each stage we multiply two numbers with at most $\left\lceil\log _{2} p\right\rceil$ binary digits and then divide the product by p with a reminder). Thus, we have $O(\log k)$ stages, and each one can be done in time poly $(\log p)$.

If the number a is much larger than k and p, then the very first stage can be more expensive: we need to reduce a modulo p, which requires poly $(\log a, \log p)$ operations $\left(\left\lceil\log _{2} a\right\rceil\right.$ is the number of digits in the standard binary expansion of a).

The second explanation (adapted for the computer programming). Substantially the same algorithm of exponentiation can be reformulated as follows:

```
inputs: a, k, p;
z:= 1;
t:= k;
y:= a;
while t>0 {
    if ( t is odd ) {
        z := z * y mod p;
        t:= t-1;
    } else {
        y:= y * y mod p;
        t:= t/2;
    }
}
return z.
```

It is easy to see that this algorithm maintains the invariant

$$
z \times y^{t}=a^{k} \quad \bmod p
$$

Thus, when the value of t achieves 0 , the variable z contains the value $a^{k} \bmod n$.
In this algorithm, the operations

```
y:= Y * Y mod p;
t:= t/2;
```

are executed $\left\lceil\log _{2} k\right\rceil$ times. The operations

```
z := z * y mod p;
t:= t-1;
```

are executed as many times as there are 1 's in the binary representation of k, i.e., at most $\left\lceil\log _{2} k\right\rceil$ times. It follows that the algorithm runs in time that polynomially depends on the size of the input (on the number of digits in the numbers a, k, p).

2 Pseudo-random generators and computationally secure schemes

In this section we show that a computationally secure encryption scheme can be constructed with help of pseudo-random generator. We begin with the definition of a pseudo-random generator.

Definition 1. We say that a function

$$
G:\{0,1\}^{\ell(n)} \rightarrow\{0,1\}^{n}
$$

is a pseudo-random generator if

- $\ell(n)<n$
- $G(x)$ is computed (by a deterministic algorithm) in polynomial time
- for every poly-time algorithms D (deterministic or randomised) the difference

$$
\left|\operatorname{Prob}_{x \in_{R}\{0,1\}^{\ell(n)}}[D(G(x))=1]-\operatorname{Prob}_{y \in_{R}\{0,1\}^{n}}[D(y)=1]\right|
$$

is negligibly small.
This definition can be interpreted as follows. A pseudo-random generator is a function G that transforms a seed x of lenght $\ell(n)$ in a longer output $y=G(x)$ of length n. If we choose a seed x at random (with a uniform distribution on the set of all strings $\{0,1\}^{\ell(n)}$), then the generator induces some probability distribution on the set of values $G(x)$ on the set of strings of length $\{0,1\}^{n}$. Of course, this distribution is not a uniform distribution on $\{0,1\}^{n}$. However, for an observer with a polynomial computational power this output looks "very similar" to a uniform distribution. This means that if a test/discriminator D tries to distinguish between "good" and "bad" outcomes, than the fractions of "good" and "bad" strings among truly random ones (i.e., $\operatorname{Prob}_{y \in_{R}\{0,1\}^{n}}[D(y)=1]$) and pseudo-random ones (i.e., $\operatorname{Prob}_{x \in_{R}\{0,1\}^{\ell}}[D(G(x))=1]$) are "almost the same". The word "almost" means that the difference between these probabilities is negligibly small. This condition means that for practical reasons we can use pseudo-random strings instead of truly random ones, and all realisable tests would not see the difference.

Remark 1. The very fact that pseudo-random generators exist is highly non-trivial. It is conjectured that they do exist, but this hypothesis remains unproven. This hypothesis is stronger than the famous unproven conjecture $\mathrm{P} \neq \mathrm{NP}$.
Proposition 1. If $G:\{0,1\}^{\ell(n)} \rightarrow\{0,1\}^{n}$ is a pseudo-random generator, then $\ell(n)>\log n$ for almost all n.
(We proved this proposition in the class.)
Theorem 1. If $G:\{0,1\}^{\ell(n)} \rightarrow\{0,1\}^{n}$ is a pseudo-random generator, then a version of Vernam's encryption scheme $\Pi=\langle$ Gen, Enc, Dec \rangle, where

- the algorithm $G e n(\underbrace{11 \ldots 1}_{n})$ takes a random $k \in\{0,1\}^{\ell(n)}$ and returns $k^{\prime}=G(k)$
- the algorithm $\operatorname{Enc}\left(m, k^{\prime}\right)$ computes a bitwise XOR of the open message m and the key k^{\prime}
- the algorithm Dec(e, $\left.k^{\prime}\right)$ computes a bitwise XOR of the encrypted message e and the key k^{\prime}
is a computationally secure scheme.
Sketch of the proof. In the class we proved this theorem using a proof by contradiction: is the scheme does not satisfy the definition of a computationally secure scheme, then (by the definition of computationally security) there is an opponent that can distinguish with non-negligible probability encodings of two messages m_{a} and m_{b}; we use this algorithm to construct a discriminator D that can distinguish between truly random strings of bits and pseudo-random strings of bits produced by G, which contradicts the definition of a pseudo-random generator.

Observe that this scheme allows to reduce the size of the secret key from n to a strictly smaller $\ell(n)$ (which is impossible for perfectly secure schemes).

