
HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

16/10/2023. Lecture 6.

1 Fast exponentiation

In the class we discussed one standard algebraic algorithm — the algorithm of fast exponentiation. This
algorithm takes as the input a triple of integer numbers, (a, k, p), and returns the value ak mod p. The
problem of exponentiation may look trivial: we can take the number a, multiply it by itself k times,

a× a× . . .× a︸ ︷︷ ︸
k

and the reduce the obtained result modulo p. However, this naive scheme is too expensive. Indeed, this
procedure requires k operations of multiplication. If the binary expansion of k consists of s binary digits,
then the suggested procedure runs in time exponential in s (i.e., exponential in the length of the input).
Fortunately, there exists a much more efficient algorithm. We will explain it in to different way.

The first explanation (adapted for the human perception). We begin with a representation of the number k
by it binary expansion, (k)2 = ksks−1 . . . k1k0, which means that

k = k0 + 2k1 + 4k2 + 8k3 + . . . + 2sks

(each ki is a binary digit, i.e., either 0 or 1). Then ak can be represented as follows:

ak = ak0 · a2k1 · a4k2 · a8k3 · . . . · a2sks =
∏

j : kj=1

a2
j
.

Now it is clear that we can compute ak mod p in two stages:

(i) Compute sequentially the values a2
j

mod p for j = 1, 2, . . . , s. Each next value can be computed as

a2
j+1

=
(
a2

j
)2

mod p.

(ii) Compute the product
∏

j : kj=1

a2
j

mod p, combining the values a2
j

such that kj = 1.

The first stage consists of exactly s multiplications, the second stage consists of at most s multiplications
(where s is the number of binary digits in k, i.e., s = dlog2 ke). Each operation of multiplication modulo
p requires poly(log p) elementary operation (on each stage we multiply two numbers with at most dlog2 pe
binary digits and then divide the product by p with a reminder). Thus, we have O(log k) stages, and each
one can be done in time poly(log p).

If the number a is much larger than k and p, then the very first stage can be more expensive: we need
to reduce a modulo p, which requires poly(log a, log p) operations (dlog2 ae is the number of digits in the
standard binary expansion of a).

1

The second explanation (adapted for the computer programming). Substantially the same algorithm of
exponentiation can be reformulated as follows:

inputs: a, k, p;
z:= 1;
t:= k;
y:= a;
while t>0 {

if (t is odd) {
z := z * y mod p;
t:= t-1;

} else {
y:= y * y mod p;
t:= t/2;

}
}
return z.

It is easy to see that this algorithm maintains the invariant

z × yt = ak mod p

Thus, when the value of t achieves 0, the variable z contains the value ak mod n.
In this algorithm, the operations

y:= y * y mod p;
t:= t/2;

are executed dlog2 ke times. The operations

z := z * y mod p;
t:= t-1;

are executed as many times as there are 1’s in the binary representation of k, i.e., at most dlog2 ke times. It
follows that the algorithm runs in time that polynomially depends on the size of the input (on the number of
digits in the numbers a, k, p).

2 Pseudo-random generators and computationally secure schemes

In this section we show that a computationally secure encryption scheme can be constructed with help of
pseudo-random generator. We begin with the definition of a pseudo-random generator.

Definition 1. We say that a function

G : {0, 1}`(n) → {0, 1}n

is a pseudo-random generator if

• `(n) < n

2

• G(x) is computed (by a deterministic algorithm) in polynomial time

• for every poly-time algorithms D (deterministic or randomised) the difference∣∣∣Probx∈R{0,1}`(n) [D(G(x)) = 1]− Proby∈R{0,1}n [D(y) = 1]
∣∣∣

is negligibly small.

This definition can be interpreted as follows. A pseudo-random generator is a function G that transforms
a seed x of lenght `(n) in a longer output y = G(x) of length n. If we choose a seed x at random
(with a uniform distribution on the set of all strings {0, 1}`(n)), then the generator induces some probability
distribution on the set of values G(x) on the set of strings of length {0, 1}n. Of course, this distribution is
not a uniform distribution on {0, 1}n. However, for an observer with a polynomial computational power
this output looks “very similar” to a uniform distribution. This means that if a test/discriminator D tries to
distinguish between “good” and “bad” outcomes, than the fractions of “good” and “bad” strings among truly
random ones (i.e., Proby∈R{0,1}n [D(y) = 1]) and pseudo-random ones (i.e., Probx∈R{0,1}` [D(G(x)) = 1])
are “almost the same”. The word “almost” means that the difference between these probabilities is negligibly
small. This condition means that for practical reasons we can use pseudo-random strings instead of truly
random ones, and all realisable tests would not see the difference.

Remark 1. The very fact that pseudo-random generators exist is highly non-trivial. It is conjectured that
they do exist, but this hypothesis remains unproven. This hypothesis is stronger than the famous unproven
conjecture P 6= NP.

Proposition 1. If G : {0, 1}`(n) → {0, 1}n is a pseudo-random generator, then `(n) > log n for almost
all n.

(We proved this proposition in the class.)

Theorem 1. If G : {0, 1}`(n) → {0, 1}n is a pseudo-random generator, then a version of Vernam’s
encryption scheme Π = 〈Gen,Enc,Dec〉, where

• the algorithm Gen(11 . . . 1︸ ︷︷ ︸
n

) takes a random k ∈ {0, 1}`(n) and returns k′ = G(k)

• the algorithm Enc(m, k′) computes a bitwise XOR of the open message m and the key k′

• the algorithm Dec(e, k′) computes a bitwise XOR of the encrypted message e and the key k′

is a computationally secure scheme.

Sketch of the proof. In the class we proved this theorem using a proof by contradiction: is the scheme does
not satisfy the definition of a computationally secure scheme, then (by the definition of computationally
security) there is an opponent that can distinguish with non-negligible probability encodings of two mes-
sages ma and mb; we use this algorithm to construct a discriminator D that can distinguish between truly
random strings of bits and pseudo-random strings of bits produced by G, which contradicts the definition of
a pseudo-random generator.

Observe that this scheme allows to reduce the size of the secret key from n to a strictly smaller `(n)
(which is impossible for perfectly secure schemes).

3

	Fast exponentiation
	Extended Euclidean algorithm

	Pseudo-random generators and computationally secure schemes

