HAI7091 : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

23/10/2023. Lecture 7.

1 Semantic definition of security

In the class we re-discussed the definitions of security that we have seen before: the definition of (absolute)
security from Lecture 1 and the definition of computational security (see Section 5 from from Lecture 5).
The last definition may seem a bit artificial: it claims that a scheme must be resistant against a very specific
and somewhat unusual attack{|

We proved that this definition implies a series of pretty natural properties that could be expected from
a “reasonably good” cryptographic scheme. More specifically, we proved that resistance to the attack from
the definition of a computationally secure scheme implies resistance to many other types of attacks. We
proved in the class the following facts.

Proposition 1. Let IT = (Gen, Enc, Dec) be a poly-time computable encryption scheme and let i be an
integer number. For each n > i we consider the following experiment:

e Alice (the Sender) chooses at random an clear message m = xy ...z, € {0,1}"™ (with the uniform
distribution, i.e., each message m € {0,1}" is chosen with the probability 1/2"), produces a random
secret key k <— Gen(1™), and computes the encrypted message e = Enc(m, k).

e Adversary gets the encrypted message e and tries to guess the first bit of the clear message m1 using
a poly-time computable (deterministic or randomised) algorithm Adv:

Adv(1", e) produces a bit j.

The success of the Opponent is defined as

13 lf.] =mq
07 lfj 7é mi

We claim that if the scheme 11 is computationally secure, then the difference

success — {

1
‘Prob[succes =1]— 2‘

is negligibly small. In other words, the Opponent cannot extract from the encrypted message e the i-th bit of
the clear message m with a probability substantially bigger than 1/2.

Remark 1. The proposition remains true if we Adversary tries to guess not the first bit of the clear message
x1 but the bit x5, or x3, ..., or any other bits x, for a fixed position £.

"Let us recall that in this attack Adversary chooses a pair of clear messages mq, my € M, and then Sender choses at random
one of these two messages m € {mq,ms} at random, samples a random secret key k& <— K(1™), and encodes the chosen clear
message e = Enc(m, k). On the final stage, Adversary gets the encrypted messages mand tries to guess which clear message was
encrypted, mgq or my.

An encryption scheme is computationally secure if the probability of the correct guess differs from 1/2 by a negligibly small
function, for all algorithms of Adversary computable in polynomial time.

Proposition 2. Let IT = (Gen, Enc, Dec) be a poly-time computable encryption scheme and let i be an
integer number. For each n > 4 we consider the following experiment:

e Alice (the Sender) chooses at random (with the uniform distribution) an clear message m = xy ... x, €
{0,1}", produces a random secret key k with the algorithm Gen(1™), and computes the encrypted
message e = Enc(m, k).

o Adversary gets the encrypted message e and the first 56 bits of the clear message x1 . ..zxss, and
tries to guess the last bit of the clear message msy using a poly-time computable (deterministic or
randomised) algorithm Adv:

Adv(1", e, 1 ... x56) produces a bit j.

The success of the Opponent is defined as

1, ifj=uws7
07 lfj #.’E57

We claim that if the scheme 11 is computationally secure, then the difference

success —= {

1
‘Prob[succes =1]- 2‘

is negligibly small. In other words, given the encrypted message e and the first bits of the clear message
T1 . ..Ts6, Adversary cannot compute the next bit of the clear message xs7 with a probability substantially
bigger than 1/2.

We proved both these proposition by a reduction: we assumed that there exists an algorithm Adv that
succeed in the experiments suggested in each of this propositions, and then used it to construct an algorithm
that succeeds in the experiments from the definition of computational security. This is how we obtain a
contradiction with the assumption that the scheme is computationally secure.

In fact, these two propositions (as well as the exercises from the homework) are only special cases of
a much more general statement which is called semantic security. The following theorem presents this
property in formal terms.

Theorem 1. Let II = (Gen, Enc, Dec) be a poly-time computable encryption scheme and let F' and G be
functions computable in polynomial time. For each natural number n we consider the following experiment:

e Alice (the Sender) chooses at random (using a randomised algorithm Sampler(1™) that is computable
in polynomial time) a clear message m € {0, 1}", produces a random secret key k < Gen(1"™), and
computes the encrypted message e = Enc(m, k).

e The Opponent gets the encrypted message e, the value F'(m) (which can be interpreted as a partial
information on the clear message m), and tries to guess the value G(m) using a polynomial time
computable (deterministic or randomised) algorithm Adv:

Adv(1", e, F(m)) produces j.

We say that the Opponent succeeds, if j = G(m).
We claim that if the scheme 11 is computationally secure, then there exists another algorithm Adv’
computable in polynomial time and a negligibly small function f(n) such that

|Prob[Adv(1", e, F(m)) = G(m)] — Prob[Adv' (1", F(m)) = G(m)]| < f(n).

In other words, given the partial information on the clear text presented by the value F(m), the Opponent
can use the algorithm Adv' (1™, F(m)) and guess the values G(m) with almost the same probability as
Adv(1™ e, F(m)). Thus, in practice, the encrypted message e does not provide any useful information on
the clear message m (whatever Adversary does given e, can be done without e).

(We did not prove this theorem in the class.)

2 Diffie—-Hellman key exchange

In the class we discussed the classical protocol of key exchange suggested by Diffie and Hellman. In this
protocol two parties (Alice and Bob) want to agree on a common secret key. To this end, they communicate
via an open communication channel. Adversary (an eavesdropper) can intercept all the messages sent by
Alice and Bob to each other. We assume that the computational resources of the opponent are bounded, and
the security of the protocol is based on the assumption that the problem of discrete logarithm (see below)
cannot be resolved efficiently.

The public parameters of the protocol of Diffie and Hellman are a prime number p and an integer number
g such that the degrees of this numbers

g mod p, ¢> modp, ¢ modp, ¢ modop,... e))

cover the entier set of all possible non zero residues modulo p. In other words, for every integer number
1 < y < p there exists an integer x such that

xT

y=g¢" modp

The protocol is organised as follows:

e Alice chooses at random an integer number a co-prime with p and sends the number m, = g* mod p
to Bob

e Bob chooses at random an integer number b co-prime with p and sends the number m, = g® mod p
to Alice

e Alice computes k = (mp)® mod p

e Alice computes k = (mq)? mod p
Observe that Alice and Bob end up with the same number
k= (g*)" modp=(¢")* mod p.

This number is taken as the secret key.

Observe that the eavesdropper can access the numbers g¢ mod p sent by Alice and ¢ mod p sent by
Bob. It is believed in the cryptographic community that it is computationally hard to obtain (¢*® mod p)
given two numbers (¢ mod p) and (¢° mod p). More precisely, it is conjectured that no algorithm
(deterministic or randomised) for a classical computer can do this task in polynomial time. However, this
conjecture remains unproven.

It is known that there exists an algorithm for a quantum computer that computes in polynomial time
the discrete logarithm, i.e., given (p, g, y) it finds an x such that ¢* = y mod p. Using such an algorithm,
an eavesdropper could attack the protocol of Diffie-Hellman. This is why in post-quantum cryptography
the researchers explore possible alternative to the protocol of Diffie and Hellman (these alternative would
become necessary in case if quantum computers are eventually constructed).

Security of the protocol of Diffie and Hellman depends on the fact that there are many different y €
{1,2,...,p — 1} that can be represented as y = ¢g* mod p for a fixed g. Ideally, all values g* mod p for
x =1,2,...,p — 1 should be different. Indeed, let us consider the case when the list (I)) consists only of
k different elements and £ < p — 1. Given the values m, and m;, the eavesdropper can find their discrete
logarithms a and b (the numbers such that g° = m, mod p and ¢® = mp mod p) by brute force search,
by trying all values (¢* mod p) in (I)) forx = 1,2, ...,k one by one. The smaller is k, the faster the brute
force search works. Thus, for a small k, the task of the attacher is simpler. This is why we prefer to use in
this protocol a number g such that the list (I)) is maximally long (i.e., there are (p — 1) different elements in
this list).

It remains to show that for every prime number p there exists an integer ¢ such that the list () consists
of (p — 1) numbers. We will prove in the next lecture. In the class we discussed one example: we looked
for a g generating all non-zero elements modulo the prime number 17.

References

[1] J. Katz, Y. Lindell. Introduction to modern cryptography, CRC Press, 2021

[2] B. Martin. Codage, cryptologie et applications. PPUR presses polytechniques, 2004

	Semantic definition of security
	Diffie–Hellman key exchange

