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06/11/2023. Lecture 8.

1 Groups: elementary introduction.

In this section we discuss the algebraic notion of a group and its basic properties.

Definition 1. A group is a set G (finite or infinite) with a binary operation ∗ (a function G × G 7→ G)
satisfying the following properties

• there exists an e ∈ G (the neutral element) such that for all g ∈ G

g ∗ e = e ∗ g = g

• for all g ∈ G there exists an h ∈ G such that g ∗ h = h ∗ g = e

• for all g1, g2, g3 ∈ G
(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

A group is called commutative (or Abelian) if for all g, h ∈ G

• g ∗ h = h ∗ g.

Examples of groups (R,+), (Z,+), (Q \ {0}, ·), (Z/nZ,+), (Z/nZ, ·) for a prime n, the set of all
polynomials with real coefficients with the operation of addition, the set of all invertible matrices of size
n× n (with real coefficients) with the operation of multiplication of matrices.

Remark 1. The operation in a group is often denoted as · or +.

Exercise 1. Prove that in every group there is only one neutral element.

Definition 2. Let (G, ∗) be a group with the neutral element e, and let g ∈ G be its element. The order of g
is the minimal positive integer number n such that

gn := g ∗ (g ∗ (g ∗ . . . ∗ (g ∗ g) . . .))︸ ︷︷ ︸
n

= e

(or infinity, if for all n > 0 the element gn is not equal to e). For the order of an element g ∈ G we use the
notation Or(g) (the implied group must be clear from the context).

In the class we proved the following proposition.

Proposition 1. If a group (G, ∗) if finite (consists of a finite number of elements), then for every g ∈ G the
order of g divides the number of elements in G.

Corollary 1. Let (G, ∗) be a finite group with n elements. Let e be the neutral element of the group. Then
for every g ∈ G we have gn = e.

Corollary 2. For a prime number p and for every integer g co-prime with p we have gp−1 = 1 mod p.
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2 Modular arithmetic revisited

In this section we discussed properties of certain commutative groups connected with the modular arith-
metic.

2.1 Reminder

Theorem 1 (fundamental theorem of arithmetic). Every integer number n greater than 1 can be represented
uniquely as a product of prime numbers, up to the order of the factors.

We did not prove this theorem in the class. However, we used it to simplify the proofs of several
properties of integer numbers:

Proposition 2. Let x and y be integer numbers. There exist integer numbers v and w such that

v · x+ w · y = gcd(x, y),

where gcd denote the greatest common divisor).

Proposition 3. If a positive integer number a is co-prime with n then the there exists an integer number b
such that a · b = 1 mod n.

For a prime number p wWe denote by (Z/pZ)× the set of integer numbers from {1, . . . , p}. It is easy to
see that this set with the operation of multiplication modulo p is a group.

Theorem 2. For every prime number p there exists a g ∈ {1, 2, . . . , p − 1} such that the order of g in(
(Z/pZ)×, ·

)
is equal to p− 1.

Proof. The core idea of the proof is the fact that in each field a polynomial of degree k cannot have more
than k roots. Let us explain this proof in some detail.
Step 1. In this proof, the order of an element x ∈ (Z/pZ)× (denoted Or(x)) is the minimal integer number
k ≥ 1 such that xk = 1 mod p. The theorem claims that for every prime number p there exists a g such
that Or(g) = p− 1.
Step 2. Let g be any element in (Z/pZ)×. Since the set {1, 2, . . . , p− 1} is finite, the values

g mod p, g2 mod p, g3 mod p, . . .

cannot be all different; starting from some moment, this series begins to repeat. Therefore, this sequence
(powers of g modulo p) is periodic with some period k. The length of the period (the number k) is in fact
equal to the very first position in the sequence where we obtain gk = 1 mod p. In other words, the period
of this sequence modulo p is equal to Or(g).

We know that for every prime number p and for every g 6= 0 mod p we have gp−1 = 1 mod p. Hence,
the period of g modulo p must divide the number p − 1. Our goal is to find a g such that Or(g) not only
divides p− 1 but is equal to p− 1.
Step 3. We proceed with the following lemma.

Lemma 1. Let k0 be the least common multiple of

Or(1), Or(2), Or(3), . . . , Or(p− 1).

Then all element of the field are roots of the equation xk0 = 1 mod p.
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Proof. For every x ∈ {1, 2, . . . , p − 1} we have, by definition, xOr(x) = 1 mod p. Since k0 is a multiple
of Or(x), we have k0 = ` ·Or(x), and

xk0 mod p = x`·Or(x) mod p = (xOr(x))` mod p = 1` mod p,

and we are done.

Thus, the equation
xk0 = 1 mod p

has p− 1 roots in Z/pZ. It follows that k0 ≥ p.
In what follows we will find an element g0 such that Or(g0) = k0. The order of every element Z/pZ is

a factor of (p − 1). Thus, we have at once two properties: k0 is a factor of p − 1 and k0 ≥ p − 1. Hence,
k0 = p− 1, and Or(g0) = p− 1.

To conclude the proof of the theorem, it remains to find an element g0 of order k0.

Step 4. We need one more lemma:

Lemma 2. For all x, y ∈ (Z/pZ)× there exists an element z ∈ (Z/pZ)× such that Or(z) is the least
common multiple of Or(x) and Or(y).

Proof. At first, we prove the lemma for a special case, assuming that

gcd(Or(x), Or(y)) = 1

and, therefore, lcm(Or(x), Or(y)) = Or(x) ·Or(y) (here lcm denote the least common multiplier).
Since Or(x) and Or(y) are co-prime, we need a z such that

Or(z) = lcm(Or(x), Or(y)) = Or(x) ·Or(y).

We know from the Extended Euclid Algorithm that if the numbers Or(x) and Or(y) are co-prime, then
there exist v and w such that

v ·Or(x) + w ·Or(y) = 1.

We let z := xw · yv mod p.
It is easy to see that zOr(x)·Or(y) mod p = 1. It remains to show that k = Or(x) ·Or(y) is the minimal

natural number such that zk = 1 mod p.
It is clear that Or(z) divides Or(x) ·Or(y). Hence, if Or(z) < Or(x) ·Or(y), then in the sequence

z mod p, z2 mod p, z3 mod p, . . . , zOr(x)·Or(y) mod p (1)

the ones appear in a periodic way, at some positions

k′, 2k′, 3k′, . . . , Or(x) ·Or(y).

The key observation: if k′ < Or(x)·Or(y), then ones appear in (1) (among other positions) at some position
Or(x) · ` (for some ` < Or(y)) or at some position Or(y) · ` (for some ` < Or(x)).

In what follows we show that this is impossible. Indeed, for the number z defined above we have

zOr(x) = 1 · yu·Or(x) mod p = y1−v·Or(y) mod p = y mod p.
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Hence, the numbers
zOr(x), z2·Or(x), z3·Or(x), z(Or(y)−1)·Or(x)

coincide with
y, y2, , y3, . . . , y(Or(y)−1)

modulo p, and they are all not equal to 1 modulo p. A similar argument implies that the numbers

zOr(y), z2·Or(y), z3·Or(y), z(Or(x)−1)·Or(y)

are also not equal to 1 modulo p. Now it is not hard to show that in the list of numbers

z, z2, z3, . . . , zOr(x)·Or(y)

only the very last element is equal to 1 modulo p, i.e.,

Or(z) = Or(x) ·Or(y).

It remains to consider the case
gcd(Or(x), Or(y)) 6= 1.

We reduce the general case to the special case discussed above. We use the following trick. If ` is a factor
of Or(y), then Or(y`) = Or(y)/`. So if we can take ` := gcd(Or(x), Or(y)) and let y′ = y`, then

gcd(Or(x), Or(y′)) = 1 and lcm(Or(x), Or(y′)) = lcm(Or(x), Or(y)).

It remains to apply the argument explained above to the numbers x and y′, and we are done.

Step 5. Now we iterate an application of Lemma 2. First of all, we let x1 = 1. Now we apply Lemma 2
and find an x2 such that Or(x2) is the least common multiple of Or(x1) and Or(2). Then we apply one
more time Lemma 2 and find a x3 such that Or(x3) is the least common multiple of Or(x2) and Or(3).
Further, we find a x4 such that Or(x4) is the least common multiple of Or(x3) and Or(4), and so on.
Finally, we find an element xp−1 such that Or(xp−1) is the least common multiple of the orders of xp−2
and p− 1. From this construction it follows that the order of the last final element xp−1 is equal to the least
common multiple of the orders of all elements 1, 2, . . . , p − 1. In other words, we found an element xp−1
whose order is equal to the number k0 from Lemma 1.

Step 5. Since all elements in {1, . . . , p− 1} satisfy the equation

xk0 = 1 mod p,

the number k0 cannot be smaller than p− 1 (a polynomial of degree k0 cannot have more than k0 roots). On
the other hand, we know that Or(x) divides p− 1 for each x. Thus, k0 is not less than p− 1 and not greater
than p− 1. We conclude that k0 = p− 1, i.e., we have got an element xp−1 such that Or(xp−1) is equal to
p− 1. This means that x0 is a generating element of (Z/pZ)×, end we are done.
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3 The RSA scheme

3.1 Modular arithmetic once again.

For a positive integer number n we denote ϕ(n) the numbers between 1 and n that are co-prime with n. For
example, ϕ(5) = 4, ϕ(9) = 6, ϕ(10) = 4.

Proposition 4. (a) if p is a prime number, then ϕ(p) = p− 1.
(b) If p and q are two different prime numbers, then ϕ(pq) = (p− 1)(q − 1) = pq − p− q + 1.

We extend the notation form the previous section and denote by (Z/nZ)× the set of integer numbers
from {1, . . . , n} that are co-prime with n. The size of this set is by definition ϕ(n). The set (Z/nZ)× with
the operation of multiplication modulo n is a group.

Proposition 5. For every x ∈ (Z/nZ)× we have xϕ(n) = 1 mod n. In particular, if p 6= q are two prime
numbers, then x(p−1)(q−1) = 1 mod p · q.

3.2 Non symmetric cryptography

In the classe started a discussion of the asymmetric encryption scheme RSA (suggested by Rivest, Shamir,
and Adleman). In contrast with the schemes that we have discussed before, in RSA we need two different
keys: one for encoding and another for decoding messages.

The scheme is defined as follows. Let p and q be prime numbers, n = p · q. Let k, d ∈ (Z/ϕ(n)Z)×
such that d · k = 1 mod ϕ(n).

public key: (k, n)

secret key: (d, n)

We assume that the open and the encrypted messages are represented by integer numbers from (Z/nZ)×.

encryption: Enc(m) = mk mod n

decryption: Dec(e) = ed mod n

Correctness of the scheme: let us show that the operations Enc and Dec are mutually inverse, i.e., Dec(Enc(m)) =
m for all m co-prime with n.

(mk)d = mk·d = m1+`ϕ(n) = m · (mϕ(n))` = m · 1` mod n = m mod n.

If the public key is available to everyone, then everyone can encrypt a message. But only the holder of
the private key can decode the encrypted message.

Observe that given p and q we can easily compute the product n = pq, but not vice-versa (the problem of
integer factorisation is believed to be hard). The numbers p and q are needed to prepare the pair of elements
d and k that are inverse to each other modulo ϕ(n). When the private and the public key are fixed, the
numbers p and q can be discarded. These numbers should never become made public. Indeed, given the
numbers p and p, and the public key, one can effectively compute the private key.

The encoding and decoding algorithms in the scheme RSA require to compute xk mod n for very large
numbers k and n. (In practice it is often recommended to use numbers with at least two thousands of binary
digits). In the class we discussed an efficient exponentiation algorithm: we can compute xk mod n in time
that polynomially depends on the number of binary digits in x, k, n.
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