## HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

## 13/11/2023. Lecture 9.

## 1 Asymmetric encryption

In the class we rediscussed the scheme RSA, where the encryption is done with a public key $(n, k)$, and decryption with the matching private key $(n, d)$. (Let us recall that $n$ is chosen as a product of two large prime numbers, $n=p \cdot q$, and $k$ and $d$ are chosen so that $k \cdot d=1 \bmod \phi(n)$, where $\phi(n)=(p-1) \cdot(q-1)$ ).

We discussed the possibility of an attack on the scheme RSA: to convert the public key $(n, k)$ in the secret key $(n, k)$ it is enough to factorise $n$, i.e., find the prime factors of the number $n$.

In the naive algorithm of factorisation we try all possible factors of $n$, i.e., all numbers between 2 and $\sqrt{n}$. If $2^{n-1} \leq n<2^{k}$ (the binary expansion of $n$ consists of $k$ binary digits), this algorithm runs in time that is at least $\sqrt{n}=2^{k / 2}$, which is exponential in the size of the inputs. More advanced algorithms factorise $n$ in time $2^{O\left(k^{1 / 3}(\log k)^{2 / 3}\right)}$, which is much faster than the naive approach but still too slow for $k$ that is several thousand bits in size. We do not know any poly-time algorithm (deterministic or even randomised) for the problem of integer factorisation. The scheme RSA is believed to be safe large enough $k$. (The usual practical recommendation is to take $k$ of length 2 K bits or greater).

## 2 Density of prime numbers.

A natural number $p \in \mathbb{N}$ is called prime if it has exactly to natural divisors: 1 and $p$. The list of prime numbers begins with

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, \ldots
$$

There are quite many prime numbers. This statement can be mode more precise in different ways:

- the set of prime numbers is infinite (demonstrated by Euclid)
- for every integer number $n>0$, there exists a prime number $p$ such that $a \leq p<2 p$ (this property is called Bertrand's postulate; it was proven by Chebyshev)

Denote $\pi(n)$ the prime-counting function (the number of primes less than or equal to $N$ ). Then

- there exist numbers $c_{1}>0$ and $c_{2}>0$ such that for all $n$

$$
c_{1} \cdot \frac{n}{\ln n}<\pi(n)<c_{2} \cdot \frac{n}{\ln n}
$$

(Chebyshev's bounds)

- for every $\epsilon>0$ there exists an $n_{0}=n_{0}(\epsilon)$ such that for all $n>n_{0}$

$$
(1-\epsilon) \frac{n}{\ln n}<\pi(n)<(1+\epsilon) \frac{n}{\ln n}
$$

(proven by Hadamard and de la Vallée Poussin).

In the class we used the bound proven by Hadamard and de la Vallée Poussin to deduce the following property:

Proposition 1. There exist $a c>0$ and $a k>0$ such that for all integer numbers $k>k_{0}$ the number of primes between $2^{k-1}$ and $2^{k}$ is greater or equal to $c \cdot 2^{k} / k$.

This proposition means that if we choose at random an integer number $x$ with $k$ binary digits (a number between $2^{k-1}$ and $2^{k}$ ), then it will turn out to be prime with a probability of at least $\Omega(1 / k)$. Thus, if take at random const $\cdot k$ integer numbers with $k$ binary digits (for a large enough factor const), then with a probability of $>0.99$ at least one of these numbers is prime.

This observation shows that we can produce large prime numbers: we pick up a random integer number and test its primality). What remains missing in this scheme is an efficient test of primality. We will discuss such a test in the next lecture.

## 3 Groups and subgroups

Definition 1. Let $(G, *)$ be a group with the neutral element $e$, and let $H$ be a subset in $G$. The set $H$ is called a subgroup in $(G, *)$ if

- for all $x, y \in H$ the element $x * y$ belongs to $H$,
- foe all $x \in H$ the element $x^{\prime} \in G$ such that $x * x^{\prime}=e$ also belongs to $H$
(in other words, $H$ with the same operation $*$ is also a group).
Theorem 1. Let $(G, *)$ be a finite group and let $H$ be a subgroup of this group. Then the cardinality of $H$ divides the cardinality of $G$. In particular, if $H \neq G$, then $|H| \leq|G| / 2$.

Corollary 1. Let $(G, *)$ be a finite group and let $H$ be a subgroup of this group. If $H \neq G$, then $|H| \leq$ $|G| / 2$.

Sketch of the direct proof of the corollary: Let

$$
H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}
$$

be the list of all elements of $H$. Let $a \in G \backslash H$ (any element of the group $G$ that does not belong to $H$ ). We consider the list of elements

$$
H^{\prime}=\left\{a * h_{1}, a * h_{2}, \ldots, a * h_{k}\right\} .
$$

All elements $a * h_{i}$ are pairwise distinct since the operation of multiplication by $a$ is invertible: for every $g \in G$ there exists the unique $h$ such that $a * h=g$ (or, equivalently, $h=a^{\prime} * g$, where $a^{\prime}$ is the inverse to a).

Non of the elements $a * h_{i}$ belongs to $H$. Indeed, if $a * h_{i}=h_{j}$, then

$$
a=h_{i}^{\prime} * h_{j}, \text { where } h_{i}^{\prime} \text { is is the inverse to } h_{i},
$$

which implies that $a \in H$, and we get a contradiction.
Thus, if $H$ consists of $k$ elements, then we can find at least $k$ distinct elements in $G \backslash H$. This concludes the proof.

We will use the proven Corollary in the next lecture, when we prove soundness of a primality test.
Exercise 1. Prove Theorem 1.

