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13/11/2023. Lecture 9.

1 Asymmetric encryption

In the class we rediscussed the scheme RSA, where the encryption is done with a public key (n, k), and
decryption with the matching private key (n, d). (Let us recall that n is chosen as a product of two large
prime numbers, n = p·q, and k and d are chosen so that k·d = 1 mod φ(n), where φ(n) = (p−1)·(q−1)).

We discussed the possibility of an attack on the scheme RSA: to convert the public key (n, k) in the
secret key (n, k) it is enough to factorise n, i.e., find the prime factors of the number n.

In the naive algorithm of factorisation we try all possible factors of n, i.e., all numbers between 2 and√
n. If 2n−1 ≤ n < 2k (the binary expansion of n consists of k binary digits), this algorithm runs in

time that is at least
√
n = 2k/2, which is exponential in the size of the inputs. More advanced algorithms

factorise n in time 2O(k1/3(log k)2/3), which is much faster than the naive approach but still too slow for k that
is several thousand bits in size. We do not know any poly-time algorithm (deterministic or even randomised)
for the problem of integer factorisation. The scheme RSA is believed to be safe large enough k. (The usual
practical recommendation is to take k of length 2K bits or greater).

2 Density of prime numbers.

A natural number p ∈ N is called prime if it has exactly to natural divisors: 1 and p. The list of prime
numbers begins with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, . . .

There are quite many prime numbers. This statement can be mode more precise in different ways:

• the set of prime numbers is infinite (demonstrated by Euclid)

• for every integer number n > 0, there exists a prime number p such that a ≤ p < 2p (this property is
called Bertrand’s postulate; it was proven by Chebyshev)

Denote π(n) the prime-counting function (the number of primes less than or equal to N ). Then

• there exist numbers c1 > 0 and c2 > 0 such that for all n

c1 ·
n

lnn
< π(n) < c2 ·

n

lnn

(Chebyshev’s bounds)

• for every ε > 0 there exists an n0 = n0(ε) such that for all n > n0

(1− ε) n

lnn
< π(n) < (1 + ε)

n

lnn

(proven by Hadamard and de la Vallée Poussin).
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In the class we used the bound proven by Hadamard and de la Vallée Poussin to deduce the following
property:

Proposition 1. There exist a c > 0 and a k > 0 such that for all integer numbers k > k0 the number of
primes between 2k−1 and 2k is greater or equal to c · 2k/k.

This proposition means that if we choose at random an integer number x with k binary digits (a number
between 2k−1 and 2k), then it will turn out to be prime with a probability of at least Ω(1/k). Thus, if take
at random const · k integer numbers with k binary digits (for a large enough factor const), then with a
probability of > 0.99 at least one of these numbers is prime.

This observation shows that we can produce large prime numbers: we pick up a random integer number
and test its primality). What remains missing in this scheme is an efficient test of primality. We will discuss
such a test in the next lecture.

3 Groups and subgroups

Definition 1. Let (G, ∗) be a group with the neutral element e, and let H be a subset in G. The set H is
called a subgroup in (G, ∗) if

• for all x, y ∈ H the element x ∗ y belongs to H ,

• foe all x ∈ H the element x′ ∈ G such that x ∗ x′ = e also belongs to H

(in other words, H with the same operation ∗ is also a group).

Theorem 1. Let (G, ∗) be a finite group and let H be a subgroup of this group. Then the cardinality of H
divides the cardinality of G. In particular, if H 6= G, then |H| ≤ |G|/2.

Corollary 1. Let (G, ∗) be a finite group and let H be a subgroup of this group. If H 6= G, then |H| ≤
|G|/2.

Sketch of the direct proof of the corollary: Let

H = {h1, h2, . . . , hk}

be the list of all elements of H . Let a ∈ G \H (any element of the group G that does not belong to H). We
consider the list of elements

H ′ = {a ∗ h1, a ∗ h2, . . . , a ∗ hk}.
All elements a ∗ hi are pairwise distinct since the operation of multiplication by a is invertible: for every
g ∈ G there exists the unique h such that a ∗ h = g (or, equivalently, h = a′ ∗ g , where a′ is the inverse to
a).

Non of the elements a ∗ hi belongs to H . Indeed, if a ∗ hi = hj , then

a = h′i ∗ hj , where h′i is is the inverse to hi,

which implies that a ∈ H , and we get a contradiction.
Thus, if H consists of k elements, then we can find at least k distinct elements in G \H . This concludes

the proof.
We will use the proven Corollary in the next lecture, when we prove soundness of a primality test.

Exercise 1. Prove Theorem 1.
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