Crypto 2022. Final exam preparation.

Shannon's entropy

Exercise 1. Prove that for every triple of jointly distributed random variables (X, Y, Z) we have
(a) $H(X, Y \mid Z) \leq H(X \mid Z)+H(Y \mid Z)$,
(b) $2 H(X, Y, Z) \leq H(X, Y)+H(X, Z)+H(Y, Z \mid X)$,
(c) $H(X) \leq H(X \mid Y)+H(X \mid Z)+I(Y: Z)$,
(d) $H(X \mid Z) \leq H(X \mid Y)+H(Y \mid Z)$.

Exercise 2. There is a pair of random variables X and Y that are distributed on the set $\{1,2, \ldots, n\}$. It is known that $\operatorname{Prob}[X \neq y]=\epsilon$. Prove that

$$
H(X \mid Y) \leq 1+\epsilon \log (n-1)
$$

Hint: It is useful to introduce a new variables

$$
Z:= \begin{cases}1, & \text { if } X=Y, \\ 0, & \text { otherwise }\end{cases}
$$

and compare $H(X \mid Y)$ with $H(X \mid Y, Z)+H(Z)$.

Secret sharing

Exercise 3. We need to share a secret k (which is a bit string of length n) among four participants Alice, Bob, Charlie, Dan in such a way that the minimal groups that known the secret are \{Alice, Bob\}, \{Alice, Charlie\}, \{Alice, Dan\} (Alice alone as well as Bob, Charlie and Dan together should have no information on the secret).
(a) Construct a secret sharing scheme with the required property.
(b) Construct a secret sharing scheme with the required property so that each share of the secret $S_{A}, S_{B}, S_{C}, S_{D}$ is a represented by a string of n bits.
(c) Show that in every secret sharing scheme for Alice, Bob, Charlie, Dan the space of shares for Alice consists of at least 2^{n} different values (i.e., we cannot give to Alice less than n bits of information.

Exercise 4. We need to share a secret k (which is a bit string of length n) among four participants Alice, Bob, Charlie, Dan in such a way that the minimal groups that known the secret are
\{Alice, Bob\}, \{Alice, Charlie\}, \{Alice, Dan\}, \{Bob, Charlie, Dan\}.
(a) Construct a secret sharing scheme with the required property.
(b) ${ }^{*}$ Show that in this case in every secret sharing scheme one of the participants must receive a share with strictly more than 2^{n} possible values (i.e., we cannot give to each participant only n bits of information),

Shamir's secret sharing and polynomials the modular arithmetic.

Exercise 5. Let $a_{0}, a_{1}, a_{2}, a_{3}$ be integer numbers, and

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

It is know that
$f(1)=0 \bmod 31, f(2)=0 \bmod 31, f(3)=0 \bmod 31, f(4)=30 \bmod 31$.
Find $a_{0} \bmod 31$.
Exercise 6. Find a triple of numbers a_{0}, a_{1}, a_{2} (not all congruent to zero modulo 10) such that the polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ has at least three different roots in $\mathbb{Z} / 10 \mathbb{Z}$.

Exercise 7. For the following n find without a computer a number k such that $100 \cdot k=1 \bmod n$.
(a) $n=61$; (b) $n=599$; (c) $n=1009$.

Exercise 8. It is known that the number $p=5104051$ is prime.
(a) Show without using a computer that the number $g_{1}=3$ the numbers

$$
g,\left(g^{2} \bmod p\right),\left(g^{3} \bmod p\right), \ldots
$$

cover the whole set $\{1,2, \ldots, p-1\}$. Hint: compute $g_{1}^{(p-1) / 2} \bmod p$.
(b) Show without using a computer that the same property is not true for the number $g_{2}=9$.
(c) Let $g_{3}=522904$. Count the number of different elements in the list

$$
\{1,2, \ldots, p-1\}
$$

(d) Using (c), find without a computer a number x such that

$$
g_{3}^{x}=4581146 \quad \bmod p
$$

Moralité de la fable : if the subgroup generated by g is small, then the problem of discrete logarithm with the base g is simple.

