Crypto 2023. Preparation for the final exam (2nd half of the semester).

Exercise 1. Let p be a prime number. Prove that $1 \cdot 2 \cdot 3 \cdot \ldots \cdot(p-1)=-1 \bmod p$. For example, for $p=5$ we have

$$
1 \cdot 2 \cdot 3 \cdot 4=24, \text { and we see that } 24=-1 \bmod 5
$$

Exercise 2. Let p, q, r be three (pairwise distinct) prime numbers, each of them is strictly greater than 2, and $n=p \cdot q \cdot r$.
(a) Prove that if $a^{2}=1 \bmod n$, then $a^{2}=1 \bmod p$.
(b) Prove that there exists 8 numbers $x_{1}, \ldots x_{8}$ in the set $\{1,2, \ldots n-1\}$ such that $x_{i}^{2}=1 \bmod n$.
(c) Let $n=17 \cdot 19 \cdot 23$. Find at least three different numbers x in $\{1, \ldots, n-1\}$ such that $x^{2}=1$ $\bmod n$.

Exercise 3. Let $n=41 \cdot 47$ and $k=3$. Let as take the pair (n, k) as a public key of the scheme RSA. Find the corresponding private key.

Exercise 4. (a) Prove that every pseudo-random generator is a one-way function.
(b) Prove that if there exist one-way functions, then not all of them are pseudo-random generators.

Exercise 5. Assume that there exists a randomized polynomial time algorithm \mathcal{A} such that for every composite number n (represented by its binary expansion), $\mathcal{A}(n)$ with a probability $>1 / 2$ returns a non-trivial factor k of n (i.e., $k \neq 1, k \neq n$, and k divides n). With a probability $<1 / 2$ the algorithm may return a number that is not a factor of n.
Prove that there exists another randomized polynomial time algorithm \mathcal{B} such that for every composite number n (again, represented by its binary expansion), $\mathcal{B}(n)$ with a probability $>99 / 100$ returns a non-trivial factor k of n.

Exercise 6. Let $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a function computable in polynomial time by a deterministic algorithm such that for every $x \in\{0,1\}^{*}$ of even length the value $y=f(x)$ is a binary string twice shorter than x.

Assume that this function is not pre-image resistant in the following sense. There exists a polynomial-time algorithm \mathcal{A} such that for every n, for a randomly chosen $x \in\{0,1\}^{n}$, with probability >0.1 on the input $y=f(x)$

$$
\mathcal{A}(y) \text { returns an } x^{\prime} \text { such that } f\left(x^{\prime}\right)=y
$$

(algorithm \mathcal{A} finds an f-pre-image of y, which is possibly not equal to the original x).
(a) Prove that this function is not collision-resistant: there exists a polynomial-time algorithm \mathcal{B} such that for every even number n

- with probability $>0.1: \mathcal{B}(n)$ stops in $\operatorname{poly}(n)$ steps and returns two numbers x_{1}, x_{2} of length n such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ (i.e., \mathcal{B} finds a collision for f)
- with probability $<0.9: \mathcal{B}(n)$ returns symbol \perp
(b) Prove a stronger property: there exists a polynomial-time algorithm \mathcal{B}^{\prime} that for every even number n
- with probability $>0.99: \mathcal{B}^{\prime}(n)$ stops in poly (n) steps and returns two numbers x_{1}, x_{2} of length n such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ (i.e., \mathcal{B} finds a collision for f)
- with probability $<0.01: \mathcal{B}^{\prime}(n)$ returns symbol \perp

Comment: If you are a student attended the course, by December 24 you can request a solution of one of these exercises in exchange to your own solution of any other exercise from this list.

