
Course «Information theory». Very brief lecture notes.

10.09.2019. Lecture 1.

1. The game guess a number : one players chooses an integer number bet-
ween 1 and n, another player should find this number by asking questions with
answers yes or no. There is a simple strategy that allows to find the chosen num-
ber in dlog ne questions (bisection). Moreover, there is a non-adaptive strategy
with the same number of questions (the second player asks bits of the binary
expansion of the chosen number).

These strategies are optimal : no strategy helps to reveal the chosen num-
ber in less than dlog ne questions (in the worst case). The lower bound can be
explained in terms of an adversarial argument or in terms of the “missing infor-
mation” (the binary tree representing a valid strategy must contain at least n
leaves ; therefore, the height of this tree must be at least log of the number of
possible answers).
2. Sorting algorithms. We are given n objects (“stones”) and balance scales ;
in one operation we can compare weights of two stones. Claim 1 : to find the
heaviest stone, we must do (n − 1) weighings. Claim 2 : There is a strategy to
find the heaviest and the second heaviest stones with n+ dlog ne − 2 weighings.
Claim 3 : to sort n stones by their weights, we have to do in the worst case
log(n!) pairwise comparisons (no algorithm can guarantee the right answer with
less than log(n!) weighings).

Exercise 1.1 (Sorting algorithms).
(a) [optional] Prove that an array of n elements can be sorted with O(n log n)
comparisons (in the worst case). Reminder : In the class we proved that no
algorithm can do this faster than in log(n!) = Ω(n log n) comparisons.
Find the number of comparisons needed in the worst case
(b) to sort an array of size 4 ;
(c) to sort an array of size 5.

Exercise 1.2. We are given a heap of n stones, and we can use balance scales to
compare weights of any two stones. In the class we discussed an algorithm that
permits to find the heaviest and the second heaviest stone in n + dlog2 ne − 2
weighing. Prove that this algorithm is optimal (no algorithm can do better than
this in the worst case).
Hint : Apply the “adversarial argument.”

3. Fake coins problems. (i) A light fake coin. We are given n = 25 coins.
One of them is fake, which is lighter than all other (identical) coins. We can
use balance scales to compare weights of any two groups of coins. How many
operations do we need to find the fake coin ? We proved that an optimal strategy
requires 3 weighings. In general, to find a light fake coin in a heap of n coins we
need dlog3 ne weighings.

(ii) A fake coin with unknown weight. We are given n = 12 coins. One of
them is fake, and can be lighter or heavier than all other (identical) coins. Again,

we can use balance scales to compare weights of any two groups of coins. How
many operations do we need to find the fake coin ? We proved that an optimal
strategy requires 3 weighings. For the same question with n = 15 we proved
that 3 weighings are not enough.

Exercise 1.3. We are given n coins, and one of them is fake. All genuine coins
have the same weights, the fake one is heavier or lighter. We can use balance
scales to compare weights of any two groups of coins. How many weighings do
we need to find the fake coin for (a) n = 13 and (b) n = 14.
Reminder : We discussed in the class that 3 weighings are needed for n = 12
and 4 weighings are needed for n = 15.

4. Combinatorial definition of the information quantity. Following Ralph
Hartley, we say that the quantity of information in a finite set X is defined as

Inf(X) := log2 |A|

(roughly speaking, Inf(X) is the number of binary digits needed to give a unique
name to each element in A).

For a set X ⊂ Z2 we can define the “quantity of information” in X as well
as in its projections on the first and the second coordinates (denoted π1[X] and
π2[X] respectively). We have the following simple property :

Inf(X) ≤ Inf(π1[X]) + Inf(π2[X]),

the quantity of information in X is not greater than the sum of the information
quantities in two its components. This statement is equivalent to the obvious
inequality

|X| ≤ |π1[X]| × |π2[X]|.

Similarly, for a finite set X ⊂ Z3 we have

Inf(X) ≤ Inf(π1[X]) + Inf(π2[X]) + Inf(π3[X]).

Exercise 1.4 (optional and difficult). In what follows Inf(X) stands for Hart-
ley’s combinatorial information in a set X, i.e.,

Inf(X) := log2 |X|.

Let A be a finite set in Z3. We denote by πij [A] the projection of A onto the
coordinates i and j (e.g., π13 applied to the point (x, y, z) gives (x, z)). Prove
that

2 · Inf(A) ≤ Inf(π12[A]) + Inf(π13[A]) + Inf(π23[A]).

2

17.09.2019. Lecture 2.

1. Discussion of the homework : We discussed an algorithm for sorting an
array of n elements and proved by induction that it runs time O(n log n) in the
worst case. We proved (with the adversarial argument) that the search of the
maximal and the second maximal element in an array of size n requires in the
worst case n+ dlog ne − 2 comparisons.

Exercise 2.1. We are given a heap of n stones, and we can use balance scales
to compare weights of any two stones. We want to find in the heap two stones :
the one with the maximal weight and the one with the minimal weight. How
many weighing do we need (in the worst case) ? Propose a search algorithm and
prove that it is optimal.

2. The game guess a number. We discussed another version of the game
“guess a number,” where the first player choses at random an integer number
between 1 and n with (known in advance) probabilities p1, . . . , pn, and the se-
cond player should reveal this number by asking questions with answers yes
or no, with the minimal on average number of questions. We discussed several
specific examples and suggested a general scheme of “modified dichotomy.” In
this strategy, on each step the second player divides all numbers (that have not
been excluded earlier) into two groups with balanced measures, i.e., the sums of
probabilities in both groups must be as close to each other as possible. We dis-
covered a plausible approximation : the average number of steps in this strategy
is close to

n∑
i=1

pi log
1

pi
,

though we did not prove it formally.
3. Shannon’s entropy. For a random variable α with n possible values a1, . . . , an
such that Prob[α = ai] = pi, we define its Shannon’s entropy as

H(α) :=

n∑
i=1

pi log
1

pi

(with the usual convention 0 · log 1
0 = 0). We proved several properties of Shan-

non’s entropy.
Proposition 2.1. For every random variable α distributed on a set of n values

0 ≤ H(α) ≤ log n.

Moreover, H(α) = 0 if and only if the distribution is concentrated at one point
(one probability pi is equal to 1, and the other pj for j 6= i are equal to 0), and
H(α) = log n if and only if the distribution is uniform (p1 = . . . = pn = 1

n).
Sketch of proof : We use the concavity of the function log x and Jensen’s in-
equality for the concave functions.

3

Exercise 2.2. Prove that for every non-negative real number h there exists a
random variable (distribution) α such that Shannon’s entropy of α is equal to h.

Proposition 2.2. For every random variable α and for every (deterministic)
function F , Shannon’s entropy of the random variable β = F (α) is not greater
than Shannon’s entropy of α.
Sketch of proof : First of all, we observed that H(α) = H(β), if F is a bijection.
Then, we proved that the entropy of a distribution decreases, when we merge
together two points in this distribution ; in other words, H(α) ≥ H(F (α)), if
F merges together two points from the range of α and leaves distinct the other
values of α. By iterating the basic “merging” operations, we prove the inequality
H(α) ≥ H(F (α)) for an arbitrary function F .
Given a pair of jointly distributed random variables (α, β) we can apply the
definition of Shannon’s entropy three times, with three protentially different
distributions : we have Shannon’s entropy of the entire distribution (denoted
H(α, β)) and the entropies of two marginals, H(α) and H(β).
Proposition 2.3. For every pair of jointly distributed random variables α and β

H(α, β) ≤ H(α) +H(β).

Sketch of proof : We used again the concavity of the function of logarithm and
Jensen’s inequality.

Exercise 2.3. Let α and β be two jointly distributed random variables. Prove
that

H(α, β) = H(α) +H(β)

if and only if α and β are independent, i.e., for all i, j

Prob[α = ai and β = bj] = Prob[α = ai] · Prob[β = bj].

Exercise 2.4. Let us have a rooted binary tree with n leaves. Let li denote the
length of the path from the root to the i-th leaf, i = 1, . . . , n. Prove that

n∑
i=1

1

2li
≤ 1.

4

17.09.2019. Lecture 3.

1. Discussion of the homework :
— Exercise 2.2 : Every non-negative real number h there exists a random

variable (distribution) α such that Shannon’s entropy of α. We proved it
by sandwiching the real number h between log n and log n+ 1 (for an
integer n) and by organizing a continuous transformation from a uniform
distribution on n variables to a uniform distribution on (n+ 1) variables.
During this continuous transformation, we obtain distributions with all
values of Shannon’s entropy intermediate between log n and log(n+ 1).

— Exercise 2.3 : We proved that

H(α, β) = H(α) +H(β)

if and only if α and β are independent.
— Exercise 2.3 : Let us have a rooted binary tree with n leaves, and let li

denote the length of the path from the root to the i-th leaf, i = 1, . . . , n.

Then
n∑
i=1

1
2li
≤ 1.

We discussed two proofs of this fact : (i) the induction by the hight of
the tree and (ii) a direct proof with extending the given tree to an infinite
complete binary tree and counting of the fractions of branches extending
each of the leaves in the original tree.

2. Upper and lower bounds for the average number of questions in
the game “guess a number”. In this section we use Shannon’s entropy to
estimate the average number of questions needed in the randomized version of
the game “guess a number” (with a probability distribution on the set of possible
integers).
Lemma 3.1. For integer numbers l1, . . . , ln such that

n∑
i=1

1

2li
≤ 1

there exists a binary tree with n leaves such that the length of the path from
the root to the i-th leaf is equal to li.
Theorem 3.1. In the game “guess a number” (with yes or no questions) with

probabilities p1, . . . , pn, every strategy uses on average ≥
n∑
i=1

pi log 1
pi

questions.

Sketch of proof : Denote by li the number of questions in the branch of the
strategy the ends up with the answer i. The theorem claims that

n∑
i=1

pili =

n∑
i=1

pi log 2li ≥
n∑
i=1

pi log
1

pi
.

5

To prove this bound, we apply Jensen’s inequality (logarithm is concave) and
use Exercise 2.3.

Theorem 3.2. In the game “guess a number” (with yes or no questions) where
the number i = 1, . . . , n is chosen with probabilities p1, . . . , pn, there exists a

strategy that uses on average less than
n∑
i=1

pi log 1
pi

+ 1 questions.

Sketch of proof : We define li := dlog 1
pi
e, notice that

∑
2−li ≤ 1, and use

Lemma 3.1 to construct a strategy where each i-th leaf is on the distance li
form the root.

3. Kraft’s inequality. A prefix code is a set of strings {c1, . . . , cn} where no
codeword ci is a prefix of any other code word cj in this set. A uniquely decodable
code is a set of strings {c1, . . . , cn} such that for every string x there exists at
most one representation

x = ci1 ◦ ci2 ◦ . . . ◦ cik
(where ◦ denotes concatenation). Every prefix code is uniquely decodable, but
not vice-versa. In what follows we assume that all codes contain only binary
codewords (words in the alphabet of two letters).
Theorem 3.3. [Kraft’s inequality] For every uniquely decodable code {c1, . . . , cn}
we have

n∑
i=1

2−|ci| ≤ 1.

Theorem 3.4. For every uniquely decodable code {c1, . . . , cn} there exists a
prefix code {c′1, . . . , c′n} with the same lengths of the codewords, i.e., |c′i| = |ci|
for each i.
We mentioned the correspondence between strategies for the game guess a num-
ber and prefix codes. We also discussed Shannon–Fano encoding (a classical co-
ding method which works pretty well in practice but is not necessary optimal).

Exercise 3.1. We are given a heap of n stones (for simplicity we assume that
n is even), and we can use balance scales to compare weights of any two stones.
We want to find in the heap two stones : the one with the maximal weight and
the one with the minimal weight. Prove that these two stones can be found in
at most 3n

2 − 2 weighings. Prove that this number of operations is optimal : any
algorithm that solves this problem needs at least 3n

2 − 2 operations in the worst
case.
Hint : At each stage of the search, we define the following four sets :

— Potential-Max-or-Min : the stones that have not yet participated in any
comparison.

— Potential-Max-not-Min : the stones that have won at least one compa-
rison but have not lost any comparison.

— Potential-Min-not-Max : the stones that have lost at least one compa-
rison but have not won any comparison.

6

— Not-Max-nor-Min : the stones that have won at least one comparison and
have lost at least one comparison.

Describe these sets at the beginning of the process (before the very first wei-
ghing) and at the very end of the process (when the maximal and the minimal
stones are already found). Analyze how the stones travel between these sets
after each comparison. Then propose an “adversarial strategy” that maximize
the number of operations in the search.

Exercise 3.2 (optional ; no need to bring the solution for correction). Write a
program that computes Shannon’s entropy for a distribution with given proba-
bilities (p1, . . . , pn). [You will need this program for the next homework.]

Exercise 3.3. (a) Let S ⊂ {a, b, c}n be the set of all strings with 50% of letters
a, 25% of letters b, and 25% of letters c. Prove that there exists an injective
mapping (a “text compressor”)

Comp : S → {0, 1}3n/2

that assigns to each word from S a string of 3n/2 bits.
(b) Prove that there is no injective mapping

CompU : {a, b, c}n → {0, 1}3n/2

(a “text compressor” with this property does not exist).

01.10.2019. Lecture 4.

1. Discussion of the homework : solution of Exercise 3.3

2. Stirling’s approximation. We proves a simplified version of Stirling’s ap-
proximation for the factorial :

log(N !) = N log

(
N

e

)
+O(logN).

A more precise approximation (not proven in the class) is

N ! =
√

2πN

(
N

e

)N
· (1 + o(1)),

as n→∞.

3. Compressing binary strings with unbalances frequencies of bits.
For every real number p ∈ (0, 1) we denote by Bn,p the set of all binary strings
of length n with pn zeros and (1− p)n ones.
Proposition 4.1. If pn is an integer number then

|Bn,p| = 2h(p)n+O(logn),

7

where h(p) := p log 1
p + (1− p) 1

1−p .
Sketch of the proof : The number of elements in Bn,p is equal to(

n

pn

)
=

n!

(pn)!((1− p)n)!
.

Applying Stirling’s approximation for the factorials, we obtain the requires es-
timation for the cardinality of Bn,p.

4. Expectation and variance of random variables (reminder). Let α be
random variables distribute on R. In what follows we assume that the distribu-
tion is concentrated on a finite set of real numbers. Let Prob[α = ri] = pi for

i = 1, . . . , n, and
n∑
i=1

pi = 1.

Definition. Expectation of α is defined as

E(α) :=

n∑
i=1

piri.

Simple properties of the expectation :
— E(α+ c) = E(α) + c for every constant c ;
— E(c · α) = c · E(α) for every constant c ;
— E(α+ β) = E(α) + E(β) for every pair of jointly distributed α and β ;
— E(α · β) = E(α) · E(β) for all independent α and β ;

Proposition 4.2. [Markov inequality] If the distribution of α is concentrated
on only non-negative real numbers, then for every real number T

Prob[α ≥ T] ≤ E(α)

T
.

Definition. Variance of α is defined as var(α) := E
(
(α− E(α))2

)
.

Simple properties of the variance :
— var(α+ c) = var(α) for every constant c ;
— var(c · α) = c2 · var(α) for every constant c ;
— var(α+ β) = var(α) + var(β) for every pair of independent α and β.

Proposition 4.3. [the Chebyshev inequality] For every real number T

Prob[|α− E(α)| ≥ T] ≤ var(α)

T 2
.

Example 1. Let α be a random variable such that Prob[α = 1] = p and
Prob[α = 0] = 1− p. Then E(α) = p and var(α) = p(1− p).
Example 2. Let αi, i = 1, . . . , n be a sequence of independent identically
distributed random variable such that Prob[αi = 1] = p and Prob[αi = 0] = 1−p
for every i. Then

E(α1 + . . .+ αn) = pn

8

and
var(α1 + . . .+ αn) = p(1− p)n.

From the Chebyshev inequality we obtain

Prob

[∣∣∣∣α1 + . . .+ αn
n

− p
∣∣∣∣ ≥ δ] ≤ p(1− p)

δ2n

5. Shannon’s coding theorem for block coding.
Theorem 4.1. Let α1, . . . , αn be a sequence of independent identically distri-
buted random variables, and let ρ > H(αi). Denote A the range (the alphabet)
of all αi and k(n) := dρne. Then there exists a sequence of functions (encoding
and decoding)

Cn : An → {0, 1}k(n),
Dn : {0, 1}k(n) → An

such that probability of the decoding error

εn := Prob(α1...αn) [Dn(Cn(ai1 . . . ain)) = ai1 . . . ain]

tends to 0 as n→∞. (Here ai1 . . . ain is a randomly chosen sequence of values
for (α1, . . . , αn). In other words, each letter ais is chosen with the distribution
αi, independently of other letters.)
Theorem 4.2. Let α1, . . . , αn be a sequence of independent identically distri-
buted random variables, and let ρ < H(αi). Denote A the range (the alphabet)
of all αi and k(n) := dρne. Then for any sequence of functions

Cn : An → {0, 1}k(n),
Dn : {0, 1}k(n) → An

probability of the decoding error

εn := Prob(α1...αn) [Dn(Cn(ai1 . . . ain)) = ai1 . . . ain]

does not tend to 0 as n→∞.
Remark : Theorem 4.2 can be made even stronger : in fact, for ρ < H(αi)
probability of the decoding error εn tends to 1 as n → ∞. We did not prove
Theorem 4.2 in the class. However, we suggest to think of the proof of this
theorem (of its the weak version, as stated above).

Exercise 4.1. Construct prefix code with minimal average length for the fol-
lowing probability distributions :
(a) 0.6, 0.4
(b) 0.4, 0.3, 0.3
(c) 0.4, 0.3, 0.2, 0.1

9

Exercise 4.2. Show that for every triple of non-negative real numbers h1, h2, h3
there exists a pair of jointly distributed random variables (α, β) such that

H(α) = h1 + h2
H(β) = h1 + h3
H(α, β) = h1 + h2 + h3

Exercise 4.3. We are given n = 13 coins, and one of them is fake. All genuine
coins have the same weight, the fake one can be heavier or lighter. The position
of the fake coin (between 1 and 13) and its relative weight (whether it is heavier
or lighter than the genuine coins) are chosen at random, and all 2 × 13 = 26
variants have the same probability 1/26. We can use balance scales to compare
weights of any two groups of coins.

(i) Find a strategy that discovers the fake coin with minimal on average
number of weighings.

(ii) Compute Shannon’s entropy of each weighings that can be used in an
optimal strategy (at least for the 1st and or the 2nd weighing in each branch of
the strategy).
Hint 1 : There are several different optimal strategies, but each of them uses 3
operation.
Hint 2 : It is helpful to start the solution with question (ii), and construct an
optimal strategy by choosing on each stage the weighing that brings the maximal
possible value of entropy.

08.10.2019. Lecture 5.

1. Discussion of the homework : solution of Exercise 4.1 Huffman’s algo-
rithm that constructs an optimal prefix codes for a given distribution.
A brief discussion of Exercise 4.2. Venn-like diagrams for entropies of pairs ad
triples of random variables. An example of a distribution (α, β, γ) such that

H(α) = H(β) = H(γ) = 1,
H(α, β) = H(β, γ) = H(α, γ) = 2,
H(α, β, γ) = 2.

Discussion of a heuristic algorithm (the “greedy” entropic search) for Exer-
cise 4.3. Solution of Exercise 1.3 (b).

2. Conditional entropy and mutual information.
Definition 1. Let (α, β) be jointly distributed random variables, with pij =
Prob[α = 1i&β = bj]. For each value bj we have a conditional distribution on
the values of α with probabilities

p′i = Prob[α = 1i |β = bj] =
Prob[α = 1i&β = bj]

Prob[β = bj]
.

10

This conditional distribution has Shannon’s entropy ; we denote itH(α |β = bj).

Definition 2. We define the entropy of α conditional on β as the average

H(α |β) :=
∑
j

Prob[β = bj] ·H(α |β = bj).

In the class we proved several properties of conditional entropy :
— H(α, β) = H(α |β) +H(β)

— H(α |β) ≤ H(α)

— H(α |β) = H(α) if and only if α and β are independent

Definition 3. We define the information in α on β as

I(α : β) := H(β)−H(α |β).

In the class we proved several properties of the mutual information :

— I(α : β) = I(β : α) = H(α) +H(β)−H(α, β)

— I(α : β) ≥ 0

— I(α : β) = 0 if and only if α and β are independent
— I(α : β) ≤ H(α)

— I(α : β) ≤ H(β)

Definition 4. We define the information in α on β conditional on γ as

I(α : β | γ) := H(β | γ)−H(α |β, γ).

3. Linear inequalities for Shannon’s entropy. We proved several inequali-
ties for Shannon’s entropy.
Proposition 5.1. The inequality

H(γ) ≤ H(γ |α) +H(γ |β) + I(α : β)

is true for all jointly distributed α, β, γ.
Proposition 5.2. The inequality

2H(α, β, γ) ≤ H(α, β) +H(α, γ) +H(β, γ)

is true for all jointly distributed α, β, γ.
We discussed how Proposition 5.2. helps to solve Exercise 1.4.

4. Elements of information-theoretic cryptography. We discussed the
one-time pad symmetric encryption scheme (the Vernam cipher) and proved
that it is optimal in the following sense :

11

Theorem 5.1 [Shannon] Let random variables m, e, k denote the original mes-
sage, the encrypted message, and the secret key. A symmetric encryption scheme
is perfect, if H(m |, e, k) = 0 (the initial message can be uniquely reconstruc-
ted given the encrypted message and the secret key) and I(e : m) = 0 (the
encrypted message contains no information on the initial message). Then

H(k) ≥ H(m),

i.e., the size (entropy) of the secret key must be at least as long as the size
(entropy) of the message.

Secret sharing. We discussed in the class the notion of a perfect secret sha-
ring, with simple classical examples. In this setting, a secret is a random variable
S0 (usually a uniform distribution on some finite set), which is understood as
a distribution on possible values of a secret keys. We want to “distribute” this
secret among n participants of the project so that (i) every “authorized” group
of participants could reconstruct uniquely the value of S0, and (ii) every “non-
authorized” group of participants gets no information about the secret. Techni-
cally, this means that we include the random variable S0 in a joint distribution
(S0, S1, . . . , Sn) (where S0 is the secret and S1 . . . Sn are shares assigned to each
participant) so that the conditions (i) and (ii) are satisfied.
Example 1. Let us require that only all n participants now the secret S0, and
every group of less than n participants gets no information on S0. In case when
S0 is a uniform distribution on {0, 1}k, there is a simple scheme satisfying the
conditions (i) and (ii) : the “shares” of the secret S1, . . . , Sn are independent and
uniform distribution on {0, 1}k, and S0 is the bitwise XOR of them,

S0 = S1 ⊕ . . .⊕ Sn.

Then it is easy to verify that

(i) H(S0 |S1, . . . , Sn) = 0

and
(ii) H(S0 |S1, . . . , Si−1, Si+1, . . . , Sn) = H(S0).

Example 2. Let us choose a parameter (threshold) t between 1 and n and
require that (i) every group of at east t participants knows the secret, and
(ii) every group of less than t participants gets no information about the secret.
For simplicity, we assume that S0 is a uniform distribution on Z/pZ for a prime
number p (in what follows we assume that n < p).

In this setting the secret sharing can be implemented in Shamir’s scheme :
we fix some elements x0, x1, . . . , xn ∈ Z/pZ and define the jount distribution
(S0, S1, . . . , Sn) as follows : let a0, . . . at−1 be independent uniformly chosen
elements in Z/pZ, and respectively

Q(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1

12

be a randomly chosen polynomial of degree less than t (again, over the field
Z/pZ), and

Si := Q(xi) for i = 0, 1, . . . , n.

Then it can be shown that

(i) H(S0 |Si1 , . . . , Sit) = 0

for all 1 ≤ i1 < . . . it ≤ n (given t different points (xi, Si) on the graph of
the polynomial Q(x), we can reconstruct the coefficients of Q(x) and therefore
compute S0 = Q(x0)) and

(ii) H(S0 |Si1 , . . . , Sit−1) = log p = H(S0)

(if we know only t − 1 points (xi, Q(xi)) on the graph of the polynomial, than
all values of Q(x0) are possible and equiprobable).

13

