
Short lecture notes on computational complexity1.
(Outline of lectures at the University of Montpellier, December 2016.)

Last update: 14.12.2016.

December 7.

1 Time hierarchy theorem
Definition. A function 𝑓 : N → N is called time constructible , if it is computable and, moreover, the
mapping

11 . . . 1⏟ ⏞
𝑛

↦−→ 11 . . . 1⏟ ⏞
𝑓(𝑛)

can be computed in time 𝑂(𝑓(𝑛)).

Exercises 1.1. Show that the functions 𝑛, 𝑛 log 𝑛, 𝑛10, 2𝑛, 22
𝑛

are time-constructible.

Theorem 1.1. Let 𝑓 : N → N be a time constructible function such that 𝑓(𝑛) ≥ 𝑛 (for all 𝑛), and
𝑔 : N → N be a function such that 𝑓(𝑛) is much less than 𝑔(𝑛), e.g.,

(𝑓(𝑛))3 = 𝑜(𝑔(𝑛)).

Then there exists a language 𝐿 ⊂ {0, 1}* that belongs to DTIME[𝑔(𝑛)] but not to DTIME[𝑓(𝑛)].

(Proven in the class.)

Corollary. P ̸= EXP.

Exercises 1.2. Compare Theorem 1.1 (proven in the class) with time hierarchy theorems in [1, 2, 3, 4],
with a weaker constraint on 𝑓(𝑛) and 𝑔(𝑛). Read the proof of the time hierarchy theorem in (at least) one of
these sources. Beware of the definition of a time constructible function!

2 Space complexity
Definition. Denote by DSPACE[𝑓(𝑛)] the class of all languages that can be recognized by a deterministic
Turing machine that uses 𝑂(𝑓(𝑛)) cells on the working space for all input size 𝑛. We also use the notation

PSPACE :=

∞⋃︁
𝑘=1

DSPACE[𝑛𝑘].

Similarly, we denote by NSPACE(𝑓(𝑛)) the class of all languages that can be recognized by a nondeterministic
Turing machine that uses 𝑂(𝑓(𝑛)) cells on the working space for all input size 𝑛 (for all computation paths)
and

NPSPACE :=

∞⋃︁
𝑘=1

NSPACE[𝑛𝑘].

(the machine must have accepting computations for words in the language).

Definition. A function 𝑓 : N → N is called space constructible , if it is computable and, moreover, the
mapping

11 . . . 1⏟ ⏞
𝑛

↦−→ 11 . . . 1⏟ ⏞
𝑓(𝑛)

can be computed using 𝑂(𝑓(𝑛)) cells on the working tape.
1The students following this course can address with questions to Andrei Romashchenko, andrei.romashchenko@lirmm.fr

1

Exercises 2.1. Show that the functions 𝑛, 𝑛 log 𝑛, 𝑛10, 2𝑛, 22
𝑛

are space-constructible.

Theorem 2.1. Let 𝑓 : N → N be a space constructible function such that 𝑓(𝑛) ≥ 𝑛 (for all 𝑛), and
𝑔 : N → N be a function such that 𝑓 = 𝑜(𝑔). Then there exists a language 𝐿 ⊂ {0, 1}* that belongs to
DTIME[𝑔(𝑛)] but not to DTIME[𝑓(𝑛)].

(We did not prove this theorem in the class.)

Exercises 2.2. Prove Theorem 2.1. (You can find a sketch of the proof of this theorem in [1, 3]. A more
detailed proof of the space hierarchy theorem is given in [2] and [4]. Beware of subtle differences in the
definition of a space constructible function!)

Theorem 2.2. [Savitch’s theorem] For every space constructible function 𝑓 : N → N such that 𝑓(𝑛) ≥ 𝑛

NSPACE[𝑓(𝑛)] ⊂ DSPACE[(𝑓(𝑛))2].

(Proven in the class. You can find a proof of this theorem in [1, 2, 3].)

Corollary. NPSPACE = PSPACE.

Exercises 2.3. (a) Explain where we used the condition of space constructibility in the proof of The-
orem 2.2. (b)* Prove that the space hierarchy theorem remains true even without the condition of space-
constructibility of 𝑓(𝑛).

Theorem 2.3. The language BFQ (true quantified Boolean formulas) is PSPACE-complete.

(Proven in the class. The proof of this theorem can be found in [1, 2, 3].)

3 Computations with an oracle
In the class we defined a Turing machine with an oracle (see [1, 2, 3]).

Definition 3.1. A language 𝐴 is Turing-reducible to a language 𝐵 (denoted 𝐴 ≤𝑇 𝐵), if there is an
oracle Turing machine that machine that recognizes 𝐴 when given 𝐵 as an oracle. Such a machine is said
to reduce 𝐴 to 𝐵

A language 𝐴 is polynomial-time reducible to a language 𝐵 (denoted 𝐴 ≤𝑝
𝑇 𝐵), if there is an oracle

Turing machine that reduces 𝐴 to 𝐵 and runs in polynomial time

Some basic properties of the Turing reduction:

∙ 𝐴 ≤𝑝
𝑇 𝐴 for every 𝐴,

∙ 𝐴 ≤𝑝
𝑇 ({0, 1}* ∖𝐴) for every 𝐴,

∙ if 𝐴 ≤𝑝
𝑇 𝐵 and 𝐵 ≤𝑝

𝑇 𝐶, then 𝐴 ≤𝑝
𝑇 𝐶,

∙ if 𝐴 ≤𝑝
𝑇 𝐵 and 𝐵 ∈ P, then 𝐴 ∈ P,

∙ if 𝐴 ∈ P, then 𝐴 ≤𝑝
𝑇 𝐵 for all 𝐵,

∙ if 𝐴 ≤𝑚 𝐵, then 𝐴 ≤𝑝
𝑇 𝐵.

Exercises 3.1. Most theorem of the computability theory relativize, i.e., they remain true for Turing ma-
chines with any oracle. Prove the following properties:

(a) For every oracle 𝐴 there exists a function 𝑓 : {0, 1}* → {0, 1}* that is not computable with this oracle.

2

(b) For all sets 𝐴 and 𝑆, if a set 𝑆 is enumerable with the oracle 𝐴 and co-enumerable with the oracle 𝐴,
then this set is decidable with the oracle 𝐴.

(c) For every oracle 𝐴 we have P𝐴 ⊂ NP𝐴 ⊂ PSPACE𝐴 ⊂ EXP𝐴.

(d) For every set 𝐴 we have PSPACE𝐴 = NPSPACE𝐴.

Hint: Verify that the standard proofs of these properties for computations without oracles can be adapted to
the oracle machines.

Theorem 3.1. There exists an oracle 𝐴 such that P𝐴 = NP𝐴 = PSPACE𝐴. In particular, these equalities
hold for the oracle 𝐵𝐹𝑄.

(Proven in the class. A proof can be found in [1, 2, 3].)

December 14.
Theorem 3.2. There exists an oracle 𝐵 such that P𝐵 ̸= NP𝐵.

(Proven in the class. A proof can be found in [1, 2, 3].)

Definition 3.2. The class coNP consists of all languages 𝐿 such that the complement of the language (i.e.,
the set {0, 1}* ∖ 𝐿) belongs to NP.

Exercises 3.2. Prove that coNP ⊂ PNP (PNP is defined as the union
⋃︀

𝐴∈NP

NP𝐴).

Definition 3.3 (polynomial hierarchy). The classes NP and coNP are also denoted Σ𝑝
1 and Π𝑝

1 respectively.
Further, for 𝑛 = 2, 3, . . . we define by induction the classes Σ𝑝

𝑛 and Π𝑝
𝑛 as follows:

Σ𝑝
𝑛 := NPΣ𝑝

𝑛 =
⋃︁

𝐴∈Σ𝑝
𝑛

NP𝐴,

Π𝑝
𝑛 := coNPΠ𝑝

𝑛 =
⋃︁

𝐴∈Π𝑝
𝑛

coNP𝐴.

Exercises 3.3. (a) Prove that for every 𝑛

Σ𝑝
𝑛 ∪ Π𝑝

𝑛 ⊂ Σ𝑝
𝑛+1 ∩ Π𝑝

𝑛+1.

(b) Prove that for every 𝑛
Σ𝑝

𝑛 ⊂ PSPACE and Π𝑝
𝑛 ⊂ PSPACE.

Exercises 3.4 (optional). It is believed that Σ𝑝
2 (Σ𝑝

3, i.e., the difference Σ𝑝
3 ∖ Σ𝑝

2 is not empty (though this
conjecture remains unproven). Suggest a language 𝐴 that could belongs to Σ𝑝

3 ∖ Σ𝑝
2.

Exercises 3.5. (a) Prove that BPP ⊂ EXP. (b) Prove a stronger statement: BPP ⊂ PSPACE.

Remark: It is known that BPP ⊂ Σ𝑝
2 ∩ Π𝑝

2, but we do not prove this fact in the class.

3

4 Interactive proofs
Definition 4.1. We say that a language 𝐿 belongs to the class IP (𝐿 has an interactive proof system), if
there exists a poly-time randomized Turing machine 𝑉 (Verifier) and an function 𝑃 (Prover) such that

∙ for each 𝑥 ∈ 𝐿 Prob[result of communication of 𝑉 and 𝑃 on input 𝑥 = 1] > 2/3, and

∙ for each 𝑥 ̸∈ 𝐿, for every prover 𝑃 ′ Prob[result of communication of 𝑉 and 𝑃 ′ on input 𝑥 = 1] < 1/3.

Remark: The constants 2/3 and 1/3 in the definition above can be changed to 0.99 and 0.01 respectively,
or even to any reals 1 − 𝜀 and 𝜀 (for 𝜀 < 1/2). These modifications will not affect the defined class IP (all
variants of the definition are equivalent to each other).

Some simple properties:

∙ BPP ⊂ IP (the class BPP corresponds to the «interactive protocols» where a poly-time randomized
Verifier does not ask any question to the Prover and performs all the computations without assistance).

∙ NP ⊂ IP (the class NP corresponds to the «interactive protocols» where a poly-time Verifier does not
use randomness).

Proposition 4.1. The language

𝑛𝑜𝑛𝐼𝑠𝑜 := {(𝐺1, 𝐺2) : graphs 𝐺1 and 𝐺2 are not isomorphic}

belongs to IP.

(Proven in the class. A proof can be found in [1, 2, 3].)

Exercises 4.1. Prove that the language of quadratic non-residues

𝑁𝑄𝑅 = {(𝑘, 𝑝) | 𝑝 is prime, and there is no 𝑚 such that 𝑚2 = 𝑘 𝑚𝑜𝑑 𝑝}

belongs to IP.

Theorem 4.1. (a) IP ⊂ EXP. (b) IP ⊂ PSPACE.

(A sketch of the proof was discussed in the class. A proof can be found in [1, 2, 3].)

Theorem 4.2. PSPACE ⊂ IP.

We did not prove this theorem in the class. See a proof in the [5] (very short!) or in [1, 2, 3].
Remark: The equality IP = PSPACE is not «relativizable», i.e., there exists an oracle 𝐴 such that IP𝐴 ̸=
PSPACE𝐴. We did not prove this fact in the class; the interested students can find a proof in [1].

Zero knowledge proof: In the class we discussed a protocol of a zero-knowledge interactive proof for the
problem 3-coloring of a graph with physical gadgets (the assigned colors were hidden by cups, like in the
shell game). We briefly discussed an «electronic» version if this protocol — without special physical gadgets,
with a digital encryption of colors assigned to the vertices of the graph.

4

References
[1] Sylvain Perifel. Complexité algorithmique. Ellipses, 2014.

[2] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[3] Sanjeev Arora and Boaz Barak. Computational complexity. A modern approach. Cambridge University
Press, 2009.

[4] Luca Trevisan. Notes on Hierarchy Theorems. https://people.eecs.berkeley.edu/∼luca/cs172/noteh.pdf

[5] Alexander Shen, IP= SPACE: simplified proof. Journal of the ACM (JACM) 39, no. 4 (1992): 878-880.

Further reading

[6] Lance Fortnow and Steve Homer. A Short History of Computational Complexity. Bulletin of the EATCS,
80, 2003, pp. 95-133.

[7] Lance Fortnow. The status of the P versus NP problem. Communications of the ACM, 52(9), 2009,
pp. 78-86.

[8] Russell Impagliazzo. A Personal View of Average Case Complexity. Proceedings of Tenth Annual IEEE
Conference Structure in Complexity Theory, 1995, pp. 134-147. (5 possible worlds of complexity)

[9] Scott Aaronson’s Shtetl Optimized blog: Reasons to believe. (10 justifications for the belief that P ̸= NP)

5

https://www.irif.fr/~sperifel/livre_complexite.html
https://math.mit.edu/~sipser/book.html
http://theory.cs.princeton.edu/complexity/
https://people.eecs.berkeley.edu/~luca/cs172/noteh.pdf
https://users.cs.fiu.edu/~giri/teach/5420/f01/IP_Pspace2.pdf
http://people.cs.uchicago.edu/~fortnow/beatcs/column80.pdf
https://pdfs.semanticscholar.org/1bc8/31136e380489a0a76ff07f501003866cb954.pdf
http://www.cs.mun.ca/~kol/courses/6743-w15/papers/russell-fiveworlds.pdf
http://www.scottaaronson.com/blog/?p=122

	Time hierarchy theorem
	Space complexity
	Computations with an oracle
	Interactive proofs

