
Stability of Properties of Kolmogorov complexity
under Relativization

An. A. Muchnik†1 and A. E. Romashchenko2

1 February 24, 1958 — March 18, 2007
2 Kharkevich Institute for Information Transmission Problems, RAS, Moscow

anromash@mccme.ru

Abstract. Assume a tuple of binary strings ā = 〈a1, . . . , an〉 has negligible mutual information with another
string b. Does this mean that properties of Kolmogorov complexity of ā do not change significantly if we relativize
them to b? This question becomes very nontrivial when we try to formalize it. In this paper we investigate this
problem for a special class of properties (for properties that can be expressed by an ∃-formula). In particular we
show that a random (conditional on ā) oracle b does not help extract common information from ai’s.

1 Introduction

Kolmogorov complexity K(x) of a binary string x is the minimal length of a program that gen-
erates x. Similarly, the conditional complexity K(x |y) (complexity of x given y) is the minimal
length of a program that prints x given y as an input. We talk about programs in one of optimal
programming languages (see details of the definition in [1, 2]).

We may define Kolmogorov complexity (and conditional Kolmogorov complexity) not only
for individual strings but also for pairs, triples, and all tuples of strings. To this end we fix some
computable enumeration of all tuples, i. e., a computable bijection between binary strings and all
tuples of binary strings. The Kolmogorov complexity of a tuples is defined as Kolmogorov com-
plexity of the string assigned to this tuple in the enumeration. The choice of a particular enumera-
tion does not matter: if we switch from one computable enumeration to another one, this changes
Kolmogorov complexity of tuples by an additive term O(1) only. This is not essential since even
the Kolmogorov complexity of individual strings is defined only up to an additive O(1) (which
depends on the choice of an optimal programming language).

The main definitions and most results in the theory of Kolmogorov complexity easily relativize:
instead of plain programs we can consider algorithms with an oracle, and most arguments about
Kolmogorov complexity work with any oracle. Note that if an oracle is a finite object (a string)
z we do not even need to introduce new notation to talk about Kolmogorov complexity with this
oracle. Relativization to an oracle z means that we put z in conditions of all complexities; e.g.,
relativized version of K(x) is K(x |z), relativized K(x |y) is K(x |y, z), etc.

The information about y contained in x is defined as the difference between the Kolmogorov
complexity of y and conditional Kolmogorov complexity of y given x:

I(x : y) = K(y)−K(y |x)

On of the most fundamental facts of algorithmic information theory is the theorem about symmetry
of the mutual information:

Theorem 1 (Kolmogorov–Levin [1]). For all strings x, y we have

I(x : y) = I(y : x) +O(logN) = K(x) +K(y)−K(x, y) +O(logN),

N = K(x, y).

1

Thus, up to a logarithmic term, we can talk about the mutual information between x and y, and
make no distinction between I(x : y) and I(y : x).

If the mutual information I(x : y) is negligible in comparison with K(x), K(y), K(x, y) (e.g.,
if I(x : y) is logarithmic in N = K(x, y)), then x and y are called independent. This (slightly
informal) terminology is very popular in the information theory community. Is the usage of the
word “independent” indeed well justified in this context? Intuitively it seems that if x an y are
independent, then the reasonable algorithmic properties of x (expressed in the language of Kol-
mogorov complexity) should not change while we switch from the plain Kolmogorov complexity
to Kolmogorov complexity relativized conditional on y.

Conjecture 1 (main conjecture). If the mutual information between 〈x1, . . . , xn〉 and a string z is
negligible, then relativization to z does not change essentially the properties of x1, . . . , xn.

Main Conjecture in terms of optimal programming languages (a reformulation suggested by
the anonymous referee): Assume we are interested in properties of Kolmogorov complexities of
some particular tuple of strings x1, . . . , xn. Suppose that (for some technical reason) we extended
our optimal programming language, but this extension does not change essentially Kolmogorov
complexity of the tuple 〈x1, . . . , xn〉. On the other hand, complexities of some other strings could
change dramatically. Conjecture 1 claims that all natural closed statements about x1, . . . , xn (a
closed statement may involve other strings except x1, . . . , xn, but they all should be bounded by
quantifiers ∀ or ∃) are substantially equivalent for the original programming language and for its
extension.

We formulated Conjecture 1 in a very vague way. To specify it, we consider several examples.
We start with a very simple case. Let x̄ be a tuple of n strings: x̄ = 〈x1, x2, . . . , xn〉. Assume that
the mutual information between x̄ and some string z is negligible. Then it is not hard to see that the
very basic properties of Kolmogorov complexity for x̄ does not change when we relativize them
conditional on z:

K(xi) ≈ K(xi |z), K(xi, xj) ≈ K(xi, xj |z), . . .

for all i, j, etc. More precisely, the following proposition holds:

Proposition 1 If x̄ = 〈x1, x2, . . . , xn〉 and δ = K(x̄) −K(x̄|z), then for all indexes i1, . . . , is ∈
{1, . . . , n} ∣∣K(xi1 , xi2 , . . . , xis)−K(xi1 , xi2 , . . . , xis |z)

∣∣ ≤ δ +O(logN),

where N = K(x1, . . . , xn, z). (The constant in the O-term depends on n but not on N).

This proposition is quite trivial; for the sake of completeness we prove it in Section 4.
Consider another example. We will need an existential quantifier to formulate the next property

of Kolmogorov complexity. The following theorem about conditional descriptions was proven in
[3]. Let us have a tuple of strings x1, . . . , xn. Then for any y there exists a string p such that:

1. K(y |p, xi) = O(logN) for all i = 1, . . . , n (where N = K(x1, . . . , xn, y));
2. K(p) = max

i
K(y |xi).

This theorem claims that there exists a program of length max
i
K(y|xi) that translates each of xi

to y. (This statement becomes trivial if we change the length of the program from max
i
K(y |xi) to

the sum of all conditional complexities

K(y |x1) + . . .+K(y |xn).

2

Indeed, we could take as a program p the concatenation of n shortest programs translating each of
xi to y. The theorem about conditional descriptions is rather surprising: it claims that instead of this
long concatenation we can take only one program, whose length is maximum of all K(y |xi). In
fact this theorem can be made even stronger: we can add another requirementK(p |y) = O(logN),
see [3].) Analyzing the proof of this theorem, it is easy to verify that the above property remain
true relative to any oracle z: for every y there exists a program p′ such that

1. K(y |p′, xi, z) = O(logN) for i = 1, . . . , n;
2. K(p′ |z) = max

i
K(y |xi, z).

Here we do not even need to require that z is independent of 〈x1, . . . , xn〉.
In the next example relativization is not that evident. We consider the property of extracting

common information. Let x̄ = 〈x1, x2〉 be a pair of strings. We say that q bits ofcommon informa-
tion can be extracted from this pair for a threshold k if

∃y such that for i = 1, 2 we have K(y |xi) < k and K(y) ≥ q.

It is easy to show that for every string y as above we have

K(y) ≤ I(x1 : x2) +O(k + logK(x1, x2)).

This means that for small enough thresholds k we cannot extract from x1, x2 much more bits of
common information than I(x1 : x2). (Loosely speaking, the value of extracted common informa-
tion cannot be greater than the value of the mutual information.)

It is known that the question of extracting common information from a pair x1, x2 cannot
be reduced to values of complexities K(x1), K(x2), and K(x1, x2). For example, knowing that
K(x1) = K(x2) = 2N and K(x1, x2) = 3N , we cannot say anything precise about the value of
extractible common information. On one hand, there exist pairs 〈x1, x2〉 with given complexities,
such that N bits of common information can be extracted for a very small threshold k = O(1).
On the other hand, there exist pairs of words with the same complexities, such that for rather
large thresholds k only negligible amount of common information (only O(k+ logN) bits) can be
extracted. See detailed discussion of extracting common information in [4–7].

The question of extracting common information can be defined not only for a pair but for any
tuple of s ≥ 2 strings. However many nontrivial properties become clear already for s = 2. So for
simplicity we will talk about common information for pairs only.

Let us make conjecture 1 more specific for the property of extracting common information:
Let the mutual information between x̄ = 〈x1, x2〉 and z be very small. Then q bits of common

information can be extracted from x1 and x2 for a threshold k if and only if the same q bits
of common information can be extracted from these strings with oracle z (maybe, for a slightly
different threshold).

This claim consists of two parts: if and only if. The second part (only if) is trivial: if some com-
mon information can be extracted without any oracle then the same information can be extracted
also with an oracle. The interesting part is the if direction of this equivalence. We need to formu-
late it more precisely. We think that the most natural form of this statement involves logarithmic
thresholds:

Conjecture 2. For every C1 > 0 there exists a C2 > 0 such that for all x̄ = 〈x1, x2〉 and z, if
I(z : x̄) ≤ C1 logN and

∃v : K(v |z) ≥ q, K(v |xi, z) ≤ C1 logN, i = 1, 2,

3

where N = K(x̄, y) (i. e., q bits of common information can be extracted from x1, x2 for threshold
C1 logN , given z as an oracle), then

∃w : K(w) ≥ q, K(w |xi) ≤ C2 logN, i = 1, 2,

i. e., the same q bits of common information can extracted from these strings without any oracle
(for threshold C2 logN).

Surprisingly, this natural conjecture is very nontrivial. It was proven in [8] only for q = I(x1 : x2).
In this paper we prove a simplified version of this conjecture: for all q but with o(·)-term instead
of logarithms.

Theorem 2. For any function f(N), f(N) = o(N) there exists a function g(N) (also g(N) =
o(N)) such that for every x̄ = 〈x1, x2〉 and z, if I(z : x̄) ≤ f(N) and

∃v : K(v |z) ≥ q, K(v |xi, z) ≤ f(N), i = 1, 2,

where N = K(x̄, z), then

∃w : K(w) ≥ q, K(w |xi) ≤ g(N), i = 1, 2.

We prove this theorem in Section 6.
Note that asymptotical results in algorithmic information theory are typically true not just with

a term o(·), but with a more precise termO(logN) (though a few results about correlation between
the Kolmogorov complexity of a string and statistics of its subwords involve terms O(

√
N), see

[2]). We believe that Conjecture 2 is true in the logarithmic version; but the known technique is not
enough to prove it.

We believe that similar properties hold relative to infinite oracles (computable or noncom-
putable). Probably, to prove this conjecture we need a new, more sophisticated technique.

So far we discussed a few very simple examples of statements specifying the general intuitive
Conjecture 1. In the next section we suggest a formal framework suitable to formulate and prove
this conjecture in a more general form.

2 General formulation of the main conjecture.

How stable are properties of Kolmogorov complexity when they are relativized? First of all, we
need to specify the class of properties to consideration. Typically we are interested in general
properties that hold “up to a logarithmic term”.

Example 1 For all x1, x2 it holds

K(x1, x2) ≤ K(x1) +K(x2) +O(logK(x1, x2)) (1)

and
K(x1, x2) ≥ K(x1)−O(1).

Also we have
K(x1, x2) = K(x1) +K(x2 |x1) +O(logK(x1, x2)).

4

These are the simplest properties of Kolmogorov complexity for a pair of strings, which can be
expressed by linear equalities and inequalities. Note that even the very basic inequalities for Kol-
mogorov complexity are true only up to an additive logarithmic term.

Different types of Kolmogorov complexity (prefix, monotone, decision, a priori complexity,
see [2, 9]) differ from each other by only an additive term of logarithmic order. So the properties
that hold “with logarithmic precision” are the same for all kinds of Kolmogorov complexity. This
is another reason to study properties of Kolmogorov complexity up to a logarithmic “remainder
term”.

How to describe this class of properties? For an n-tuple x1, . . . , xn we deal with Kolmogorov
complexities of all tuples xi1 , . . . , xik for 1 ≤ i1 < . . . < ik ≤ n. Thus, to every n-tuple of
strings there correspond (2n − 1) values of Kolmogorov complexity. We fix some order (e. g.,
lexicographical) on the set of all combinations of indexes 1 ≤ i1 < . . . < ik ≤ n, and correspond
to every n-tuple of binary string its complexity profile, which is a vector in Z2n−1

+

K(x1, . . . , xn) = (K(x1), K(x1, x2), . . . , K(x2), K(x2, x3), . . .).

In the same way we define conditional complexity profile K(x1, . . . , xn |y) as a vector of condi-
tional complexities of all combinations of xi given y (we give precise definitions in Section 3).

Remark 1. There is no reason to distinguish tuples that contain the same strings but in different or-
der. Indeed, changing the order of strings (or duplicating some strings) we change the Kolmogorov
complexity of a tuple by only an additive O(1) (which depends on the number of strings in the
tuple but not on their complexities).

For the same reason, we do not need to involve in complexity profiles conditional complexities.
By the Kolmogorov–Levin theorem, we can represent every conditional complexity as a combina-
tion of simple complexities:

K(x1, . . . , xn |y1, . . . , ym) = K(x1, . . . , xn, y1, . . . , ym)−K(y1, . . . , ym) +O(logN),

where N = K(x1, . . . , xn, y1, . . . , ym).

Thus, the simplest Kolmogorov properties of a tuple x1, . . . , xn are just properties of its com-
plexity profile K(x1, . . . , xn). For example, inequality (1) is the following property of complexity
profile of a pair x1, x2:

K(x1, x2) = (K(x1), K(x1, x2), K(x2)) ∈ A = {(u, v, w) : v ≤ u+ w +O(log v)}.

Note that this simple property provides a constraint for the set of triples of integers that can rep-
resent some complexity profile. Hence, not every vector from Z2n−1

+ is a profile of some tuple of
strings (even up to additive logarithmic terms).

A more general class of Kolmogorov properties can be expressed in a similar form: we take
some set of integers A and claim that for all x1, . . . , xn

K(x1, . . . , xn) ∈ A.

Here setA represents a universal property of Kolmogorov complexity. In particular, we can express
in this way any statement about a linear information inequality (see [8, 10–12]).

Even statements expressed in this simple form can be nontrivial. We have no complete descrip-
tion of all points in Z2n−1

+ that are complexity profile of some tuples of strings. Moreover, for n > 3

5

we have no description of all linear information inequalities that hold up to an additive logarithmic
term, see a discussion in [12].

It is natural to say that properties as above are atomic formulae in the language of Kolmogorov
complexity. We can add to such a formula quantifiers ∀ (for each involved variable); then we get a
false or true universal statement about Kolmogorov comeplxity.

Now we introduce more sophisticated properties of Kolmogorov comeplxity, which involve
alternation of quantifiers. The simplest example is the property of extracting common information
(discussed in Section 1). Several other examples of this type are investigated in [7]. A very general
class of Kolmogorov properties for a tuple x1, . . . , xn can be expressed by a formula as follows

∀y1∃y2∀y3 . . . K(x1, . . . , xn, y1, . . . , ym) ∈ A, (2)

where A ⊂ Z2n+m−1. Assume that for tuples x̄ = 〈x1, . . . , xn〉 and x̄′ = 〈x′1, . . . , x′n〉 and some
constant C > 0, for every property (2) of x̄ there exists a similar property of x̄′

∀y1∃y2∀y3 . . . K(x′1, . . . , x
′
n, y1, . . . , ym) ∈ A′

where A and A′ are C-close (i. e., for every point ā ∈ A there exists a point ā′ ∈ A′ such that
Euclidian distance between ā and ā′ is less than C, and vice versa, for every point in A′ there exists
a C-close point in A). Then we say that properties of the tuples x̄ and x̄′ are C-close.

Now we can discuss stability of these properties under relativization. LetO be an oracle (a finite
or infinite binary sequence). We consider Kolmogorov complexity relativized conditional to this
oracle. If O is finite, relativized complexity is just the usual conditional Kolmogorov complexity.
In this paper we will consider only finite oracles O (usually we will denote by z a binary string
encoding an oracle).

In the sequel we use asymptotic notationsO(f(x1, . . . , xn)) involving Kolmogorov complexity.
We always mean that the constant in O-terms may depend on the choice of an optimal program-
ming language. In the rest of the section we formulate the main results of this paper.

Quantifier-free formulae. The elementary Kolmogorov properties (i. e., a property expressed by a
quantifier-free formula) of a tuple x̄ does not change under relativization to an oracle z if and only
if the mutual information between x̄ and z is negligible. This trivial statement is a reformulation
of Proposition from Introduction:

Theorem 3. Assume that for some x̄ = 〈x1, . . . , xn〉 and a string z the mutual information is
small:

I(x̄ : z) ≤ δ.

Then the corresponding components of complexity profiles K(x̄) and K(x̄ |z) differ from each
other by at most δ +O(logK(x̄, z)).

∃-formulae. Consider Kolmogorov properties expressed by ∃-formulae (with parameters). In this
case our main conjecture can be reformulated as a pair of mutually inverse statements (a theorem
and a conjecture):

Theorem 4. Assume that for a tuple of strings x̄ and a string z

I(x̄ : z) ≤ δ.

Then for every ȳ = 〈y1, . . . , ym〉 there exists a ȳ′ = 〈y′1, . . . , y′m〉 such that the difference be-
tween corresponding components of complexity profiles K(x̄, ȳ) and K(x̄, ȳ′ |z) is at most δ +
O(logK(x̄, ȳ, z)).

6

Conjecture 3. Assume that for a tuple of strings x̄ and a string z

I(x̄ : z) ≤ δ.

Then for every ȳ = 〈y1, . . . , ym〉 there exists a ȳ′ = 〈y′1, . . . , y′m〉 such that the difference be-
tween corresponding components in complexity profiles K(x̄, ȳ |z) and K(x̄, ȳ′) is at most δ +
O(logK(x̄, ȳ, z)).

Conjecture 2 is a special case of Conjecture 3. We can prove Conjecture 3 only for stochastic
tuples.

Definition 1. A binary string x is called (α, β)-stochastic is there exists a set A that contains x,
and

• complexity of a tuple Â, which is lexicographically ordered list of all elements of A, is at
most α;

• K(x | Â) ≥ log |A| − β (here and in the sequel all logarithms are to the base 2).

Note that every incompressible string of lengthN (i. e., a string x of lengthN such thatK(x) ≥ N)
is stochastic.

The definition of individual stochastic strings straightforwardly extends to tuples of strings. We
are mostly interested in (O(logN), O(logN))-stochastic tuples x̄ such that N = K(x̄). For the
sake of brevity we call them stochastic (without parameters α and β).

The fact that some strings are not stochastic, is quite nontrivial [13]. In most applications of
Kolmogorov complexity, only stochastic strings or tuples of strings are used. So, the following
theorem covers the most natural and important (for applications) case:

Theorem 5. Conjecture 3 holds for all stochastic x̄.

For non-stochastic tuples Conjecture 3 remains unproven.

Tuples non-equivalent to any stochastic object. We say that strings a and b are C-equivalent (a ∼C
b) if

K(a | b) ≤ C logK(a, b) and K(b |a) ≤ C logK(a, b).

Further, we say that tuples ā = 〈a1, . . . , an〉 and b̄ = 〈b1, . . . , bn〉 are C-equivalent (denote ā ∼C b̄)
if for each i = 1, . . . , n string ai is C-equivalent to bi.

Since we study Kolmogorov properties only with logarithmic precision, we may say that equiv-
alent tuples have the same properties. So a natural idea is to prove Conjecture 3 as follows: first
reduce every tuple x̄ to some stochastic x̄′ and then apply Theorem 5 to x̄′. There is only one
problem in this plan: can we find, for an arbitrary x̄, an equivalent x̄′?

First of all we note that for an individual x (a tuple of length 1) there exists a C-equivalent
(C logK(x), C logK(x))-stochastic string x′. (Constant C does not depend on x.) Indeed, for
every x there exists a shortest description p such that

K(p |x) = O(logK(x)).

We can take this p as x′. This string is obviously C-equivalent to x (where C is a constant that
depends only on the choice of an optimal programming language). The same time K(x′) ≥ |x′| −
O(1) since this string is a shortest description of x. Hence, x′ is stochastic.

7

Is a similar statement true for every pair of strings 〈x1, x2〉? If x1 and x2 are independent,
then we find equivalent strings to each of them (denote these strings x′1 and x′2). It is easy to
verify that the pair 〈x′1, x′2〉 is stochastic and C-equivalent to 〈x1, x2〉. Another example: assume
that K(x1 |x2) ≤ O(logK(x2)). Then we can find a shortest description p of x1 and a shortest
description q of x2 conditional on x1, such that x1 is equivalent p and x2 is equivalent to 〈p, q〉.
This pair 〈p, 〈p, q〉〉 is stochastic.

Theorem 6. Let α, β, γ, C > 0 be reals such that α + β > γ and α, β < γ. Then for all large
enough n there exist strings x1, x2 such that

• K(x1) = αn+O(log n);
• K(x2) = βn+O(log n);
• K(x1, x2) = γn+O(log n),

and there is no (C log n,C log n)-stochastic pair 〈x′1, x′2〉 that is C-equivalent to 〈x1, x2〉.

Remark 2. It is easy to check that for every triple of reals (α, β, γ) such that 0 ≤ α ≤ γ, 0 ≤ β ≤
γ, and γ ≤ α + β, for all n there exist a pair x1, x2 such that

K(x1) = αn+O(log n),

K(x2) = βn+O(log n),

K(x1, x2) = γn+O(log n).

In the above theorem we impose additional constraints on the values α, β, γ. The inequality α+β >
γ means that x1 and x2 are not independent; the inequalities α, β < γ means that one of the strings
xi cannot be very simple conditional on another one. Without these constraints the theorem does
not hold (see the examples before the theorem).

Thus, for some tuples of two strings there is no equivalent stochastic tuple. This means that
techique of Theorem 5 does not help to prove Conjecture 3 in the general case.

Organization of the paper. In Section 3 we give principal definitions and formulate several
technical lemmas (mostly know from other papers; for the sake of completeness we prove these
lemmas in the Appendix). In Section 4 we prove the main conjecture for quantifier-free formulae
and for ∃-formulae and stochastic tuples. In Section 5 we explain why non-stochastic tuples (even
non-stochastic pairs) in general cannot be substituted by an equivalent stochastic tuple. In Section 6
we prove a version of the main conjecture for the property of extracting common information. In
Section 7 we make conclusions and comment on open problems. In the Appendix we prove several
technical lemmas borrowed from [10, 11] and a Lemma 6 (a generalization of the main lemma from
[14, 15]). In Sections 4–6 we use different techniques, so these sections can be read independently.

3 Definitions, notation, and technical lemmas.

3.1 Complexity profile.

Let x̄ = 〈x1, . . . , xn〉 be an n-tuple of binary strings. For every V = {i1, . . . , ik} ⊆ {1, . . . , n},
1 ≤ i1 < . . . < ik ≤ n, we denote x̄V the sub-tuple of strings xj for j ∈ V :

x̄V = 〈xi1 , . . . , xik〉.

8

Respectively, K(x̄V) := K(xi1 , . . . , xik). If V = ∅ we assume that K(x̄V) := K(λ) (where λ is
the empty string). We use similar notation for conditional complexities: for every sets

V = {i1, . . . , ik} ⊆ {1, . . . , n} and W = {j1, . . . , jl} ⊆ {1, . . . , n}

we denote K(x̄V | x̄W) := K(xi1 , . . . , xik |xj1 , . . . , xjl). If W is empty, then we assume that
K(x̄V | x̄W) := K(x̄V |λ).

Definition 2. By the complexity profile of an n-tuple x̄ = 〈x1, . . . , xn〉 we call the vector of
(2n − 1) values K(x̄W) for all subsets W ⊆ {1, . . . , n} (we assume that subsets W are ordered
lexicographically):

K(x1, . . . , xn) = (K(x1), K(x1, x2), . . . , K(x2), K(x2, x3), . . .).

Similarly, by the conditional complexity profile of an n-tuple x̄ conditional on ywe call the vector
of (2n − 1) values K(x̄W |y) computed for all subsets W ⊆ {1, . . . , n} (again, we assume that
subsets W are ordred lexicographically):

K(x1, . . . , xn |y) = (K(x1 |y), K(x1, x2 |y), . . . , K(x2 |y), K(x2, x3 |y), . . .).

Definition 3. By the extended complexity profile of an n-tuple x1, . . . , xn we call the vector of
complexites K(x̄V | x̄W) for all pairs V,W ⊆ {1, . . . , n} such that V ∩W = ∅ and V 6= ∅. Note
that an extended complexity profile contains unconditional complexities of x̄: for W = ∅ we have
K(x̄V | x̄∅) = K(x̄V) +O(1). We assume that the order of components in an extended complexity
profile corresponds to the lexicographical ordering of pairs (V,W):

K ′(x1, . . . , xn) = (K(x1), K(x1 |x2), . . . , K(x2), K(x2 |x1), K(x2 |x3), . . .).

In the same way we define conditional extended complexity profile of an n-tuple x1, . . . , xn condi-
tional on y. It is composed of complexities of the form K(x̄V | x̄W , y):

K ′(x1, . . . , xn |y) = (K(x1 |y), K(x1 |x2, y), . . . , K(x2 |y), K(x2 |x1, y), K(x2 |x3, y), . . .).

We will need to compare complexity profiles of different tuples. To this end we introduce a
(partial) order on vectors in Rk. We say that a vector ᾱ ∈ Rn is not greater than β̄ ∈ Rn (notation:
ᾱ ≤ β̄) if αi ≤ βi for all i = 1, . . . , n.

We use l∞-norm to measure the distance between vectors:

ρ(ᾱ, β̄) := max
i
{|αi − βi|}.

In particular, we say that complexity profile of x̄ = 〈x1, . . . , xn〉 is not greater than com-
plexity profile of ȳ = 〈y1, . . . , yn〉, if every component of the first profile is not greater than
the corresponding component of the second profile, i. e., for every V ⊆ {1, . . . , n} it holds
K(x̄V) ≤ K(ȳV). We also say that the distance between complexity profiles of tuples 〈x1, . . . , xn〉
and 〈y1, . . . , yn〉 is not greater than ε if for every subset of indexes V it holds |K(x̄V)−K(ȳV)| ≤ ε.

9

3.2 Typization.

In this paper we use the typization technique introduced in [10, 11, 16].

Definition 4. Let x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉 be tuples of binary strings. By typization
of x̄ conditional on ȳ we call the following set of n-tuples :

T (x̄ | ȳ) := {x̄′ = 〈x′1, . . . , x′n〉 |K ′(x̄′, ȳ) ≤K ′(x̄, ȳ)}.

Further, we call by k-strong typization of x̄ conditional on ȳ the following set of n-tuples:

STk(x̄ | ȳ):={x̄′ = 〈x′1, . . . , x′n〉 |K ′(x̄′, ȳ) ≤K ′(x̄, ȳ) and ρ(K ′(x̄′, ȳ),K ′(x̄, ȳ)) ≤ k}.

Note that T (x̄ | ȳ) can be algorithmically enumerated given ȳ and the extended complexity
profile K ′(x̄, ȳ). This is not the case for STk(x̄ | ȳ) (we can effectively check that Kolmogorov
complexity of some tuple is less than a given threshold, but we cannot check that complexity is not
too small).

The method of typization is based on the following lemmas proven in [10, 11].

Lemma 1. For every tuples x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉

log |T (x̄ | ȳ)| = K(x̄ | ȳ) +O(logN),

where N = K(x̄, ȳ).

Lemma 2. For all integers n,m there exists a C = C(n,m) such that for all n-tuples x̄ =
〈x1, . . . , xn〉 and m-tuples ȳ = 〈y1, . . . , ym〉

|STC logN(x̄ | ȳ)| > 1

2
|T (x̄ | ȳ)|,

where N = K(x̄, ȳ).

For the sake of brevity we denote

ST (x̄ | ȳ) = STC logN(x̄ | ȳ),

where C is the constant from Lemma 2. We call elements of ST (x̄ | ȳ) by clones of x̄ conditional
on ȳ.

We need the following simple technical result:

Lemma 3. Let x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉 be tuples of strings, and δ1, δ2 be integers.
Then we have the following two statements:

1) For every x̄′ = 〈x′1, . . . , x′n〉, if

K ′(x̄′, ȳ) ≤K ′(x̄, ȳ) + δ1e

and K(x̄′, ȳ) ≥ K(x̄, ȳ)− δ2, then

K ′(x̄′, ȳ) ≥K ′(x̄, ȳ)− (2δ1 + δ2 +O(logN))e

(here N = K(x̄, ȳ), and e = (1, . . . , 1)).
2) For every z and for every x̄′ = 〈x′1, . . . , x′n〉 such that K ′(x̄′, ȳ) ≤ K ′(x̄, ȳ) + δ1e and

K(x̄′, ȳ |z) ≥ K(x̄, ȳ)− δ2, we have

K ′(x̄′, ȳ |z) ≥K ′(x̄, ȳ)− (2δ1 + δ2 +O(logN))e,

where e = (1, . . . , 1) and N = K(x̄, ȳ).

10

3.3 Combinatorial entropy.

Let A ⊆ X1 × . . . × Xn be a set of n-tuple (usually Xi are finite sets of strings). For each set of
indexes I = {i1, . . . , ik} ⊆ {1, . . . , n} denote by πI(A) the projection ofA onto the corresponding
coordinates:

πI(A) := {x̄I | x̄ ∈ A}.

For example, if I = {1, . . . , n}, then we have πI(A) = A.
Further, for every tuple x̄ = 〈x1, . . . , xk〉we denote by σI(A | x̄) the section ofA corresponding

to the value x̄ in the I-projection:

σI(A | x̄) := {ȳ | ȳ ∈ A such that ȳI = x̄}.

Let X1, . . . , Xn be finite sets and A ⊆ X1 × . . . × Xn be some set of n-tuples. We use the
following notation:

• nI(A) is the number of elements in πI(A);
• nI |J(A | x̄) is the number of elements in πIσJ(A | x̄);
• nI |J(A) = max

x̄∈πJ (A)
nI |J(A | x̄). In particular, if J = ∅, then nI |J(A) = nI(A).

Definition 5. Let X1, . . . , Xn be finite sets and A ⊆ X1 × . . . ×Xn be some set of n-tuples. For
all sets of indexes I, J ⊆ {1, . . . , n} we set

• entI(A) := dlog nI(A)e;
• entI |J(A) := dlog nI |J(A)e (if J = ∅, then entI |∅(A) = entI(A)).

Lemma 4. Let A ⊆ Bn be a finite set of n-tuples. Denote by list(A) the list of all elements A (in
some computable encoding). Then for every x̄ ∈ A, for all V,W ⊆ {1, . . . , n}

K(x̄V | x̄W , list(A)) ≤ entV |W (A) +O(1).

Proof. Given the list of all elements of A and a tuple x̄W , we can find the list of all elements in

B = πV σW (A | x̄W).

Obviously, x̄V ∈ B. Now to describe x̄V we only need to specify the ordinal number of x̄V in
the list of elements of B. The binary representation of this number takes at most dlog nV |W (A)e
bits. ut

3.4 Method of bunches.

The following definition of a bunch was introduced in [14]:

Definition 6. An (α, β, γ)-bunch X is a set of strings such that

1. |X| = 2α;
2. K(x1 |x2) < β for all x1, x2 ∈ X;
3. K(x) < γ for all x ∈ X .

Lemma 5 [14, 15]. There exists an algorithm that takes a triple of integers α, β, γ as an input, and
enumerates a list of (α, β, γ)-bunches U0, . . . , Uq such that:

11

• for every (α, β, γ)-bunch U there exists i ≤ q such that |U ∩Ui| ≥ 2β−ε, where ε = 2(β−α)+
O(1);

• q < 2β+γ−2α+O(1).

We need to modify the definition of a bunch:

Definition 7. An (α, β, γ)-semi-bunch is a set of strings X such that

1. |X| = 2α;
2. for each x1 ∈ X , for the majority of x2 ∈ X it holds K(x2 |x1) < β;
3. K(x) < γ for all x ∈ X .

The following result is similar to Lemma 5.

Lemma 6. There exists an algorithm that takes a triple of integers α, β, γ as an input and enu-
merates a sequence of (α, β, γ)-semi-bunches U0, . . . , Uq such that:
• for every (α, β, γ)-semi-bunch U there exists i ≤ q such that |U ∩ Ui| ≥ 2β−ε, where ε =

2(β − α) +O(1);
• q < 2β+γ−2α+O(1).

This algorithm may never stop (it prints only a finite number of semi-bunches Ui, but we never
know whether the last bunch is already obtained).

We will call the semi-bunches U0, . . . , Uq from Lemma 6 standard semi-bumches (for given pa-
rameters α, β, γ). The enumeration of standard semi-bunches is deterministic. Hence, for all α, β, γ
and for every i ≤ q(α, β, γ) complexity of the list of all elements in a standard semi-bunch Ui given
i is O(log γ).

In the Appendix we prove Lemmas 1–3 and Lemma 6.

4 Quantifier-free and existential formulae

Proof of Theorem 3: On one hand, for every subset of indexes V ⊆ {1, . . . , n}

K(x̄V |z) ≤ K(x̄V) +O(1).

On the other hand, since I(x̄V : z) ≤ I(x̄ : z) +O(logN), we have

K(x̄V)−K(x̄V |z) = I(x̄V : z) ≤ I(x̄ : z) +O(logN) ≤ δ +O(logN).ut

Proof of Theorem 4: We need to prove that there exists a tuple ȳ′ such that the distance be-
tween K(x̄, ȳ) and K(x̄, ȳ′ |z) is at most δ + O(logN). We prove a more strong statement: the
distance between the corresponding extended profiles is not greater than δ +O(logN).

By Lemma 1 the set T (ȳ | x̄) contains 2K(ȳ |x̄)+O(logN) m-tuples. Hence, we can choose ȳ′ ∈
T (ȳ | x̄) such that K(ȳ′ | x̄, z) ≥ K(ȳ | x̄)−O(logN). For the chosen ȳ′ we have

K(x̄, ȳ′ |z) = K(x̄ |z) +K(ȳ′ | x̄, z)
≥ K(x̄)− δ +K(ȳ | x̄)−O(logN)

= K(x̄, ȳ)− δ −O(logN).

We apply Lemma 3 and get

ρ
(
K ′(x̄, ȳ),K ′(x̄, ȳ′ |z)

)
≤ δ +O(logN).ut

We believe that Conjecture 3 (a generalization of Theorem 4) is true for all tuples. However,
we can prove it only for stochastic tuples 〈x1, . . . , xn〉.

12

Proof of Theorem 5: Step 1. Denote N = K(x̄, ȳ, z). At first, instead of each y1, . . . , ym we
substitute the corresponding shortest program (in an optimal programming language). This substi-
tution changes complexities in the extended profile K ′(x̄, ȳ |z) by at most O(logN). So, w.l.o.g.
we may assume that ȳ ∈ (BN)m. Since n-tuple x̄ is stochastic, there exists S ⊂ (B∗)n such that

K(S) = O(logN) and log |S| = K(x̄) +O(logN).

Thus, 〈x̄, ȳ〉 ∈ S × (BN)m.
Step 2. Denote A0 = T (x̄, ȳ |z) ∩

(
S × (BN)m

)
. The sizes of sections and projections of

A0 are not greater than exponents in the corresponding values of the extended complexity profile
K ′(x̄, ȳ |z). We say that a setA ⊂ S×(BN)m is correct if all its combinatorial entropies entI |J(A)
are not grater than the corresponding combinatorial entropies of A0. In other words, A is correct if
for all I, J ⊆ {1, . . . , (n+m)}

log nI |J(A) ≤ entI |J(A0).

In particular, the set A0 is correct. Note that from correctness of A it follows that nI |J(A) <
2nI |J(A0).

Given extended profile K ′(x̄, ȳ |z) and the list of all elements of S, we can algorithmically find
all correct sets (the list of all correct sets is very large, but it is finite!). Since complexity of the
list of all elements of S is logarithmic, we get that the list of all correct sets also has complexity
O(logN). Denote by A1, A2, . . . the lexicographically ordered list of all correct sets.

By definition, the size of every section of a correct set is at most twice as large as the size of
the corresponding section of A0. Of course, sections of a correct set can be much smaller.

We call by strong projection of Ai onto the first n coordinates (i. e., onto S) the set Bi that
consists of points corresponding to large enough sections:

Bi =
{
x̄′ ∈ π1,...,n(Ai)

∣∣ log |σ1,...,n(Ai | x̄′)| ≥ entn+1,...,n+m|1,...,n(A0)− C1 logN
}

(the constant C1 will be specified below). In particular, we denote B0 the strong projection of A0.
We fix two algorithms: they take z, vector K ′(x̄, ȳ |z), and constant C1 as an input, and enumerate
A0 and B0 respectively.

To get ȳ from x̄, z we need to know the profile K ′(x̄, ȳ |z) and specify the order number of ȳ
in the enumeration of all elements of A0 corresponding to the given x̄ (i. e., in the enumeration of
σ1,...,n(A0 | x̄)). Hence,

K(ȳ | x̄, z) ≤ log |σ1,...,n(A0 | x̄)|+O(logN).

By the definition of A0, we have

entn+1,...,n+m|1,...,n(A0) ≤ K(ȳ | x̄, z).

We sum up these two inequalities and get that for large enough C1, tuple x̄ belongs to B0.
Step 3. We select from the list of correct sets some special subsequence as follows. Assume that

correct sets A1, . . . , As−1 are already examined, and Ai1 , . . . , Aik are already selected as special.
Then we examine the next correct setAs; we includeAs in our special subsequence if the difference

Bs \

(⋃
r≤k

Bir

)

13

contains at least 2K(x̄|z)−C2 logN elements (C2 to be specified below).
Notice that the special subsequence contains at most

|S|
2K(x̄|z)−C2 logN

= 2I(x̄:z)+C2 logN+O(logN)

correct sets. Denote by Â the union of all correct sets from the defined special subsequence
Ai1 , Ai2 , . . . Denote by B̂ the projection of Â onto the first n coordinates.

Obviously, K(Â) = O(logN + logC2) and K(B̂) = O(logN + logC2) since the lists of
elements of these sets can be found algorithmically if we are given the extended profile K ′(x̄, ȳ |z),
the set S and constant C2.

Remark 3. For Â constructed above

log nI |J(Â) ≤ entI |J(A0) + I(x̄ : z) + C2 logN +O(logN)

for all I, J ⊂ {1, . . . , n}. The list of all elements of Â has Kolmogorov complexity O(logN +

logC2). Hence, from Lemma 4 it follows that for every ū ∈ Â

K(ūI | ūJ) ≤ entI |J(A0) + I(x̄ : z) + C2 logN +O(logN + logC2)

for all I, J ⊂ {1, . . . , n}.

Lemma 7. The tuple x̄ belongs to B̂ (for large enough C2 = C2(n,m)).

Proof of lemma: Assume for the sake of contradiction that x̄ does not belong to the strong
projection of Â. This means that A0 (which is a correct set) was not selected for the special
subsequence of correct sets. It follows that the cardinality of the difference B0 \ B̂ is less than
2K(x̄|z)−C2 logN . So, to describe the n-tuple x̄ given z and the extended profile K ′(x̄, ȳ), we need
to specify the list of all elements of B̂ and the ordinal number of x̄ in the natural enumeration of
B0 \ B̂. Hence,

K(x̄ |z) ≤ log |(B0 \ B̂)|+O(logN + logC2)

≤ K(x̄ |z)− C2 logN +O(logN + logC2).

We get a contradiction be choosing a large enough constant C2. ut
Step 4. Thus, x̄ ∈ B̂. Denote Q the section of Â corresponding to x̄:

Q = {ȳ′ | 〈x̄, ȳ′〉 ∈ Â}.

From the construction of Â it follows that the number of elements in Q cannot be too small. More
precisely,

log |Q| ≥ K(ȳ | x̄, z)−O(logN).

It remains to take in Q an m-tuple ȳ′ that has maximal possible complexity conditional on x̄. By
usual counting argument we get that for some ȳ′ ∈ Q

K(ȳ′ | x̄) ≥ log |Q| ≥ K(ȳ | x̄, z)−O(logN).

Using K(x̄) ≥ K(x̄ |z) + I(x̄ : z)−O(logN) we get

K(x̄, ȳ′) ≥ K(ȳ′ | x̄) +K(x̄) ≥ K(x̄, ȳ |z) + I(x̄ : z)−O(logN).

14

On the other hand, from the construction of Â it follows (see above) that

K ′(ȳ′ | x̄) ≤K ′(ȳ | x̄) + (I(x̄ : z)−O(logN))e.

We apply Lemma 3 with δ1 = −δ2 = I(x̄ : z) and get

ρ(K ′(x̄, ȳ′),K ′(x̄, ȳ |z)) ≤ I(x̄ : z) +O(logN),

which completes the proof of the theorem. ut

5 Pairs that have no equivalent stochastic pairs

Proof of Theorem 6: In this proof for the sake of brevity we call (C log n,C log n)-stochastic
pairs simply stochastic, without specifying parameters (the constant C is taken from the condition
of the theorem). Fix a large enough n. Denote by S1 the set of all strings of length αn, and by S2

the set of all strings of length βn. We will construct an effectively enumerable set A ⊂ S1 × S2

of size 2γn−O(logn). Further we will show that some element of A satisfies the theorem, i. e., it has
the required complexity profile, and there is no C-equivalent stochastic pair. It is convenient to
consider A as a bipartite graph with parts S1 and S2.

If x′1 is C-equivalent to some string in S1, then complexity of x′1 is at most αn + 2C log n;
denote by L1 the set of all strings with such complexities. Similarly, if x′2 is C-equivalent to some
string from S2, then its complexity is at most βn+ 2C log n; we denote by L1 the set of all strings
with complexity at most βn + 2C log n. Thus, if a pair 〈x1, x2〉 from A is C-equivalent to some
pair 〈x′1, x′2〉, then x′1 ∈ L1 and x′2 ∈ L2. Also we can bound the complexity of 〈x′1, x′2〉:

K(x′1, x
′
2) ≤ K(x1, x2) +K(x′1 |x1) +K(x′2 |x2) +O(log(K(x′1 |x1) +K(x′2 |x2))),

which means

K(x′1, x
′
2) ≤ γn+ C log n+ C log n+O(log log n) < γn+ 3C log n.

By definition, a stochastic pair 〈x′1, x′2〉 must belong to some R such that a) complexity of the list
of all elements of R is less than C log n, and b) the number of elements in R is not greater than
2K(x′1,x

′
2)+C logn. These conditions mean that R ⊂ L1 × L2 such that:

• |R| ≤ 2γn+4C logn;
• K(R) ≤ C log n, i. e., the list of all elements of R has complexity less than C log n.

The number of all sets R as above is not greater than 2C logn. Given the number of all such sets
(we need C log n bits to specify this number), we can enumerate all these sets R. Denote by R̂
the union of these sets. It is also convenient to consider R̂ as the set of edges in a bipartite graph,
where the two parts are L1 and L2.

To construct this bipartite graph with the set of edges R̂ we need O(log n) bits of information.
Further we construct a graph A which has many edges that are not equivalent to any edge in R̂.

There is one obstacle: the relation of C-equivalence is not computable. To overcome this prob-
lem, we define a small and computable class of relations (that contains C-equivalence as a special
case). We call by nearness relation any

D ⊂ S1 × L1 ∪ S2 × L2,

satisfying the following two conditions (for i = 1, 2):

15

• for every x ∈ Si there are at most 2C logn+1 elements y ∈ Li such that 〈x, y〉 ∈ D;
• for every y ∈ Li there are at most 2C logn+1 elements x ∈ Si such that 〈x, y〉 ∈ D.

The relation of C-equivalence

D0 = {〈x, y〉 ∈ S1 × L1 ∪ S2 × L2 : x ∼C y}

is a closeness relation (though there are many other closeness relation). Obviously, the number of
closeness relations is not greater than

(|L1|poly(n))|S1| · (|L2|poly(n))|S2|.

W.l.o.g we may assume that α ≥ β. Then number of different closeness relations is 22αn+O(logn)
.

We say that an edge 〈x1, x2〉 ∈ A is D-close to 〈x′1, x′2〉 ∈ R̂ if 〈xi, x′i〉 ∈ D for i = 1, 2.
Now we are ready to construct a graph A. The construction will depend on three integer pa-

rameters C1, C2, C3 (independent of n). We specify appropriate values C1, C2, C3 below.
We say that an edge 〈x1, x2〉 ∈ A is suitable if degrees of x1 and x2 are not greater than

2(γ−α)n+C3 logn and 2(γ−β)n+C3 logn respectively. We will need that

|A| = 2γn−C1 logn,

and the following condition holds:

For every closeness relation D there exists at most 2γn−C2 logn suitable
edges 〈x1, x2〉 ∈ A that are not D-close to any edge in R̂.

(3)

Below we construct such a graph A effectively, i. e., its complexity will be O(log n). At least
2γn−C2 logn suitable edges inA are not C-equivalent to any stochastic pair. It remains to select from
this graph an edge of complexity at least γn − C2 log n, and we are done. Indeed, for this edge
〈x1, x2〉 we have

K(x1) ≤ αn+O(1) and K(x2) ≤ βn+O(1)

(since x1 ∈ S1 and x2 ∈ S2), and

K(x2 |x1) ≤ (γ − α)n+O(log n) and K(x1 |x2) ≤ (γ − β)n+O(log n)

(since 〈x1, x2〉 is a suitable edge). If C1 is chosen large enough, we get also

K(x1, x2) < γn.

From Lemma 3 part 2) (with δ1 and δ2 of order O(log n)) it follows that the inequalities above
become equalities (with logarithmic precision). In particular, we get

K(x1) = αn+O(log n), K(x2) = βn+O(log n), K(x1, x2) = γn+O(log n),

and the theorem is proven.
Thus, it remain to constructA. Note that for a given graph, property (3) can be verified algorith-

mically. We will prove that for a randomly chosen set of 2γn−C1 logn edges in S1×S2, condition (3)
is true with positive probability. So, a required graph A exists, and we can find it by a brute-force
search (if there are many graphs that satisfy (3), we chose lexicographically first one).

16

Fix one closeness relation D. We say that an edge 〈x1, x2〉 ∈ S1× S2 is spoiled if it is D-close
to some edge in R̂. Let us count the probability for a random edge in S1 × S2 to be spoiled. Graph
R̂ contains 2γn+O(logn) edges. For each of them there are poly(n)D-close edges in S1×S2. Hence,

Prob[〈x1, x2〉 is spoiled] ≤ 2γn+O(logn)

2(α+β)n
� 1/2.

Here we used condition α + β > γ.
Let k = 2γn−C1 logn and l ≤ 2γn−C2 logn+1. Then probability that (k − l) of k randomly chosen

edges are spoiled, is not greater than(
k

l

)
(1/2)k−l ≤ kl(1/2)k−l ≤ 22γn−C2 logn+O(logn)

(1/2)2γn−C1 logn+O(logn)

,

which is equal to 2−2γn−O(logn) , provided that the difference between C1 and C2 is large enough.
Sum up this probability for l = 0, . . . , 2γn−C2 logn+1. Obviously, multiplying this probability by the
number of different l (i. e., by 2γn), we do not change substantially its asymptotics.

Thus, we bounded the probability that a random A contains too many spoiled edges for a fixed
closeness relation D. Further, sum up this probability for all closeness relations. Having in mind
the number of different closeness relations, we get that the probability for a random A to have too
many spoiled edges for at least one relation D, is at most

22αn+O(logn)

22γn−O(logn)
� 1.

Here we used the assumption α < γ (recall that β ≤ α).
Thus, we see that in a random graph A with probability close to 1, for all closeness relation

D (including the relation of C-equivalence) there are at least 2γn−C2 logn+1 edges that are not
equivalent to any edge in R̂. However, some of these edges can be not suitable (if one of its vertices
has too large degree). It remains to prove that with high probability (close to 1) the number of non-
suitable edges is not greater than 2γn−C2 logn. From this bound it follows immediately that with
positive probability in a random A there are at least 2γn−C2 logn edges that are at the same time
suitable and non-spoiled, i. e., satisfy (3).

Fix any ordinal number of an edge in A (this is an integer j between 1 and |A|). Denote by x
and y the left and right ends of this edge (in S1 and S2 respectively). Vertices x and y in a random
A can be incident to some other edges. We need to bound the probability that in a random A the
jth edge is not suitable, i. e., degrees of x or y are too large.

We may think of the distribution on random graphs A as follows: first we choose at random
ends of the jth edge, and then randomly choose the remaining (|A|−1) edges. The average number
of edges (except the jth) that are incident to x in a random A, is equal to

|A| − 1

|S1|
< 2(γ−α)n−C1 logn.

From Chebyshev’s inequality it follows that the probability that x is incident to at least 2(γ−α)n+C3 logn

edges, is not greater than 1/nC1+C3 . A similar bound holds for y. Thus, the probability that the jth
edge of A is not suitable, is not greater than 2/nC1+C3 .

17

The proven bound holds for each j = 1, . . . , |A|. Hence, expectation of the number of non-
suitable edges is not greater than

2|A|/nC1+C3 ≤ 2γn−2C1 logn−C3 logn+1.

Apply Chebyshev’s inequality again: the probability that the number of non-suitable edges is
greater than 2γn−C2 logn, is bounded by 2nC2/n2C1+C3 . It remains to choose C3 large enough, and
the probability above tends to zero for large n. Thus, we have proven that there exists a graph A
that satisifies (3).

It remains to comment on how we chose parameters C1, C2, C3. Every edge in A has Kol-
mogorov complexity

γn− C1 log n+O(log n) +O(log(C1 + C2 + C3))

(with some absolute constant in O(·)-terms). The value C1 should be chosen so large, that com-
plexity of every edge in A is not greater than γn. Further, we choose C2 so that the difference
(C2 − C1) is large enough (greater than some absolute constant, as we explained above). At last,
C3 should be chosen greater than (C2 − 2C1). ut

6 Extracting common information

Proof of Theorem 2: At first we introduce several notation and accept some assumptions.
W.l.o.g. we may assume that f(N) > logN , and f(N) is a monotone function (that is, f(N+1) ≥
f(N) for all N).

Further, we choose g(N) and δ(N) that increase not too fast and not too slowly (so that the
construction of our proof works well). There is a certain degree of freedom in choice of these
functions. We fix the following definitions:

δ(N) = N
/√

log
N

f(N)
and g(N) = 3

C
q

log N
f(N)f(N) + 2δ(N)

(constant C to be specified later). For the sake of brevity we will write δ (without an argument) if
the value of N is clear from the context.

Informal idea. The main trick of the proof is typization of v and z conditional on x̄. We take the
set of “clones” of pair 〈v, z〉, which all have the same conditional complexity profile (conditional
on x̄). Then there are two cases to consider:

Simple case. Assume that the set of clones is well consolidated: most clones have large mutual
information. Then we apply Lemma 6 and extract from the set of clones a common kernel w. This
w contains q bits of information, and it must be very simple conditional on any xi. Thus, we extract
q bits of common information from strings xi, and we are done

Difficult case. Assume that the set of clones is not well consolidated. Then there exists a pair
of clones that have very small mutual information. On this stage we cannot extract from xi their
common information. Then we substitute instead of z another string z1 such that with the new
oracle z1 we can extract from x1, x2 at least q1 bits of common information (where q1 is much
greater than q). Thus, we convert the original problem about strings x1, x2, an oracle z1, and a
parameter q to a similar problem with the same strings x1, x2, a new oracle z and a new parameter

18

q1. We increase the value q but we pay for it: the original threshold f(N) should be substituted by
rougher bound f1(N).

Let us explain how to construct the new oracle z1. Recall that the set of “clones” is not well
consolidated. We choose at random two clones: 〈v′, z′〉 and 〈v′′, z′′〉. We claim that pair 〈z′, z′′〉 can
be used as z1. Indeed, with the new oracle we can extract from strings xi both v′ and v′′. The strings
v′ and v′′ together result in q1 bits of common information (q1 > q; more precisely, q1 ≥ q + δ/2).

We iterate the above trick again and again, until at some stage we achieve a well consolidated
set of clones.

In the rest of the section we expose this plan in full detail.
Formal argument. By hypothesis of the theorem, there exists a string v such that K(v |xi, z) ≤

f(N) for i = 1, 2. W.l.o.g. we may assume that q = K(v |z) (if K(v |z) > q, we can increase
parameter q; this make the statement of the theorem even stronger). Denote m = K(z). We need
to construct a string w such that K(w |xi) ≤ g(N) and K(w) ≥ q − g(N).

We take the strong typization of 〈v, z〉 conditional on x̄: set A = ST (v, z | x̄). By Lemma 1 and
Lemma 2 we get |A| = 2K(v,z |x̄)−O(f(N)). Further, we have

K(v, z | x̄) = K(z | x̄) +K(v |z, x̄) +O(logN),

andK(z | x̄) ≥ K(z)−f(N) (the mutual information between z and x̄ is negligible), and similarly
K(v |z, x̄) ≤ f(N) (the string v is easy to extract from each xi given the oracle z). Hence, |A| =
2m−O(f(N)). Note that for every 〈v′, z′〉 ∈ A it holds

K(v′, z′) = K(z′) +K(v′ |z) +O(logN) = m+ q +O(f(N)).

Further, we have two cases to consider:
Case 10. For every 〈v′, z′〉 ∈ A, for the majority of 〈v′′, z′′〉 ∈ A

I(v′z′ : v′′z′′) ≥ q − δ.

This inequality means that

K(v′z′ |v′′z′′) = K(v′, z′)− I(v′z′ : v′′z′′) ≤ m+ δ +O(f(N)).

Thus, A is a semi-bunch with parameters

(m−O(f(N)),m+ δ +O(f(N)),m+ q +O(f(N))).

We apply Lemma 6 and get that there exists a standard bunch Uj (with the same parameters) such
that

|A ∩ Uj| ≥ 2m−δ+O(f(N))

and the number j is not greater than 2q+δ+O(f(N)). In other words, the Kolmogorov complexity of j
is not greater than q + δ +O(f(N)).

Further, for the strings xi, i = 1, 2 we have two properties:

• For every pair ū ∈ A ∩ Uj it holds K(xi | ū) ≤ K(xi |v, z) (by definition of A = ST (v, z | x̄));
recall that K(xi |v, z) ≤ K(xi)− q + f(N);

• For every pair v̄ ∈ A ∩ Uj it holds K(ū | j) ≤ log |Uj| + O(logN) ≤ m (given j, we can
algorithmically enumerate elements of semi-bunch Uj).

19

These two properties (and a bound for the number of elements in A∩Uj) imply that strings x1 and
x2 belong to the following sets X(1) and X(2) respectively:

X(i) =
{
x̂
∣∣∣ there exists at least 2m−δ+O(f(N)) strings ū such that
K(x̂ | ū) ≤ K(xi)− q + f(N) and K(ū | j) ≤ m

}
.

We can enumerate X(i) given j and O(logN) bits of additional information: binary representa-
tions of numbers m, m− δ + O(f(N)) and K(xi)− q + f(N) (i. e., the numbers involved in the
definition of X(i)).

Now we can find an upper bound for the size of X(i). For a fixed j there are at most 2m+1

different tuples ū such that K(ū | j) ≤ m; for each ū there are at most 2K(xi)−q+f(N) different
x̂ such that K(x̂ | ū) ≤ K(xi) − q + f(N). Since for every x̂ ∈ X(i) there should be at least
2m−δ+O(f(N)) different tuples ū, we get

log |X(i)| ≤ log
2m · 2K(xi)−q+f(N)

2m−δ+O(f(N))
≤ K(xi)− q + δ +O(f(N)).

Thus, K(xi | j) ≤ K(xi) − q + δ + O(f(N)) (in other words, the mutual information between j
and xi is not less than q− δ−O(f(N))). From the symmetry of the mutual information it follows

K(j |xi) = K(xi | j) +K(j)−K(xi) +O(logN) ≤ 2δ +O(f(N)).

Set w = j. Since K(w) ≥ I(w : xi) ≥ q − δ − O(f(N)), we have K(w) ≥ q − g(N) and
K(w |xi) ≤ g(N) (for threshold g(N) defined in the beginning of the proof). Thus, in Case 10 we
are done.

Case 20. Consider the case when for some 〈v′, z′〉 ∈ A, for the majority of 〈v′′, z′′〉 ∈ A it holds

I(v′z′ : v′′z′′) < q − δ.

This inequality means that

K(v′v′′z′z′′) ≥ 2m+ q + δ −O(logN). (4)

By our assumption, this inequality holds for the majority of 〈v′′, z′′〉 ∈ A. We select from all
these pairs 〈v′′, z′′〉 the tuple that has maximal Kolmogorov complexity conditional on 〈x, v′, z′〉.
This maximal Kolmogorov complexity is close to the number of elements in A (this is a standard
counting argument: the number of shorter programs is too small to serve the majority of elements
in A).

Kolmogorov complexity of the selected pair 〈v′′, z′′〉 conditional on x and conditional on
〈x, v′, z′〉 is equal approximately to log |A|. In other words, 〈v′, z′〉 and 〈v′′, z′′〉 are independent
conditional on x̄. It follows that z′ and z′′ are independent conditional to x̄ (i. e., I(z′ : z′′ | x̄) =
O(logN)). Further, for all strings x̄, z′, z′′ it holds

I(z′z′′ : x̄) ≤ I(z′ : x̄) + I(z′′ : x̄) + I(z′ : z′′ | x̄) +O(logN)

This inequality is the sum of two elementary properties of Kolmogorov complexity:

K(z′z′′) ≤ K(z′) +K(z′′) +O(logN),

K(z′ |x) +K(z′′ |x) = K(z′z′′ |x) + I(z′ : z′′ |x) +O(logN),

20

(the last equation easily follows from the Kolmogorov–Levin theorem [1]). For the strings under
consideration, the values I(z′ : x̄) and I(z′′ : x̄) are not greater than f(N) (i. e., x̄ and z are
independent), and I(z′ : z′′ | x̄) = O(logN)� f(N). So, we get

I(z′z′′ : x̄) ≤ 3f(N). (5)

By the definition of A, the complexities of the strings z′, z′′ are not greater than m = K(z).
Hence, complexity of 〈z′, z′′〉 not greater than 2m + 2 logm. We apply (4) to z1 = 〈z′, z′′〉 and
v1 = 〈v′, v′′〉 to get

K(v1 |z1) ≥ K(v1z1)−K(z1)−O(logN) ≥ q + δ − 3f(N)−O(logN) ≥ q + δ/2.

Thus, we obtained a string z1 such that I(z1 : x̄) ≤ 3f(N) (from (5)) and

∃v1 : K(v1 |z1) ≥ q + δ/2, K(v1 |xi, z1) ≤ 3f(N), i = 1, 2.

We summarize the results. Instead of the original pair 〈v, z〉 we get a new one 〈v1, z1〉. By the con-
struction, z1 is independent of x̄ (though “precision” of independence becomes three times worse:
I(z1 : x̄) ≤ 3f(N)). String v1 is simple conditional on each xi given oracle z1 (“simple” means
that conditional Kolmogorov complexity is not greater than 3f(N)). Complexity of v1 conditional
on z1 is not less than q + δ/2. Thus, q + δ/2 bits of common information can be extracted from
x1, x2 with threshold 3f(N) relative to oracle z1. Note that the complexities of v1, z1 are not greater
than 3N .

Then we iterate the argument above. We repeat the same trick with v1, z1. Denote q1 = q+δ/2,
m1 = K(z1), and f1(N) = 3f(N). Take the strong typization of 〈v1, z1〉 conditional on x̄:

A1 = ST (v1, z1 | x̄).

Again, there are two cases:
Case 11. Assume that for every 〈v′, z′〉 ∈ A1 for the majority of 〈v′′, z′′〉 ∈ A1 it holds

I(v′z′ : v′′z′′) ≥ q1 − δ.

Then A1 is a semi-bunch with parameters

(m1 −O(f1(N)),m1 + δ +O(f1(N)),m1 + q1 +O(f1(N))).

By Lemma 6 there exists a number j such that for i = 1, 2

K(j |xi) ≤ 2δ +O(f1(N)) and I(j : xi) ≥ q1 − δ +O(f1(N)).

Similarly to Case 10, we set w := j, and we are done.
Case 21. Assume that for each 〈v′, z′〉 ∈ A1 for the majority of pairs 〈v′′, z′′〉 ∈ A1 we have

I(v′z′ : v′′z′′) < q1 − δ. Then there exists a pair 〈v2, z2〉 such that

1. K(z2) = m2 < 3m1;
2. I(z2 : x̄) ≤ f2(N) := 3f1(N);
3. K(v2 |z2, xi) ≤ f2(N);
4. K(v2 |z2) = q2 ≥ q1 + δ/2.

21

We iterate this construction again and again; on each step s we get strings vs, zs such that

1. K(zs) = ms = 3ms−1;
2. I(zs : x̄) ≤ fs(N) := 3fs−1(N) = 3sf(N);
3. K(vs |zs, xi) ≤ fs(N);
4. K(vs |zs) = qs > qs−1 + δ/2 = q + sδ/2.

We iterate the construction in Cases 21, 22, 23 . . . , 2j, . . . , until at some stage smax we get Case 1smax .

This iterative procedure cannot be too long. Indeed, in s = C
√

log N

f(N)
steps (provided that

constant C is chosen large enough) we get a contradiction with inequality

K(vs |zs) ≤ K(vs |x1, zs) +K(vs |x2, zs) + I(x1 : x2 |zs) +O(logN)

(it is not hard to show that this inequality is true for all strings; see, e. g., the proof of (6) in [10]).
Indeed, the left-hand side of this inequality is at least CN/2, and the right-hand side is

2fs(N) + I(x1 : x2 |zs) +O(logN) = O(N)

(with some absolute constant in O-term).
Thus, after several iterations of Case 2s, at stage smax < C

√
log N

f(N)
we come to Case 1smax .

This means that we obtain a string w such that

K(w) ≥ q + smaxδ/2−O(fsmax(N)) > q − g(N)

and
K(w |xi) ≤ 2δ + fsmax < 2δ + 3

C
q

log N
f(N)f(N) < g(N), i = 1, 2.

In a word, q bits of common information are extracted from xi’s with threshold g(N).

Remark 4. In the argument above we ignore additive terms of orderO(logK(ys, ws)). This is legal
since logK(vs, zs)� f(N). Indeed, for all involved stringsK(vs), K(zs) < N2 since s� logN .
Note also that at each next step si we need greater threshold fi(N). In the very beginning of the
proof we chose g(N) such that all fi(N) under consideration are less than g(N). ut

7 Conclusion

Our results do not give complete answers to the posed questions. Conjecure 3 is unproven for non-
stochastic tuples. Even a more specific Conjecture 2 remains an open problem (the statement of our
Theorem 2 looks not very natural beacuse we used o(N)-terms instead of logarithmic thresholds).
It would also be interesting to find justifications or counterexamples for the main intuitive Con-
jecture 1 for general properties with several alternations of quantifiers. We have no results about
relativization with infinite oracles. We suppose that further progress in these problems requires
developing new techniques to be developed.

We are grateful to the participants of the Kolmogorov seminar of the department of mathemat-
ics and mechanics at Moscow state university for many fruitful discussions. We are particularly
thankful to the anonymous referee for very helpful criticism and detailed comments.

Here we prove technical lemmas used in the main text.

22

Proof of Lemma 1: First of all, for every x̄′ ∈ T (x̄ | ȳ)

K(x̄′ | ȳ) ≤ K(x̄ | ȳ).

Hence, the number of such tuples x̄′ is not greater than 2K(x̄|ȳ)+1. Further, we get a lower bound
for the size of T (x̄ | ȳ). Note that we can algorithmically enumerate the list of elements of T (x̄ | ȳ)
given ȳ and all numbers of the complexity profile K ′(x̄ | ȳ) (though we cannot know when this
enumerating is completed unless we are given very large supplementary information). So, to get x̄
from ȳ, we need to know complexity profile K(x̄ | ȳ) and the ordinal number of x̄ in this enumer-
ation. It follows that

K(x̄ | ȳ) ≤ log |T (x̄, ȳ)|+O(logN),

which provides a lower bound for the size of T (x̄ | ȳ). ut
Proof of Lemma 2: By Lemma 1 we have

|T (x̄ | ȳ)| ≥ 2K(x̄|ȳ)−C logN

for some constant C. Hence, for at least half of tuples x̄′ ∈ T (x̄ | ȳ) Kolmogorov complexity
conditional on ȳ is not less than

K(x̄ | ȳ)− C logN − 1.

Let ST (x̄ | ȳ) be the set of all such tuples x̄′ ∈ T (x̄ | ȳ).
By the construction, every x̄′ ∈ ST (x̄ | ȳ) also belongs to T (x̄ | ȳ); hence,

K ′(x̄′, ȳ) ≤K ′(x̄, ȳ).

It remains to prove the inverse inequality (up to an additive O(logN)). Thus, for all V1, V2 ⊂
{1, . . . , n} and W1,W2 ⊂ {1, . . . ,m} we need to show that

K(x̄′V1
, ȳW1 | x̄′V2

, ȳW2) ≥ K(x̄V1 , ȳW1 | x̄V2 , ȳW2)−O(logN). (6)

To this end, we note that

K(x̄′, ȳ) = K(x̄′V2
, ȳW2) +K(x̄′V1

, ȳW1 | x̄′V2
, ȳW2) +K(x̄′, ȳ′ | x̄′V1∪V2

, ȳW1∪W2) +O(logN).

The right-hand side of this inequality is not greater than

K(x̄V2 , ȳW2) +K(x̄′V1
, ȳW1 | x̄′V2

, ȳW2) +K(x̄, ȳ | x̄V1∪V2 , ȳW1∪W2) +O(logN),

since x̄′ ∈ T (x̄ | ȳ). Further, from

K(x̄′, ȳ) +O(logN) = K(x̄, ȳ)

= K(x̄V2 , ȳW2) +K(x̄V1 , ȳW1 | x̄V2 , ȳW2) +K(x̄, ȳ′ | x̄V1∪V2 , ȳW1∪W2) +O(logN),

we get (6). ut
Proof of Lemma 3: The proof is similar to the previous argument. It is enough to prove a more

general claim 2). For all U1, U2, U3, U4 we have

K(x̄′U1
, ȳU3 | x̄′U2

, ȳU4 , z) ≤ K(x̄′U1
, ȳU3 | x̄′U2

, ȳU4) +O(1) ≤ K(x̄U1 , ȳU3 | x̄U2 , ȳU4) + δ1.

23

For the sake of contradiction, assume that for some V1, V2,W1,W2

K(x̄′V1
, ȳW1 | x̄′V2

, ȳW2 , z) < K(x̄V1 ȳW1 | x̄V2 , ȳW2)− δ −D logN,

Then (similarly to the proof of Lemma 2) we have

K(x̄′, ȳ |z) < K(x̄, ȳ)− δ + 2δ1 −D logN +O(logN).

Set δ = 2δ1 + δ2, and we get a contradiction for large enough D. ut
Proof of Lemma 6: Fix an algorithm that takes a triple of integers α, β, γ as an input and

enumerates the list of all (α, β, γ)-semi-bunches. We call this algorithm by simple enumerator.
Though the number of semi-bunches (for every triple of parameters) is finite, the simple enumerator
never stops, since we cannot decide when all semi-bunches are already found. We only guarantee
that each semi-bunch is generated by the simple enumerator at some moment.

Now we construct another enumerator that selects some subsequence from the list of semi-
bunches generated by the simple enumerator. It works as follows. We run the simple enumerator
and examine the semi-bunches that it returns one by one. We select some semi-bunches from this
list by the following rule. Assume that semi-bunches U0, . . . , Us are already selected; let the simple
enumerator return another semi-bunch V . Denote ε = 2(β − α + 2). If |V ∩ Ui| < 2β−ε for every
i = 0, . . . , s, then we select this semi-bunch and let Us+1 = V . Otherwise we skip V and wait for
the next semi-bunch from the simple enumerator.

Let U0, . . . , Uq be the list of all semi-bunches that are selected in this procedure (for some
parameters α, β, γ). From the construction it follows that for every semi-bunch V either V = Ui or
at least |V ∩Ui| ≥ 2β−ε (for some i ≤ q). Also it follows from the construction that |Ui∩Uj| < 2β−ε

for every two selected semi-bunches Ui, Uj . It remains to show that q is not too large.
It is enough to prove that every string x belongs to less than 2β−α+2 semi-bunches. Indeed,

there exist less than 2γ strings x such that K(x) < γ. If every x is covered by at most 2β−α+2

selected semi-bunches Ui, and every semi-bunch consists of at most 2α strings, then the number of
selected semi-bunches is not greater than

2γ · 2β−α+2

2α
= 2β+γ−2α+2.

Thus, it remains to bound the number of selected semi-bunches that cover one string x.
Fix a string x and assume that there are N = 2β−α+2 different semi-bunches Ui that contain x.

Denote
U ′i = Ui ∩ {y | K(y |x) < β}

for all these semi-bunches Ui. From the definition of semi-bunches it follows that U ′i contains at
most 2α−1 elements. On one hand we have∣∣∣⋃U ′i

∣∣∣ ≤ |{y | K(y |x) < β}| < 2β.

On the other hand, ∣∣∣⋃U ′i

∣∣∣ ≥∑
i

|U ′i | −
∑
i<j

|U ′i ∩ U ′j|.

Since |U ′i | ≥ 2α−1 and |U ′i ∩ U ′j| ≤ |Ui ∩ Uj| ≤ 2β−ε, we have∣∣∣⋃U ′i

∣∣∣ ≥ N · 2α−1 −N2 · 2β−ε = 2β,

and we get a contradiction. ut

24

References
1. Zvonkin, A.K. and Levin, L.A., Complexity of Finite Objects and the Algorithmic Concepts of Information and Randomness,

Uspekhi Mat. Nauk, 1970, vol. 25, no. 6, pp. 85–127 [Russian Math. Surveys (Engl. Transl.), 1970, vol. 25, no. 6, pp. 83–124].
2. Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications, New York: Springer, 2008, 3rd ed.
3. Muchnik, An.A., Conditional Complexity and Codes, Theoret. Comput. Sci., 2002, vol. 271, no. 1–2, pp. 97–109.
4. Gács, P. and Körner, J., Common Information Is Far Less than Mutual Information, Probl. Control Inform. Theory, 1973,

vol. 2, no. 2, pp. 149–162.
5. Ahlswede, R. and Körner, J., Appendix: On Common Information and Related Characteristics of Correlated Information

Sources, General Theory of Information Transfer and Combinatorics, Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H.K.,
Blinovsky, V., Deppe, C., and Mashurian, H., Eds., Lect. Notes Comp. Sci., vol. 4123, Berlin: Springer, 2006, pp. 664–677.

6. Muchnik, An.A., On Common Information, Theoret. Comput. Sci., 1998, vol. 207, no. 2, pp. 319–328.
7. Chernov, A., Muchnik, An.A., Romashchenko, A., Shen, A., and Vereshchagin, N.K., Upper Semi-lattice of Binary Strings

with the Relation “x Is Simple Conditional to y,” Theoret. Comput. Sci., 2002, vol. 271, no. 1–2, pp. 69–95.
8. Romashchenko, A.E., Pairs of Word with Nonmaterializable Mutual Information, Probl. Peredachi Inf., 2000, vol. 36, no. 1,

pp. 3–20 [Probl. Inf. Trans. (Engl. Transl.), 2000, vol. 36, no. 1, pp. 1–18].
9. Uspensky, V.A. and Shen, A., Relations between Varieties of Kolmogorov Complexities, Math. Syst. Theory, 1996, vol. 29,

no. 3, pp. 271–292.
10. Hammer, D., Romashchenko, A., Shen, A., and Vereshchagin, N., Inequalities for Shannon Entropy and Kolmogorov Com-

plexity, J. Comput. Syst. Sci., 2000, vol. 60, no. 2, pp. 442–464.
11. Makarychev, K., Makarychev, Yu., Romashchenko, A., and Vereshchagin, N., A New Class of Non-Shannon-type Inequalities

for Entropies, Commun. Inf. Syst., 2002, vol. 2, no. 2, pp. 147–162.
12. Zhang, Z., and Yeung, R.W., On Characterization of Entropy Function via Information Inequalities, IEEE Trans. Inform.

Theory, 1998, vol. 44, no. 4, pp. 1440–1452.
13. Shen’, A.Kh., The Concept of Kolmogorov (α, β)-Stochasticity and Its Properties, Dokl. Akad. Nauk SSSR, 1983, vol. 271,

no. 6, pp. 1337–1349 [Soviet Math. Doklady (Engl. Transl.), 1983, vol. 28, pp. 295–299].
14. Romashchenko, A., Extracting the Mutual Information for a Triple of Binary Strings, in Proc. 18th IEEE Annual Conf. on

Computational Complexity (CCC’03), Aarhus, Denmark, 2003, pp. 221–229.
15. Romashchenko, A.E., A Criterion for Extractability of Mutual Information for a Triple of Strings, Probl. Peredachi Inf., 2003,

vol. 39, no. 1, pp. 166–175 [Probl. Inf. Trans. (Engl. Transl.), 2003, vol. 39, no. 1, pp. 148–157].
16. Romashchenko, A., Shen, A., and Vereshchagin, N., Combinatorial Interpretation of Kolmogorov Complexity, Theoret. Com-

put. Sci., 2002, vol. 271, no. 1–2, pp. 111–123.

25

