Partition and Measure: a new technique for analyzis of Branch and Bound algorithms

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSADE, Dauphine)

8 février 2012

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAC Partition and Measure: a new technique for analyzis of Bi

1 Introduction

- 2 A Geometrical vision
 - Branch and Bound
 - Measure and Conquer

O Partition and Measure

- Restricted Method
- General Method
- Application to minimum set cover

4 Conclusion

A generic problem Π

Two parameters : p_1, p_0 with $p_0 + p_1 = N$

Three possible situations : A , B, $\bar{A}\wedge \bar{B}$

An hypothesis :

$$p_1 \ge p_0 \Longrightarrow A = \text{TRUE}.$$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Br

A basic algorithm

Branching : $I \mapsto I', I'$

$$A = \text{TRUE} \implies p_1(l') \le p_1(l) - 4,$$

$$p_0(l') \le p_0(l).$$

$$A = \text{FALSE}, B = \text{TRUE} \implies p_1(l') \le p_1(l) - 2,$$

$$p_0(l') \le p_0(l) + 2.$$

$$A, B = \text{FALSE} \implies p_1(l') \le p_1(l),$$

$$p_0(l') \le p_0(l) - 1.$$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Br

Standard analyzis is a bit helpless

Since $N = p_0 + p_1$,

 $A = \text{TRUE} \implies T(N) \le 2T(N-4)$ $A = \text{FALSE}, B = \text{TRUE} \implies T(N) \le 2T(N) \quad ???$ $A, B = \text{FALSE} \implies T(N) \le 2T(N-1)$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAC Partition and Measure: a new technique for analyzis of Br

・ロト ・ 同ト ・ ヨト ・ ヨト …

3

Let's do Measure and Conquer instead

Fix
$$k = w_0 p_0 + w_1 p_1$$
,
 $A = \text{TRUE} \implies T(k) \le 2T(k - 4w_1)$
 $A = \text{FALSE}, B = \text{TRUE} \implies T(k) \le 2T(k - 2w_1 + 2w_0)$
 $A, B = \text{FALSE} \implies T(k) \le 2T(k - w_0)$

Optimal is $w_0 = 2w_1/3$, $T(N) \le 2^{3N/2}$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Bi

•

Can we do something better?

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Br

Another analyzis is possible (1)

- use different measures k_0, k_1 for $p_1 \leq p_0$ and $p_1 \geq p_0$.
- compute a solution T_0 for $p_1 \le p_0$: Optimal is still $w_0 = 2w_1/3$, $T_0(k_0) \le 2^{3k_0/2}$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAC Partition and Measure: a new technique for analyzis of Bi

Another analyzis is possible (2)

- use T_0 as a lower bound for $p_0 = p_1$.
- compute a solution T_1 for $p_1 \ge p_0$: In this part, optimal is $w_0 = w_1$, $T_1(k_1) \le 2^{5k_1/4}$

$$\max\left\{\max_{
ho_1\leq
ho_0}(2^{3k_0/2}),\max_{
ho_1\geq
ho_0}(2^{5k_1/4})
ight\}\leq 2^{5N/4}$$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAD Partition and Measure: a new technique for analyzis of Br

Branch and Bound Measure and Conquei

The quotient space of instances

Given a set of parameters p_1, \ldots, p_s such that the problem is polynomial for $\sum p_i = 0$, Given two instances I, I',

$$I \sim I' \iff \forall j, p_j(I) = p_j(I')$$

We work in \mathcal{G}_n/\sim

Branch and Bound Measure and Conquer

Introduction

- 2 A Geometrical vision
 - Branch and Bound
 - Measure and Conquer

3 Partition and Measure

- Restricted Method
- General Method
- Application to minimum set cover

4 Conclusion

Branch and Bound Measure and Conquer

A Branching Rule

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Bi

Branch and Bound Measure and Conquer

Projection allows to compare

Branch and Bound Measure and Conquer

Introduction

- A Geometrical vision
 Branch and Bound
 - Measure and Conquer

3 Partition and Measure

- Restricted Method
- General Method
- Application to minimum set cover

4 Conclusion

Branch and Bound Measure and Conquer

Fixing the objective hyperplan

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Bi

Restricted Method General Method Application to minimum set cover

Introduction

- 2 A Geometrical vision
 - Branch and Bound
 - Measure and Conquer

3 Partition and Measure

- Restricted Method
- General Method
- Application to minimum set cover

4 Conclusion

Restricted Method General Method Application to minimum set cover

< A

э

Division of the space (1)

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Bi

Restricted Method General Method Application to minimum set cover

Division of the space (2)

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAE Partition and Measure: a new technique for analyzis of Bi

Restricted Method General Method Application to minimum set cover

4 3 5 4 3 5

Sets of recurrences

For a branching B_t , in the subspace $S_i: v_{i,t,j} = \langle \widetilde{l} \overrightarrow{\widetilde{H}_j}, W_i \rangle$

$$T_i(k) \leq \max_t \left\{ \sum_j T_i(k - v_{i,t,j}) \right\},$$

which leads to :

$$1 \leq \max_t \left\{ \sum_j 2^{-\alpha_i v_{i,t,j}} \right\}.$$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAC Partition and Measure: a new technique for analyzis of Br

Restricted Method General Method Application to minimum set cover

Border conditions

Let i' > i such that $S_{i'}$ and $S_i \setminus S_{i+1}$ have a border β , Let $\tilde{l} \in \beta$. $T_{W,i'}(\tilde{l}) \geq T_{W,i}(\tilde{l})$

The latest inequations can be rewritten :

$$\alpha_{i'} \sum w_{i',j} p_j \ge \alpha_i \sum w_{i,j} p_j$$

N. Bourgeois (ESSEC), B. Escoffier, V. Paschos (LAMSAC Partition and Measure: a new technique for analyzis of Br

Restricted Method General Method Application to minimum set cover

Introduction

- 2 A Geometrical vision
 - Branch and Bound
 - Measure and Conquer

3 Partition and Measure

- Restricted Method
- General Method
- Application to minimum set cover

4 Conclusion

Restricted Method General Method Application to minimum set cover

Transversal division

(J^d)_{1≤d≤Δ} is a sequence of subspaces of *I_n*/ ~ of increasing dimension. More precisely :

$$J^d = \operatorname{Vect}(e_1, \dots, e_{j^d}) = \{e_1, \dots, e_{j^d}\}^n$$

 $j^{d+1} > j^d$

• for each J^d , we define a partition (S_i^d) exactly like before.

Restricted Method General Method Application to minimum set cover

Introduction

- 2 A Geometrical vision
 - Branch and Bound
 - Measure and Conquer

3 Partition and Measure

- Restricted Method
- General Method
- Application to minimum set cover

4 Conclusion

Restricted Method General Method Application to minimum set cover

Set Cover

- A ground set $\mathcal{C} = \{c_1, \cdots, c_n\}$
- A set system $\mathcal{S} = \{S_1, \cdots, S_m\}$
- Goal : a minimum size subset $\mathcal{S}' \subseteq \mathcal{S}$ that covers all elements in $\mathcal{C}.$

Basic algorithm

If no easy case occurs, branch on a set of maximal size : either take it or not.

Restricted Method General Method Application to minimum set cover

・ 同 ト ・ ヨ ト ・ ヨ ト

Measure and conquer analysis

- Weight w_i to sets of size i, weight v_j of sets of frequency j.
- Analysis of the branching. Δ_{IN} and Δ_{OUT} (decreasing of the total weight when taking S or not) depending on :

 → The size d of the set S we branch on
 → The frequencies of the d elements in S.

 Set of recurrences :

 r_j : number of elements of frequency j in S.
 ∀d, ∀r_j s.t. Σ_j r_j = d, 2^{-αΔ_{IV}} + 2<sup>-αΔ_{OUT} ≤ 1.

 Global complexity 2^α(wmax|S|+vmax|C|)
 </sup>

Restricted Method General Method Application to minimum set cover

Measure and conquer analysis

- Weight w_i to sets of size i, weight v_j of sets of frequency j.
- Analysis of the branching. Δ_{IN} and Δ_{OUT} (decreasing of the total weight when taking S or not) depending on :
 - ightarrow The size d of the set S we branch on

 \rightarrow The frequencies of the *d* elements in *S*.

Set of recurrences :

 r_i : number of elements of frequency j in S.

$$\forall d, \forall r_i \ s.t. \sum_i r_i = d, \ 2^{-\alpha \Delta_{IN}} + 2^{-\alpha \Delta_{OUT}} \leq 1.$$

Global complexity $2^{\alpha(w_{max}|S|+v_{max}|C|)}$

Restricted Method General Method Application to minimum set cover

(4月) (4日) (4日)

Measure and conquer analysis

- Weight w_i to sets of size i, weight v_j of sets of frequency j.
- Analysis of the branching. Δ_{IN} and Δ_{OUT} (decreasing of the total weight when taking S or not) depending on :
 - ightarrow The size d of the set S we branch on
 - \rightarrow The frequencies of the *d* elements in *S*.

Set of recurrences :

 $\begin{array}{l} r_j: \text{number of elements of frequency } j \text{ in } \mathcal{S}. \\ \forall d, \ \forall r_j \ s.t. \sum_j r_j = d, \ 2^{-\alpha \Delta_{IN}} + 2^{-\alpha \Delta_{OUT}} \leq 1. \\ \text{Global complexity } 2^{\alpha(w_{max}|\mathcal{S}| + v_{max}|\mathcal{C}|)} \end{array}$

Restricted Method General Method Application to minimum set cover

4 冊 ト 4 三 ト 4 三 ト

Idea of Partition and Measure

- In $R_1 : n_d$ is small or m_2 is large \rightarrow same analysis, but better complexity bound.
- ② In R_2 : there exists one set of size *d* with no element of frequency 2 → restricted set of recurrences ($r_2 = 0$).

Generalization with several hyperplans for each *d* ; Computation : on-going work!

Restricted Method General Method Application to minimum set cover

Idea of Partition and Measure

- In $R_1 : n_d$ is small or m_2 is large \rightarrow same analysis, but better complexity bound.
- In R₂ : there exists one set of size d with no element of frequency 2 → restricted set of recurrences (r₂ = 0).

Generalization with several hyperplans for each d; Computation : on-going work!

A wide range of possibilities...

- Problems where branch and bound technique is efficient.
- Graphs where better branching exists when maximal degree is high.
- Typical other example : maximum independent set.

... with some computation cost

- r parameters, s subspaces $\implies p \times s$ variables.
- leading measure and conquer algorithms are often quite tedious to analyze (4.8×10^6 recurrences for maximum independent set).