introduction DP algorithm combinatorial result faster exact algorithm conclusion

Fast Exact Algorithm for
L(2,1)-Labeling of Graphs

Mathieu Liedloff

Université d’Orléans - LIFO

joint work with:

Konstanty Junosza-Szaniawski ' Jan Kratochvil >
Peter Rossmanith > Pawet Rzazewski !

IWarsaw University of Technology,
Faculty of Mathematics and Information Science,
Warszawa, Poland

2Department of Applied Mathematics,
and Institute for Theoretical Computer Science, Charles University,
Praha, Czech Republic
3Depar‘crnen‘c of Computer Science, RWTH Aachen University,

Aachen, Germany

Journées AGAPE, Montpellier, février 2012

1/49

introduction DP algorithm combinatorial result faster exact algorithm

Outline

conclusion

2/49

(D Definitions and Known Results

(2 A (Simple) Dynamic Programming Based Algorithm
(3) A Combinatorial Result

(@ A Faster Exact Exponential-Time Algorithm

(5) Conclusion

introduction DP algorithm combinatorial result faster exact algorithm

Frequency assignment problem

conclusion

broadcast network

3/49

introduction DP algorithm combinatorial result faster exact algorithm

Frequency assignment problem

conclusion

3/49

broadcast network

assign frequencies to transmitters

introduction DP algorithm combinatorial result

Frequency assignment problem

faster exact algorithm

conclusion

broadcast network
assign frequencies to transmitters

avoid undesired interference

3/49

introduction DP algorithm combinatorial result faster exact algorithm

Definition of L(2,1)-labeling

conclusion

4/49

L(2,1)-LABELING

Input : A graph G = (V, E).
Question : Compute a function £ of minimum span k

> wuand v adjacent = |¢(u) — 4(v)| > 2

> wuand v at distance two = |[¢(u) — £(v)| > 1

DP algorithm combinatorial result faster exact algorithm conclusion

Known complexity results

Theorem [GY92]
Determining the minimum span A(G) of a graph G is NP-hard.

Theorem [FKKO01]
Deciding whether A\(G) < k remains NP-complete for every fixed
k > 4. (trivial for k < 3)

Theorem [CK96, FGKO05]
When the span k is part of the input,
L(2,1)-labeling problem is polynomial time solvable on trees.

However, the problem is NP-complete for series-parallel graphs.

DP algorithm combinatorial result faster exact algorithm conclusion

Known complexity results

Theorem [GY92]
Determining the minimum span A(G) of a graph G is NP-hard.

Theorem [FKKO01]
Deciding whether A\(G) < k remains NP-complete for every fixed
k > 4. (trivial for k < 3)

Theorem [CK96, FGKO05]
When the span k is part of the input,
L(2,1)-labeling problem is polynomial time solvable on trees.

However, the problem is NP-complete for series-parallel graphs.

— The problem “separates” graphs of treewidth 1 and 2
by P / NP-completeness dichotomy.

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Known complexity results

The distance constrained labeling problem is more difficult than
ordinary coloring :

Theorem [FGKO05]
Deciding whether A\(G) < k is NP-complete for series-parallel
graphs (k is part of the input).

Theorem [BKTvLO4, JKMO09]
Deciding whether A\ = k is NP-complete for planar graphs

» for k=38 [BKTvLO4]
> for k=4 [JKMO09]

6/49

(introduction | DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms

7/49

Fiala and Kratochvil defined the notion of ' = © ol
» mapping from vertices of G to vertices of a graph H;
» adjacent vertices in G are mapped onto non-adjacent vertices in H ;

> vertices with a common neighbor in G are mapped onto distinct
vertices of H.

They show that :

— H(2,1)-labelings are exactly locally injective homomorphisms
from G to H.

— L(2,1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.

introduction DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochvil defined the notion of
mapping from vertices of G to vertices of a graph H;
adjacent vertices in G are mapped onto non-adjacent vertices in H;
vertices with a common neighbor in G are mapped onto distinct

vertices of H.

They show that :

— H(2,1)-labelings are exactly locally injective homomorphisms
from G to H.

— L(2,1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.

7/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochvil defined the notion of
mapping from vertices of G to vertices of a graph H;
adjacent vertices in G are mapped onto non-adjacent vertices in H;
vertices with a common neighbor in G are mapped onto distinct

vertices of H.

They show that :

— H(2,1)-labelings are exactly locally injective homomorphisms

from G to H.

— L(2,1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.

7/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping f : V(G) — V(H) is a
homomorphism from G to H if f(u)f(v) € E(H) for every edge
uv € E(G).

Theorem [HNIO]
Homomorphisms admit a complete dichotomy :
Deciding existence of a homomorphism into a fixed graph H is

» polynomial when H is bipartite;

» NP-complete otherwise.

Remark : k-coloring of a graph G corresponds to homomorphism
from G to the graph Kj.

8/49

(introduction | DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping f : V(G) — V(H) is a
homomorphism from G to H if f(u)f(v) € E(H) for every edge
uv € E(G).

locally injective homomorphism (LIH) : A homomorphism
f: G — H is locally injective if for every vertex u € V(G) its
neighborhood is mapped injectively into the neighborhood of
f(u) in H, i.e., every two vertices having a common neighbor in
G are mapped onto disctinct vertices in H.

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

0" ((A(H) =1)")

9/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping f : V(G) — V(H) is a
homomorphism from G to H if f(u)f(v) € E(H) for every edge
uv € E(G).

locally injective homomorphism (LIH) : A homomorphism
f: G — H is locally injective if for every vertex u € V(G) its
neighborhood is mapped injectively into the neighborhood of
f(u) in H, i.e., every two vertices having a common neighbor in
G are mapped onto disctinct vertices in H.

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

O*((A(H)-1)")

9/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling problem - Exact algorithms

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

0" (A(H) - 1)")

— L(2,1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.

Theorem [HKKKL11]
Hence, L(2,1)-labeling problem of span k can be decided in time

0" ((k -1y

10/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling problem - Exact algorithms

Theorem [HKKKL11]
L(2,1)-labeling of span 4 : 0(1.3006") (branching)

Theorem [GKC10]
L(2,1)-labeling of span 5 in cubic graphs : 0(1.8613") — O(1.7990")

Theorem [Kral’06]
L(2,1)-labeling of min span :

Theorem [HKKKL11]
L(2,1)-labeling of min span : 0*(15"/2) = 0(3.88") (D.P)

Theorem [CK11]
L(2,1)-labeling of min span (fast ¢ transform + I.-E.)

11/49

(introduction | DP algorithm combinatorial result faster exact algorithm conclusion

12/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

(@ A (Simple) Dynamic Programming Based Algorithm

13/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

How to compute an by Dynamic
Programming ?

First, we show the following :

Theorem :

An L(2,1))labeling of span k can be decided in time O*(4").

14/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

How to compute an by Dynamic
Programming ?

First, we show the following :

Theorem :
An L(2,1))labeling of span k can be decided in time O*(4").

Theorem :
An L(2,1))labeling of span k can be decided in time O*(3.88").

14/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

How to compute an by Dynamic
Programming ?

First, we show the following :

Theorem :
An L(2,1))labeling of span k can be decided in time O*(4").

Theorem :
An L(2,1))labeling of span k can be decided in time O*(3.88").

2-packings = Independent Sets in G>
A subset S C V s.t. Vu,v € S, N[u] N N[v] = 0 is a 2-packing.

(2-packing = set of vertices pairwise at distance greater than 2.)
14/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

15/49

Remaining :
Let G = (V, E) be a graph. An L(2,1)-labeling of span k asks to
find a labeling f of G such that :

forall {u,v} € E = |f(u)—f(v)|>2;
forall u,v € Vst dist(u,v) =2 = f(u)#f(v).

Vi€ {0,1,....,k} andV , Y C V such that N Y =0, we define
the boolean variable Lab(, V', /).

Lab(X, Y,i) is true iff
there is an L(2, 1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

16/49

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

It is not difficult to check that
Lab(0, V,i) + true VY, Vi;

true V ,Y s.t. is an indep. set
Lab(,Y,0) of GZand N =0

false otherwise

Then, Lab(, ¥, /) is computed by considering the sets and
by increasing order of cardinality, and by increasing value of / :

Lab(X, Y,i) =true iff JU C (X \ N(Y)) such that
» U is a 2-packing of G ; and

» Lab(X\ U,U,i—1)=true.

introduction DP algorithm combinatorial result faster exact algorithm

A DP based algorithm for L(2,1)-labeling of min span

conclusion

17/49

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.
Remaining : Lab(X, Y,i) = true iff 33U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

conclusion

introduction DP algorithm combinatorial result faster exact algorithm

A DP based algorithm for L(2,1)-labeling of min span

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

Remaining : Lab(X, Y, i) = true iff 3U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

If X has an L(2,1))-labeling of span i then
there is a (possibly empty) set U C X \ N(Y) of vertices having

label i. This set is a 2-packing of G.

conclusion

introduction DP algorithm combinatorial result faster exact algorithm

A DP based algorithm for L(2,1)-labeling of min span

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

Remaining : Lab(X, Y, i) = true iff 3U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

= the neighbors of U must obtain label at most i — 2 and X \ U

must have an L(2,1)-labeling of span at most / — 1.
If a such labeling exists then Lab(X \ U, U,i — 1) = true.

introduction DP algorithm combinatorial result faster exact algorithm

A DP based algorithm for L(2,1)-labeling of min span

conclusion

17/49

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.
Remaining : Lab(X, Y,i) = true iff 33U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

Remark : the vertices of X N N(Y') in this labeling have label at

most / — 1.

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

Running-time analysis :

Lab(, Y, i) is computed for all , ¥ C V suchthat NY =40,
and for all i € {0,1,...,k}.

ST)0

18/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

18/49

Running-time analysis :

Lab(, Y, i) is computed for all , ¥ C V suchthat NY =40,
and for all i € {0,1,...,k}.
For each | Y, we compute all sets [/ C being 2-packings of G.
4 n\ «— /n—
(=)2()

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

18/49

Running-time analysis :

Lab(, Y, i) is computed for all , ¥ C V suchthat NY =40,
and for all i € {0,1,...,k}.
For each | Y, we compute all sets [/ C being 2-packings of G.
° n\ s /n—
(7)=()

Theorem :
Computing an L(2,1) of span k can be obtain in time O*(4").

introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2,1)-labeling of min span

By using a bound on the number of 2-packing of a certain size,

Theorem [HKKKL11]
Let uy be the number of 2-packings of size k in a connected graph.

Then, n/2
Uk S (;() -2k

ug =0 for k > n/2

we are able to prove that :

Theorem :

An L(2,1) of span k can be obtain in time O*(4") ~» 0*(3.8730").

19/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An auxiliary combinatorial result

(3) A Combinatorial Result

20/49

introduction DP algorithm |combinatorial result | faster exact algorithm
2-Packings and Proper Pairs

conclusion

Like independent sets are heavily related to colorings,
it seems that 2-packings are related to L(2,1)-labelings.

Theorem :

An L(2,1) of span k can be obtain in time O*(2.6488").

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

21/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

2-Packings and Proper Pairs

Like independent sets are heavily related to colorings,
it seems that 2-packings are related to L(2,1)-labelings.

Theorem :

An L(2,1) of span k can be obtain in time O*(2.6488").

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

21/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Definition

A pair (S, X) of subsets of V is a proper pairif SN X =0 and S
is a 2-packing.

Definition
The number of proper pairs in a graph G is given by

Z 2n7\5\

2—packings S

Let pp(n) = max pp(G) be the maximum number of proper pairs
in a connected graph with n vertices.

22/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Definition
A pair (S, X) of subsets of V is a proper pairif SN X =0 and S
is a 2-packing.

Definition
The number of proper pairs in a graph G is given by

Z 2n7\5\

2—packings S

Let pp(n) = max pp(G) be the maximum number of proper pairs
in a connected graph with n vertices.

Theorem

introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Proof. 1/2
Let G = (V, E) be a connected graph.

Fact 1. If S is a 2-packing, then S is also a 2-packing of G =
(V,E\ e), for any edge e.

= we can assume that G is a tree.

Fact 2. Suppose that there are two leaves which have a common
neighbor. Every 2-packing in G is also a 2-packing in H.

U1 V3 V2 U3
V2

= we can assume that there are no two or more leaves with a
common neighbor

introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)

introduction DP algorithm combinatorial result faster exact algorithm

... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)
(B) If deg(c) > 2 and

conclusion

introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)
(B) If deg(c) > 2 and

(BO) no neighbor of c is a leaf ...
pp(n) < 2°7 pp(n —2q) + (397277} (3 4 q) — 2*""!) pp(n — 2g — 1)

introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)
(B) If deg(c) > 2 and

(BO) no neighbor of c is a leaf ...
pp(n) < 2°7 pp(n —2q) + (397277} (3 4 q) — 2*""!) pp(n — 2g — 1)
(B1) one neighbor of c is a leaf ...

pp(n) < 2% pp(n — 2q — 1) + (377"2771(9 + 2q) — 2°7"2) pp(n — 2q — 2)

introduction DP algorithm combinatorial result faster exact algorithm

... and Proper Pairs

conclusion

To show the lower bound, we consider the following graphs :

a = 2bx_1 + 4ak_1
by = 2¢, + 2d

ck = 2ak + 12di_1
die =4d_1+12a,_4

25 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An Exact Exponential-Time Algorithm

(@) A Faster Exact Exponential-Time Algorithm

26/49

introduction

DP algorithm combinatorial result

faster exact algorithm

One key ingredient of our algorithm

conclusion

27/49

Use algebraic manipulations similar to
fast matrix multiplication

Assume that A and B are 2% x 2% matrices.

A1 A12> (Bll B12> <C11 C12>
A —)) B —)) C —))
(Az,l Az B1 Bop G1 Gp
where
Gi1=A11-Bii1+A2 B
Co=A11-Bio+ A2 B
Gi1=A1-Bii1+A0 B
o =Ax1-Bio+ A2 B

Thus, 8 matrix multiplications of 251 x 2k=1 matrices are

necessary :

T(n)=8-T(n/2) = O(n3)

introduction DP algorithm combinatorial result faster exact algorithm

One key ingredient of our algorithm

conclusion

Al A2 Bii Bip Gy Gp
A= (g 2R2) g (B P2} oo (B L
(Az1 Azg) (Bz1 Bzz) (Cbg Cbg)
By Strassen [Stra69] :
My = (A1 + Az2) - (Bia + Bo2)
M, = (A21 4+ Az2) - Bia
Ms; = Ai1- (B2 — Bep)
My = Az - (B2g — Br1)
Ms = (A11 + A1) - Bap2
Ms = (Az2,1 — A11) - (Biy + Bi2)
M; = (A1,2 — A2,2) : (32,1 + B2,2)

and
C1=M + My — Ms + My
Co2= M+ Ms
G =M+ M,
G =M — M+ M3 4+ Mg
Then,

T(n)=7-T(n/2) = O(n2'807)

28/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Our approach

Our algorithm uses Dynamic Programming

We reduce the number of operations (like in Strassen’s algo)

We use a representation for partial L(2,1)-labelings

29/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Representation of partial L(2,1)-labelings

Span 1 Table T;

30/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Representation of partial L(2,1)-labelings

Span 1 Table T;

30/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Representation of partial L(2,1)-labelings

Span 2 Table T,
000111
0011 -
0011

.01 -+ - +--1-0--1--0

.01---1-0+-+- -+« -1+ -0 -

30/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Representation of partial L(2,1)-labelings

Span 3 Table T3
................................. 0000000001111
.................... 000001112222222
......... 00001112222+ -2 Q- 220

00122 - -2 ... 0--12--.02--01 12.--1---C
012:2--0-12--02-01- -2+« ---- 0 12---1--.02

30/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Representation of partial L(2,1)-labelings

Jump to a compact representation

Table T, contains a vector 3 € {0,0,1,1}" if and only if there is a
partial labeling ¢: V — {0,..., ¢} such that :

aj = iff v is not labeled by ¢
and there is no neighbor u of v; with p(u) = ¢

aj = iff v; is not labeled by ¢
and there is a neighbor u of v; with ¢(u) = ¢

ai=1 iff <p(v,-) </

ai=1 iff o(v)=14

L)

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Representation of partial L(2,1)-labelings

Span 3 Table T3

32/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing the tables

How to compute table T,,; from table 7,7

33/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing the tables

Let P C {0,1}" be the encodings of all 2-packings of G.

We compute Tyy1 from T, @ P.
We define the partial function @: {0,0,1,1} x {0,1} — {0,1,1} :

52
0
1

=)
I

0

We generalize & to vectors :

(a1 @ b1)...(an ® by) if @ is defined

aias...apdbiby... b, =
192 moELR " {undeﬁned otherwise

34/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing the tables

Then T, @ P is already almost the same as T4 :

3 € Ty iff there is an ac Ty, ® P such that

a; = 0iff a; = 0 and there is no v; € N(v;) with a} = 1
aj = 0 iff a; = 0 and there is a v; € N(v;) with a} =1
a;=1iffaj=1

a,:TlfFaf:T

35/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

What remains is to find a method to compute T, ® P

36/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

What remains is to find a method to compute T, ® P

fast

36/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

Definition

Ay ={V|w-veA}

= old

=l o

! ©
= =

AdB= 0((AUA;))® By)
U 1((A1 U AT) &) BO)

U I(A @ B)

37/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

. ol ol
=
=

2]
0
1

=l oo

® |00 00 01 0T 00O 00 O01 01 10 10 11 11 10 10 11

00
01
10
11

38/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion
Computing efficiently the tables
@0 0 1 1
00 O 1
1T ~ - -

1 01 0 1 10 10 11

@ |00 00 01 0I 00 00 01 01 10 10 11 11

o

00
01
10
- - - -

38/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

! oo
=
=

2]
0
1

=l oo

® |00 00 01 0T 00O 00 O01 01 10 10 11 11 10 10 11

00

10 - - - - - -

38/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

! oo
=
=

2]
0
1

=l oo

® |00 00 01 0T 00O 00 O01 01 10 10 11 11 10 10 11

00
01 ~ - = ~ - - ~ - - ~ -
10 ~ o~~~ - = - - - -

38/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

! oo
—
=

2]
0
1

=l oo

@& |00 00 0L 0L 00O OO 01 0L 10 10 11 11 10 10 11

oo |0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

01lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

38/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

=l oo
! oo
[

2]
0
1

& |00 00 01 01 00 OO O1 01 10 10 11 11 10 10 11

oo |0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

01lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

— Prefix 11 cannot appear.

38/49

introduction

Computing efficiently the tables

DP algorithm

combinatorial result

faster exact algorithm

conclusion

® |00 00 01 0I 00 00 01 OI 10 10 11 11 To 10 11 1I

00 [00 00 0L 01 00 0O 0L 01 10 10 11 11 10 10 11 -

L0l ~ - o ~ - - 1 ~ - - 11 ~ - -

10(10 10 11 11 ~ ~ ~ ~ - - - - - - - -
A B =

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11

oo 0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

o1lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

A®B= 00((Aoo U A06 U AGO @] A@@) ©® Boo)

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11

oo 0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

o1lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

A®B= 00((Aoo U A06 U A@O @] A@@) ©® Boo)
U 01((Ao U A U Ay UAG;) © Boo)

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
or{ol ~ - - 0 ~ - - 11 ~ - - 11 ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A®B=00((ApUA;UA;UA;) @ By)
U 01((Ao UA U A UAG) @ Boo)
U 10((A10 U Alﬁ U ATO U AT@) D Bo())

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
or{ol ~ - - 0 ~ - - 11 ~ - - 11 ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A® B = 00((AnUA;UA; UA;) D Boo)
U 01((Ao U A U Ay UAG;) © Boo)
U 10((AcUA;UA; UA;) @ Boo)
U 11((Ai1 UA;; UA;) @ Byo)

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
or{ol ~ - - 0 ~ - - 11 ~ - - 11 ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A® B = 00((AnUA;UA; UA;) D Boo)
01((Aor U Ay UAG UAG) & Boo)
10((Aio U A, UA; UA;) @ Boo)
11((A11 UA;; UA;,) @ Boo)
0I((Aoo U A;,) @ Bor)

cC C C C

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
01 | 01 - - 0 ~ - - 11 ~ - - 1I ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A® B = 00((AnUA;UA; UA;) D Boo)
01((Aor U Ay UAG UAG) & Boo)
10((A10 UA; UA;, UA;;) @ Boo)
11((A11 UA;; UA;,) @ Boo)
((
((

CcC C C cCc C

01 Agpo U AGO) D 501)
11 Aip U AIO) D B()l)

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
or{ol ~ - - 0 ~ - - 11 ~ - - 11 ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A® B = 00((AnUA;UA; UA;) D Boo)

01((Ao1 U Ay U Agy U Agp) © Boo)

10((Aio U A, UA; UA;) @ Boo)
1((An UA;; UA;) @ Boo)

0I((Aoo U A;,) @ Bor)

11((A0 U Ay) @ Bor)

10((Ao U Ayp) @ Buo)

c C Cc cccC
[ay

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
or{ol ~ - - 0 ~ - - 11 ~ - - 11 ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A® B = 00((AnUA;UA; UA;) D Boo)
01((Aot UA;; UA;; UA5) @ Boo)
10((A10 UA; UA;, UA;;) @ Boo)
1((Al1UA;; UA;) @ Boo)
0I((Aoo U A;,) @ Bor)
((
((
((A

[y

11((Ap U A 10) © B()l)
10((Aoo U A) @ Bio)
11 @ Bio)

CcC C Cc cccc

//_/_/

1UAOT

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11
00 [00 00 0L 01 00 00 0L 01 10 10 11 11 10 10 1I
or{ol ~ - - 0 ~ - - 11 ~ - - 11 ~ -
10(10 10 11 11 ~ ~ ~ ~ - - = - - - -

A® B = 00((AnUA;UA; UA;) D Boo)
01((Aot UA;; UA;; UA5) @ Boo)
10((A10 UA; UA;, UA;;) @ Boo)
1((Al1UA;; UA;) @ Boo)
0I((Aoo U A;,) @ Bor)
((
((
((A

[y

11((Ap U A 10) © B()l)
10((Aoo U A) @ Bio)
11 @ Bio)

CcC C Cc cccc

//_/_/

1UAOT

T(n)=8-T(n—2)=8"2 < 28285"

39/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Decomposing the graph into connected subgraphs

Imagine that a graph can be decomposed into some connected
subsets of constant size k’ ...

40/49

introduction DP algorithm combinatorial result faster exact algorithm

Decomposing the graph into connected subgraphs

conclusion

41/49

Theorem (%)
Let G be a connected graph of order n.
Let kK < n be a positive integer.

Then there exist connected subgraphs Gy, G, ..., G4 of G s.t.

(i) every vertex of G belongs to at least one of them

(i) the order of each of Gy, Gy,. .., G4_1 is at least k and
at most 2k (while for G we only require |V/(Ggq)| < 2k)

(iii) the sum of the numbers of vertices of G/s is at most n(1+ +)

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Decomposing the graph into connected subgraphs

Proof
Consider a DFS-tree T of G rooted at r.

For every v let T(v) be the subtree rooted in v.

If [T(r)| <2k then add G to the set of desired subgraphs and stop.

If there is a vertex v such that kK < |T(v)| < 2k then add
G[V(T(v))] to the set of desired subgraphs and
proceed recursively with G \ V(T (v)).

42/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Decomposing the graph into connected subgraphs

Proof 2/2
» Otherwise there must be a vertex v such that | T(v)| > 2k and for
its every child u, | T (u)| < k.

In such a case find a subset {u; , u; } of children of v such that
k—1<|T(u)|+ -+ |T(u)| <2k —1.

Add G[{v}U V(T (u1))U---U V(T (u;))] to the set of desired
subgraphs and proceed recursively with
G\ (V(T(v1))U.. U V(T (u:))).

This procedure terminates after at most steps and in each of
them we have left at most one vertex of the identified connected
subgraph in the further processed graph.

introduction DP algorithm combinatorial result faster exact algorithm
An exact algorithm

conclusion

Let AC {0,0,1,1}" and B C {0,1}" where n > k'
We compute A@® B is the following way :

AeB=) (Fe7)(AeBy)
7€{0,0,1,1}¥

ve{0,1}¥
s.t. UV is defined

= U [U a)es

ve{0,1}¥ 7€{0,0,1,1}¥
VT/E{O,].,I}I(/ s.t. UBv=w

44/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

How many pairs v, w are there s.t. there is at least one U
with i vV =w?

45 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

How many pairs v, w are there s.t. there is at least one U
with i vV =w?

If V is fixed, then v; =1 = w; = 1.

45 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

How many pairs vV, w are there s.t. there is at least one i
with i v=w?
If V is fixed, then v; =1 = w; = 1.

Thus, for a fixed v there are at most 25"~V many w's, where ||V||
denotes the number of positions i such that v; = 1.

45 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

How many pairs vV, w are there s.t. there is at least one i

with i vV =w?

If V is fixed, then v; =1 = w; = 1.

Thus, for a fixed v there are at most 25"~V many w's, where ||V||
denotes the number of positions i such that v; = 1.

The total number of pairs vV, w such that w = vV @ i for some i is
therefore at most

> 2K < pp(K)

ve{0,1}

45 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

How many pairs v, w are there s.t. there is at least one U
with i vV =w?
If V is fixed, then v; =1 = w; = 1.

Thus, for a fixed v there are at most 25"~V many w's, where ||V||
denotes the number of positions i such that v; = 1.

The total number of pairs vV, w such that w = vV @ i for some i is
therefore at most

> 2K < pp(K)

ve{0,1}

= We need to make pp(k’) recursive computations of & on sets of
vectors of length n — k'.

45 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

By Theorem (%), the total length of the vectors is n" < n(1+ 1/k).

In each recursive computation :

Prepare up to pp(k’) many pairs of sets of vectors of length n" — k’

Recursively compute & on these pairs
From the result, compute Tyy; in linear time
The size of B is at most O(n2"') bits

The size of A is at most O(npp(n’)) bits :
the 1's form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.

46 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

By Theorem (%), the total length of the vectors is n" < n(1+ 1/k).

In each recursive computation :

Prepare up to pp(k’) many pairs of sets of vectors of length n" — k’

Recursively compute & on these pairs
From the result, compute Ty 1 in linear time
The size of B is at most O(n2"') bits

The size of A is at most O(npp(n’)) bits :
the 1's form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.

Thus the running-time is given by
T(n) < O(n- pp(n’) + pp(K') - T(n" = K))

where k < k' < 2k.

46 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm — Running-time analysis

The solution of

T(n) < O(n-pp(n'") + pp(kK') - T(n" — k"))

T(n) = O*(pp(n")) = O*(pp(n(1 4 1/k)))

47/49

introduction DP algorithm combinatorial result faster exact algorithm

An exact algorithm — Running-time analysis

conclusion

The solution of

T(n) < O(n-pp(n'") + pp(kK') - T(n" — k"))

T(n) = O*(pp(n")) = O*(pp(n(1 4 1/k)))

Choosing constant k big enough :

T(n) = 0(2.6488")

47/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Conclusion

(6) Conclusion

48/49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Conclusion

Combinatorial result : number of proper pairs

2.6117" < pp(n) < 2.6488"

Exact exponential-time algorithm for L(2, 1)-labelings

0(2.6488")

Interesting questions :

Does inclusion/exclusion or subset convolution can achieve
a O(2")-time algorithm ?
Is it possible to find a 2-approx in O(c") with ¢ < 27

In [GY92], it is conjectured that A\(G) < A(G)?.
It is still not fully resolved. It has been proved for graphs of large
maximum degree [HRS08].

49 /49

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Merci !

LABORATOIRE :
D'INFORMATIQUE /
qll
® f il
il
D'ORLEANS

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Bibliographie |

BODLAENDER, H.L., KLOKs, T., TAN, R.B., VAN LEEUWEN, J. :
Approximations for lambda-Colorings of Graphs. Computer Journal 47 (2004), pp. 193-204.

' CHaNG, G. J., Kvuo, D. :

The L(2, 1)-labeling problem on graphs.
SIAM Journal of Discrete Mathematics 9 (1996), pp. 309-316

CYGAN, M., KOWALIK, L. :
Channel Assignment via Fast Zeta Transform.
arXiv :1103.2275

Fiara, J., GoLovacH, P., KRATOCHVIL, J. :
Distance Constrained Labelings of Graphs of Bounded Treewidth.
Proceedings of ICALP 2005, LNCS 3580 (2005), pp. 360-372

Fixed-parameter complexity of A-labelings.
Discrete Applied Mathematics 113 (2001), pp. 59-72

GOLOVACH, P., KrRATSCH, D., COUTURIER, J.-F. :
Coloring With Few Colors : Counting, Enumeration and Combinatorial Bounds.
Proceedings of WG 6410, LNCS 3580 (2010), pp. 39-50

sRIGGS, J. R., YEH, R. K. :
Labelling graphs with a condition at distance 2.
SIAM Journal of Discrete Mathematics 5 (1992), pp. 586-595

' Fiara, J., KLoks, T., KRATOCHVIL, J. :

introduction DP algorithm combinatorial result faster exact algorithm conclusion

Bibliographie |l

HAVET, F., KLAZAR, M., KRATOCHVIL, J., KRATSCH, D., LIEDLOFF, M. :
Exact algorithms for L(2, 1)-labeling of graphs.
Algorithmica 59 (2011), pp. 169-194

Haver, F., REED, B., SERENI, J.-S. :
L(2, 1)-labellings of graphs.
Proceedings of SODA 2008 (2008), pp. 621-630

Hell, P., Nesetril, J.,
On the complexity of H-colouring,
Journal of Combinatorial Theory Series B 48 (1990), 92-110.

JANCZEWSKI, R., KOSOwWSKI, A., MALAFIEJSKI. M. :
The complexity of the L(p, g)-labeling problem for bipartite planar graphs of small degree.
Discrete Mathematics 309 (2009), pp. 3270-3279.

KRrAL', D. :
Channel assignment problem with variable weights.
SIAM Journal on Discrete Mathematics 20 (2006), pp. 690-704

ROBERTS, F.S. :
private communication to J. Griggs.

STRASSEN, V. :
Gaussian Elimination is not Optimal.
Numerische Mathematik 13 (1969), pp. 354-356

	Definitions and Known Results
	A (Simple) Dynamic Programming Based Algorithm
	A Combinatorial Result
	A Faster Exact Exponential-Time Algorithm
	Conclusion

