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L(2,1)-LABELING

Input : A graph G = (V, E).
Question : Compute a function £ of minimum span k

> wuand v adjacent = |¢(u) — 4(v)| > 2

> wuand v at distance two = |[¢(u) — £(v)| > 1
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Known complexity results

Theorem [GY92]
Determining the minimum span A(G) of a graph G is NP-hard.

Theorem [FKKO01]
Deciding whether A\(G) < k remains NP-complete for every fixed
k > 4. (trivial for k < 3)

Theorem [CK96, FGKO05]
When the span k is part of the input,
L(2,1)-labeling problem is polynomial time solvable on trees.

However, the problem is NP-complete for series-parallel graphs.
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Known complexity results

Theorem [GY92]
Determining the minimum span A(G) of a graph G is NP-hard.

Theorem [FKKO01]
Deciding whether A\(G) < k remains NP-complete for every fixed
k > 4. (trivial for k < 3)

Theorem [CK96, FGKO05]
When the span k is part of the input,
L(2,1)-labeling problem is polynomial time solvable on trees.

However, the problem is NP-complete for series-parallel graphs.

— The problem “separates” graphs of treewidth 1 and 2
by P / NP-completeness dichotomy.
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Known complexity results

The distance constrained labeling problem is more difficult than
ordinary coloring :

Theorem [FGKO05]
Deciding whether A\(G) < k is NP-complete for series-parallel
graphs (k is part of the input).

Theorem [BKTvLO4, JKMO09]
Deciding whether A\ = k is NP-complete for planar graphs

» for k=38 [BKTvLO4]
> for k=4 [JKMO09]

6/49



(introduction | DP algorithm combinatorial result faster exact algorithm conclusion

L(2,1)-labeling and Locally Injective Homomorphisms
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Fiala and Kratochvil defined the notion of ' = © ol
» mapping from vertices of G to vertices of a graph H;
» adjacent vertices in G are mapped onto non-adjacent vertices in H ;

> vertices with a common neighbor in G are mapped onto distinct
vertices of H.

They show that :

— H(2,1)-labelings are exactly locally injective homomorphisms
from G to H.

— L(2,1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.
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L(2,1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping f : V(G) — V(H) is a
homomorphism from G to H if f(u)f(v) € E(H) for every edge
uv € E(G).

Theorem [HNIO]
Homomorphisms admit a complete dichotomy :
Deciding existence of a homomorphism into a fixed graph H is

» polynomial when H is bipartite;

» NP-complete otherwise.

Remark : k-coloring of a graph G corresponds to homomorphism
from G to the graph Kj.
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L(2,1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping f : V(G) — V(H) is a
homomorphism from G to H if f(u)f(v) € E(H) for every edge
uv € E(G).

locally injective homomorphism (LIH) : A homomorphism
f: G — H is locally injective if for every vertex u € V(G) its
neighborhood is mapped injectively into the neighborhood of
f(u) in H, i.e., every two vertices having a common neighbor in
G are mapped onto disctinct vertices in H.

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

0" ((A(H) =1)")
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L(2,1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping f : V(G) — V(H) is a
homomorphism from G to H if f(u)f(v) € E(H) for every edge
uv € E(G).

locally injective homomorphism (LIH) : A homomorphism
f: G — H is locally injective if for every vertex u € V(G) its
neighborhood is mapped injectively into the neighborhood of
f(u) in H, i.e., every two vertices having a common neighbor in
G are mapped onto disctinct vertices in H.

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

O*((A(H)-1)")
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L(2,1)-labeling problem - Exact algorithms

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

0" (A(H) - 1)")

— L(2,1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.

Theorem [HKKKL11]
Hence, L(2,1)-labeling problem of span k can be decided in time

0" ((k -1y
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L(2,1)-labeling problem - Exact algorithms

Theorem [HKKKL11]
L(2,1)-labeling of span 4 : 0(1.3006") (branching)

Theorem [GKC10]
L(2,1)-labeling of span 5 in cubic graphs : 0(1.8613") — O(1.7990")

Theorem [Kral’06]
L(2,1)-labeling of min span :

Theorem [HKKKL11]
L(2,1)-labeling of min span : 0*(15"/2) = 0(3.88") (D.P)

Theorem [CK11]
L(2,1)-labeling of min span (fast ¢ transform + I.-E.)
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A DP based algorithm for L(2,1)-labeling of min span

(@ A (Simple) Dynamic Programming Based Algorithm
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A DP based algorithm for L(2,1)-labeling of min span

How to compute an by Dynamic
Programming ?

First, we show the following :

Theorem :

An L(2,1))labeling of span k can be decided in time O*(4").
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A DP based algorithm for L(2,1)-labeling of min span

How to compute an by Dynamic
Programming ?

First, we show the following :

Theorem :
An L(2,1))labeling of span k can be decided in time O*(4").

Theorem :
An L(2,1))labeling of span k can be decided in time O*(3.88").

2-packings = Independent Sets in G>
A subset S C V s.t. Vu,v € S, N[u] N N[v] = 0 is a 2-packing.

(2-packing = set of vertices pairwise at distance greater than 2.)
14/49
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A DP based algorithm for L(2,1)-labeling of min span
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Remaining :
Let G = (V, E) be a graph. An L(2,1)-labeling of span k asks to
find a labeling f of G such that :

forall {u,v} € E = |f(u)—f(v)|>2;
forall u,v € Vst dist(u,v) =2 = f(u)#f(v).

Vi€ {0,1,....,k} andV , Y C V such that N Y =0, we define
the boolean variable Lab( , V', /).

Lab(X, Y,i) is true iff
there is an L(2, 1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.
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A DP based algorithm for L(2,1)-labeling of min span
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Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

It is not difficult to check that
Lab(0, V,i) + true VY, Vi;

true V ,Y s.t. is an indep. set
Lab( ,Y,0) of GZand N =0

false otherwise

Then, Lab( , ¥, /) is computed by considering the sets  and
by increasing order of cardinality, and by increasing value of / :

Lab(X, Y,i) =true iff JU C (X \ N(Y)) such that
» U is a 2-packing of G ; and

» Lab(X\ U,U,i—1)=true.
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Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.
Remaining : Lab(X, Y,i) = true iff 33U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.
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A DP based algorithm for L(2,1)-labeling of min span

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

Remaining : Lab(X, Y, i) = true iff 3U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

If X has an L(2,1))-labeling of span i then
there is a (possibly empty) set U C X \ N(Y) of vertices having

label i. This set is a 2-packing of G.
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A DP based algorithm for L(2,1)-labeling of min span

Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.

Remaining : Lab(X, Y, i) = true iff 3U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

= the neighbors of U must obtain label at most i — 2 and X \ U

must have an L(2,1)-labeling of span at most / — 1.
If a such labeling exists then Lab(X \ U, U,i — 1) = true.
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A DP based algorithm for L(2,1)-labeling of min span
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Remaining : Lab(X, Y, i) is true iff
there is an L(2,1)-labeling of span i of the vertices of X such that

the vertices of N(Y) N X have label at most i — 1.
Remaining : Lab(X, Y,i) = true iff 33U C (X \ N(Y)) such that

» U is a 2-packing of G; and
> Lab(X\ U,U,i—1)=true.

Remark : the vertices of X N N(Y') in this labeling have label at

most / — 1.
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A DP based algorithm for L(2,1)-labeling of min span

Running-time analysis :

Lab( , Y, i) is computed for all , ¥ C V suchthat NY =40,
and for all i € {0,1,...,k}.

ST )0
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Running-time analysis :

Lab( , Y, i) is computed for all , ¥ C V suchthat NY =40,
and for all i € {0,1,...,k}.
For each | Y, we compute all sets [/ C  being 2-packings of G.
4 n\ «— /n—
(= )2()
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A DP based algorithm for L(2,1)-labeling of min span
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Running-time analysis :

Lab( , Y, i) is computed for all , ¥ C V suchthat NY =40,
and for all i € {0,1,...,k}.
For each | Y, we compute all sets [/ C  being 2-packings of G.
° n\ s /n—
(7 )=()

Theorem :
Computing an L(2,1) of span k can be obtain in time O*(4").
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A DP based algorithm for L(2,1)-labeling of min span

By using a bound on the number of 2-packing of a certain size,

Theorem [HKKKL11]
Let uy be the number of 2-packings of size k in a connected graph.

Then, n/2
Uk S ( ;( ) -2k

ug =0 for k > n/2

we are able to prove that :

Theorem :

An L(2,1) of span k can be obtain in time O*(4") ~» 0*(3.8730").
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An auxiliary combinatorial result

(3) A Combinatorial Result
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2-Packings and Proper Pairs

conclusion

Like independent sets are heavily related to colorings,
it seems that 2-packings are related to L(2,1)-labelings.

Theorem :

An L(2,1) of span k can be obtain in time O*(2.6488").

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

21/49
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... and Proper Pairs

Definition

A pair (S, X) of subsets of V is a proper pairif SN X =0 and S
is a 2-packing.

Definition
The number of proper pairs in a graph G is given by

Z 2n7\5\

2—packings S

Let pp(n) = max pp(G) be the maximum number of proper pairs
in a connected graph with n vertices.

22/49
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... and Proper Pairs

Definition
A pair (S, X) of subsets of V is a proper pairif SN X =0 and S
is a 2-packing.

Definition
The number of proper pairs in a graph G is given by

Z 2n7\5\

2—packings S

Let pp(n) = max pp(G) be the maximum number of proper pairs
in a connected graph with n vertices.

Theorem




introduction DP algorithm combinatorial result faster exact algorithm conclusion

... and Proper Pairs

Proof. 1/2
Let G = (V, E) be a connected graph.

Fact 1. If S is a 2-packing, then S is also a 2-packing of G =
(V,E\ e), for any edge e.

= we can assume that G is a tree.

Fact 2. Suppose that there are two leaves which have a common
neighbor. Every 2-packing in G is also a 2-packing in H.

U1 V3 V2 U3
V2

= we can assume that there are no two or more leaves with a
common neighbor
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... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)
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pp(n) < 2pp(n—1)+4pp(n—3)
(B) If deg(c) > 2 and

conclusion
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... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)
(B) If deg(c) > 2 and

(BO) no neighbor of c is a leaf ...
pp(n) < 2°7 pp(n —2q) + (397277} (3 4 q) — 2*""!) pp(n — 2g — 1)
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... and Proper Pairs

Proof.
(A) If deg(c) < 2 then

pp(n) < 2pp(n—1)+4pp(n—3)
(B) If deg(c) > 2 and

(BO) no neighbor of c is a leaf ...
pp(n) < 2°7 pp(n —2q) + (397277} (3 4 q) — 2*""!) pp(n — 2g — 1)
(B1) one neighbor of c is a leaf ...

pp(n) < 2% pp(n — 2q — 1) + (377"2771(9 + 2q) — 2°7"2) pp(n — 2q — 2)




introduction DP algorithm combinatorial result faster exact algorithm

... and Proper Pairs

conclusion

To show the lower bound, we consider the following graphs :

a = 2bx_1 + 4ak_1
by = 2¢, + 2d

ck = 2ak + 12di_1
die =4d_1+12a,_4

25 /49
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An Exact Exponential-Time Algorithm

(@) A Faster Exact Exponential-Time Algorithm
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One key ingredient of our algorithm
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Use algebraic manipulations similar to
fast matrix multiplication

Assume that A and B are 2% x 2% matrices.

A1 A12> (Bll B12> <C11 C12>
A — ) ) B — ) ) C — ) )
(Az,l Az B1 Bop G1 Gp
where
Gi1=A11-Bii1+A2 B
Co=A11-Bio+ A2 B
Gi1=A1-Bii1+A0 B
o =Ax1-Bio+ A2 B

Thus, 8 matrix multiplications of 251 x 2k=1 matrices are

necessary :

T(n)=8-T(n/2) = O(n3)
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One key ingredient of our algorithm

conclusion

Al A2 Bii Bip Gy Gp
A= (g 2R2) g (B P2} oo (B L
(Az1 Azg) (Bz1 Bzz) (Cbg Cbg)
By Strassen [Stra69] :
My = (A1 + Az2) - (Bia + Bo2)
M, = (A21 4+ Az2) - Bia
Ms; = Ai1- (B2 — Bep)
My = Az - (B2g — Br1)
Ms = (A11 + A1) - Bap2
Ms = (Az2,1 — A11) - (Biy + Bi2)
M; = (A1,2 — A2,2) : (32,1 + B2,2)

and
C1=M + My — Ms + My
Co2= M+ Ms
G =M+ M,
G =M — M+ M3 4+ Mg
Then,

T(n)=7-T(n/2) = O(n2'807)

28/49
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Our approach

Our algorithm uses Dynamic Programming

We reduce the number of operations (like in Strassen’s algo)

We use a representation for partial L(2,1)-labelings

29/49
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Representation of partial L(2,1)-labelings

Span 1 Table T;
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Representation of partial L(2,1)-labelings

Span 2 Table T,
000111
0011 -
0011

.01 -+ - +--1-0--1--0

.01---1-0+-+- -+« -1+ -0 -
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Representation of partial L(2,1)-labelings

Span 3 Table T3
................................. 0000000001111
.................... 0000011122222 ......22
......... 00001112222+ -2 Q- 220 ....

00122 - -2 ... 0--12--.02--01 12.--1---C
012:2--0-12--02-01- -2+« ---- 0 12---1--.02

30/49
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Representation of partial L(2,1)-labelings

Jump to a compact representation

Table T, contains a vector 3 € {0,0,1,1}" if and only if there is a
partial labeling ¢: V — {0,..., ¢} such that :

aj = iff v is not labeled by ¢
and there is no neighbor u of v; with p(u) = ¢

aj = iff  v; is not labeled by ¢
and there is a neighbor u of v; with ¢(u) = ¢

ai=1 iff <p(v,-) </

ai=1 iff o(v)=14

L)
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Representation of partial L(2,1)-labelings

Span 3 Table T3
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Computing the tables

How to compute table T,,; from table 7,7

33/49
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Computing the tables

Let P C {0,1}" be the encodings of all 2-packings of G.

We compute Tyy1 from T, @ P.
We define the partial function @: {0,0,1,1} x {0,1} — {0,1,1} :

52
0
1

=)
I

0

We generalize & to vectors :

(a1 @ b1)...(an ® by) if @ is defined

aias...apdbiby... b, =
192 moELR " {undeﬁned otherwise

34/49
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Computing the tables

Then T, @ P is already almost the same as T4 :

3 € Ty iff there is an ac Ty, ® P such that

a; = 0iff a; = 0 and there is no v; € N(v;) with a} = 1
aj = 0 iff a; = 0 and there is a v; € N(v;) with a} =1
a;=1iffaj=1

a,:TlfFaf:T

35/49
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Computing efficiently the tables

What remains is to find a method to compute T, ® P

36/49
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Computing efficiently the tables

What remains is to find a method to compute T, ® P

fast

36/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

Definition

Ay ={V|w-veA}

= old

=l o

! ©
= =

AdB= 0((AUA;))® By)
U 1((A1 U AT) &) BO)

U I(A @ B)

37/49
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Computing efficiently the tables

. ol ol
=
=

2]
0
1

=l oo

® |00 00 01 0T 00O 00 O01 01 10 10 11 11 10 10 11

00
01
10
11

38/49
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Computing efficiently the tables
@0 0 1 1
00 O 1
1T ~ - -

1 01 0 1 10 10 11

@ |00 00 01 0I 00 00 01 01 10 10 11 11

o

00
01
10
- - - -
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Computing efficiently the tables

! oo
=
=

2]
0
1

=l oo

® |00 00 01 0T 00O 00 O01 01 10 10 11 11 10 10 11

00

10 - - - - - -

38/49
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Computing efficiently the tables

! oo
=
=

2]
0
1

=l oo

® |00 00 01 0T 00O 00 O01 01 10 10 11 11 10 10 11

00
01 ~ - = ~ - - ~ - - ~ -
10 ~ o~~~ - = - - - -

38/49
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Computing efficiently the tables

! oo
—
=

2]
0
1

=l oo

@& |00 00 0L 0L 00O OO 01 0L 10 10 11 11 10 10 11

oo |0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

01lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

38/49
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Computing efficiently the tables

=l oo
! oo
[

2]
0
1

& |00 00 01 01 00 OO O1 01 10 10 11 11 10 10 11

oo |0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

01lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

— Prefix 11 cannot appear.

38/49
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® |00 00 01 0I 00 00 01 OI 10 10 11 11 To 10 11 1I

00 [00 00 0L 01 00 0O 0L 01 10 10 11 11 10 10 11 -

L0l ~ - o ~ - - 1 ~ - - 11 ~ - -

10(10 10 11 11 ~ ~ ~ ~ - - - - - - - -
A B =

39/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11

oo 0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

o1lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -

A®B= 00((Aoo U A06 U AGO @] A@@) ©® Boo)

39/49
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Computing efficiently the tables

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 10 10 11

oo 0O 0O 01 01 OO OO O1 01 10 10 11 11 10 10 11

o1lof ~ - - 0 ~ - - 11 ~ - - 1T ~ -
10/70 10 11 11 ~ ~ ~ ~ - — — — — — -
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T(n)=8-T(n—2)=8"2 < 28285"
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Decomposing the graph into connected subgraphs

Imagine that a graph can be decomposed into some connected
subsets of constant size k’ ...
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Decomposing the graph into connected subgraphs

conclusion
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Theorem (%)
Let G be a connected graph of order n.
Let kK < n be a positive integer.

Then there exist connected subgraphs Gy, G, ..., G4 of G s.t.

(i) every vertex of G belongs to at least one of them

(i) the order of each of Gy, Gy,. .., G4_1 is at least k and
at most 2k (while for G we only require |V/(Ggq)| < 2k)

(iii) the sum of the numbers of vertices of G/s is at most n(1+ +)




introduction DP algorithm combinatorial result faster exact algorithm conclusion

Decomposing the graph into connected subgraphs

Proof
Consider a DFS-tree T of G rooted at r.

For every v let T(v) be the subtree rooted in v.

If [ T(r)| <2k then add G to the set of desired subgraphs and stop.

If there is a vertex v such that kK < |T(v)| < 2k then add
G[V(T(v))] to the set of desired subgraphs and
proceed recursively with G \ V(T (v)).
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Decomposing the graph into connected subgraphs

Proof 2/2
» Otherwise there must be a vertex v such that | T(v)| > 2k and for
its every child u, | T (u)| < k.

In such a case find a subset {u; , u; } of children of v such that
k—1<|T(u)|+ -+ |T(u)| <2k —1.

Add G[{v}U V(T (u1))U---U V(T (u;))] to the set of desired
subgraphs and proceed recursively with
G\ (V(T(v1))U.. U V(T (u:))).

This procedure terminates after at most  steps and in each of
them we have left at most one vertex of the identified connected
subgraph in the further processed graph.
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An exact algorithm

conclusion

Let AC {0,0,1,1}" and B C {0,1}" where n > k'
We compute A@® B is the following way :

AeB= ) (Fe7)(AeBy)
7€{0,0,1,1}¥

ve{0,1}¥
s.t. UV is defined

= U [ U a)es

ve{0,1}¥ 7€{0,0,1,1}¥
VT/E{O,].,I}I(/ s.t. UBv=w
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An exact algorithm — Running-time analysis

How many pairs v, w are there s.t. there is at least one U
with i vV =w?
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An exact algorithm — Running-time analysis

How many pairs vV, w are there s.t. there is at least one i
with i v=w?
If V is fixed, then v; =1 = w; = 1.

Thus, for a fixed v there are at most 25"~V many w's, where ||V||
denotes the number of positions i such that v; = 1.
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An exact algorithm — Running-time analysis

How many pairs vV, w are there s.t. there is at least one i

with i vV =w?

If V is fixed, then v; =1 = w; = 1.

Thus, for a fixed v there are at most 25"~V many w's, where ||V||
denotes the number of positions i such that v; = 1.

The total number of pairs vV, w such that w = vV @ i for some i is
therefore at most

> 2K < pp(K)

ve{0,1}
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An exact algorithm — Running-time analysis

How many pairs v, w are there s.t. there is at least one U
with i vV =w?
If V is fixed, then v; =1 = w; = 1.

Thus, for a fixed v there are at most 25"~V many w's, where ||V||
denotes the number of positions i such that v; = 1.

The total number of pairs vV, w such that w = vV @ i for some i is
therefore at most

> 2K < pp(K)

ve{0,1}

= We need to make pp(k’) recursive computations of & on sets of
vectors of length n — k'.
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An exact algorithm — Running-time analysis

By Theorem (%), the total length of the vectors is n" < n(1+ 1/k).

In each recursive computation :

Prepare up to pp(k’) many pairs of sets of vectors of length n" — k’

Recursively compute & on these pairs
From the result, compute Tyy; in linear time
The size of B is at most O(n2"') bits

The size of A is at most O(npp(n’)) bits :
the 1's form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.
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An exact algorithm — Running-time analysis

By Theorem (%), the total length of the vectors is n" < n(1+ 1/k).

In each recursive computation :

Prepare up to pp(k’) many pairs of sets of vectors of length n" — k’

Recursively compute & on these pairs
From the result, compute Ty 1 in linear time
The size of B is at most O(n2"') bits

The size of A is at most O(npp(n’)) bits :
the 1's form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.

Thus the running-time is given by
T(n) < O(n- pp(n’) + pp(K') - T(n" = K))

where k < k' < 2k.
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An exact algorithm — Running-time analysis

The solution of

T(n) < O(n-pp(n'") + pp(kK') - T(n" — k"))

T(n) = O*(pp(n")) = O*(pp(n(1 4 1/k)))
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An exact algorithm — Running-time analysis

conclusion

The solution of

T(n) < O(n-pp(n'") + pp(kK') - T(n" — k"))

T(n) = O*(pp(n")) = O*(pp(n(1 4 1/k)))

Choosing constant k big enough :

T(n) = 0(2.6488")
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Conclusion

(6) Conclusion
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Conclusion

Combinatorial result : number of proper pairs

2.6117" < pp(n) < 2.6488"

Exact exponential-time algorithm for L(2, 1)-labelings

0(2.6488")

Interesting questions :

Does inclusion/exclusion or subset convolution can achieve
a O(2")-time algorithm ?
Is it possible to find a 2-approx in O(c") with ¢ < 27

In [GY92], it is conjectured that A\(G) < A(G)?.
It is still not fully resolved. It has been proved for graphs of large
maximum degree [HRS08].
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