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Frequency assignment problem

I broadcast network

I assign frequencies to transmitters

I avoid undesired interference
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Definition of L(2, 1)-labeling

L(2, 1)-labeling

Input : A graph G = (V ,E ).
Question : Compute a function ` of minimum span k
` : V → {0, . . . , k} s.t.

I u and v adjacent ⇒ |`(u)− `(v)| ≥ 2

I u and v at distance two ⇒ |`(u)− `(v)| ≥ 1

2

4

0

1

3

→ Model introduced by Roberts, 1988 [Rob].4/49
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Known complexity results

Theorem [GY92]
Determining the minimum span λ(G ) of a graph G is NP-hard.

Theorem [FKK01]
Deciding whether λ(G ) ≤ k remains NP-complete for every fixed
k ≥ 4. (trivial for k ≤ 3)

Theorem [CK96, FGK05]
When the span k is part of the input,
L(2, 1)-labeling problem is polynomial time solvable on trees.

However, the problem is NP-complete for series-parallel graphs.

→ The problem “separates” graphs of treewidth 1 and 2
by P / NP-completeness dichotomy.
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Known complexity results

The distance constrained labeling problem is more difficult than
ordinary coloring :

Theorem [FGK05]
Deciding whether λ(G ) ≤ k is NP-complete for series-parallel
graphs (k is part of the input).

Theorem [BKTvL04, JKM09]
Deciding whether λ = k is NP-complete for planar graphs

I for k = 8 [BKTvL04]

I for k = 4 [JKM09]
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L(2, 1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochv́ıl defined the notion of H(2, 1)-labeling :

I mapping from vertices of G to vertices of a graph H ;

I adjacent vertices in G are mapped onto non-adjacent vertices in H ;

I vertices with a common neighbor in G are mapped onto distinct
vertices of H.

They show that :

→ H(2, 1)-labelings are exactly locally injective homomorphisms
from G to H.

→ L(2, 1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.
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L(2, 1)-labeling and Locally Injective Homomorphisms

8/49

homomorphism : A mapping f : V (G )→ V (H) is a
homomorphism from G to H if f (u)f (v) ∈ E (H) for every edge
uv ∈ E (G ).

Theorem [HN90]
Homomorphisms admit a complete dichotomy :
Deciding existence of a homomorphism into a fixed graph H is

I polynomial when H is bipartite ;

I NP-complete otherwise.

Remark : k-coloring of a graph G corresponds to homomorphism
from G to the graph Kk .
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L(2, 1)-labeling and Locally Injective Homomorphisms

9/49

homomorphism : A mapping f : V (G )→ V (H) is a
homomorphism from G to H if f (u)f (v) ∈ E (H) for every edge
uv ∈ E (G ).

locally injective homomorphism (LIH) : A homomorphism
f : G → H is locally injective if for every vertex u ∈ V (G ) its
neighborhood is mapped injectively into the neighborhood of
f (u) in H, i.e., every two vertices having a common neighbor in
G are mapped onto disctinct vertices in H.

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

O∗
(
(∆(H)− 1)n

)
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L(2, 1)-labeling problem - Exact algorithms

Theorem [HKKKL11]
H-locally-injective-homorphism can be solved in time

O∗
(
(∆(H)− 1)n

)

→ L(2, 1)-labeling of span k is a locally injective homomorphism
into the complement of the path of length k.

Theorem [HKKKL11]
Hence, L(2, 1)-labeling problem of span k can be decided in time

O∗
(
(k − 1)n

)
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L(2, 1)-labeling problem - Exact algorithms

Theorem [HKKKL11]
L(2, 1)-labeling of span 4 : O(1.3006n) (branching)

Theorem [GKC10]
L(2, 1)-labeling of span 5 in cubic graphs : O(1.8613n)→ O(1.7990n)

Theorem [Král’06]
L(2, 1)-labeling of min span : O∗(4n)

Theorem [HKKKL11]
L(2, 1)-labeling of min span : O∗(15n/2) = O(3.88n) (D.P.)

Theorem [CK11]
L(2, 1)-labeling of min span : O∗(3n) (fast ζ transform + I.-E.)
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Can the problem
be solved
faster ?

lundi 6 février 12lundi 6 février 12
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A DP based algorithm for L(2, 1)-labeling of min span

1 Definitions and Known Results

2 A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

4 A Faster Exact Exponential-Time Algorithm

5 Conclusion
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A DP based algorithm for L(2, 1)-labeling of min span

How to compute an L(2, 1)-labeling of span k by Dynamic
Programming ?

First, we show the following :

Theorem :
An L(2, 1))labeling of span k can be decided in time O∗(4n).

bound on the number of 2-packings

bound on the number of 2-packings

Theorem :
An L(2, 1))labeling of span k can be decided in time O∗(3.88n).

2-packings = Independent Sets in G 2

A subset S ⊆ V s.t. ∀u, v ∈ S , N[u] ∩ N[v ] = ∅ is a 2-packing.

(2-packing ≡ set of vertices pairwise at distance greater than 2.)
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A DP based algorithm for L(2, 1)-labeling of min span

Remaining :
Let G = (V ,E ) be a graph. An L(2, 1)-labeling of span k asks to
find a labeling f of G such that :

I for all {u, v} ∈ E ⇒ |f (u)− f (v)| ≥ 2 ;

I for all u, v ∈ V s.t. dist(u, v) = 2 ⇒ f (u) 6= f (v).

∀i ∈ {0, 1, . . . , k} and ∀X ,Y ⊆ V such that X ∩ Y = ∅, we define
the boolean variable Lab(X ,Y , i).

Lab(X ,Y , i) is true iff
there is an L(2, 1)-labeling of span i of the vertices of X such that
the vertices of N(Y ) ∩ X have label at most i − 1.

15/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

A DP based algorithm for L(2, 1)-labeling of min span

16/49

Remaining : Lab(X ,Y , i) is true iff
there is an L(2, 1)-labeling of span i of the vertices of X such that
the vertices of N(Y ) ∩ X have label at most i − 1.

It is not difficult to check that

I Lab(∅,Y , i)← true ∀Y , ∀i ;

I Lab(X ,Y , 0)←





true ∀X ,Y s.t. X is an indep. set
of G 2 and X ∩ N(Y ) = ∅

false otherwise

Then, Lab(X ,Y , i) is computed by considering the sets X and Y
by increasing order of cardinality, and by increasing value of i :

Lab(X ,Y , i) = true iff ∃U ⊆ (X \ N(Y )) such that

I U is a 2-packing of G ; and

I Lab(X \ U,U, i − 1) = true.
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Remaining : Lab(X ,Y , i) is true iff
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I U is a 2-packing of G ; and

I Lab(X \ U,U, i − 1) = true.

X
YU

If X has an L(2, 1))-labeling of span i then

there is a (possibly empty) set U ⊆ X \ N(Y ) of vertices having
label i . This set is a 2-packing of G .
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Remaining : Lab(X ,Y , i) = true iff ∃U ⊆ (X \ N(Y )) such that

I U is a 2-packing of G ; and

I Lab(X \ U,U, i − 1) = true.

X
YU

⇒ the neighbors of U must obtain label at most i − 2 and X \ U
must have an L(2, 1)-labeling of span at most i − 1.
If a such labeling exists then Lab(X \ U,U, i − 1) = true.
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A DP based algorithm for L(2, 1)-labeling of min span
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Remaining : Lab(X ,Y , i) is true iff
there is an L(2, 1)-labeling of span i of the vertices of X such that
the vertices of N(Y ) ∩ X have label at most i − 1.

Remaining : Lab(X ,Y , i) = true iff ∃U ⊆ (X \ N(Y )) such that

I U is a 2-packing of G ; and

I Lab(X \ U,U, i − 1) = true.

X
YU

Remark : the vertices of X ∩ N(Y ) in this labeling have label at
most i − 1.
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A DP based algorithm for L(2, 1)-labeling of min span

Running-time analysis :

Lab(X ,Y , i) is computed for all X ,Y ⊆ V such that X ∩ Y = ∅,
and for all i ∈ {0, 1, . . . , k}.
For each X ,Y , we compute all sets U ⊆ X being 2-packings of G .

k ·
n∑

x=0

((n
x

) n−x∑

y=0

(
n − x

y

) x∑

u=0

(
x

u

))

= k ·
n∑

x=0

((n
x

)
2n−x2x

)

= k · 2n · 2n

Theorem :
Computing an L(2, 1) of span k can be obtain in time O∗(4n).
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A DP based algorithm for L(2, 1)-labeling of min span

By using a bound on the number of 2-packing of a certain size,

Theorem [HKKKL11]
Let uk be the number of 2-packings of size k in a connected graph.
Then,

uk ≤
(
n/2

k

)
· 2k

uk = 0 for k > n/2

we are able to prove that :

Theorem :
An L(2, 1) of span k can be obtain in time O∗(4n) O∗(3.8730n).

[improving upon Král’s result]

Note : These results can be extended to L(p, q)-labelings.
19/49
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An auxiliary combinatorial result

1 Definitions and Known Results

2 A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

4 A Faster Exact Exponential-Time Algorithm

5 Conclusion
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2-Packings and Proper Pairs

Like independent sets are heavily related to colorings,
it seems that 2-packings are related to L(2, 1)-labelings.

Theorem :
An L(2, 1) of span k can be obtain in time O∗(2.6488n).

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

21/49
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... and Proper Pairs

Definition
A pair (S ,X ) of subsets of V is a proper pair if S ∩ X = ∅ and S
is a 2-packing.

Definition
The number of proper pairs in a graph G is given by

pp(G ) =
∑

2−packings S

2n−|S |

Let pp(n) = max pp(G ) be the maximum number of proper pairs
in a connected graph with n vertices.

Theorem

2.6117n ≤ pp(n) ≤ 2.6488n

(will be very useful in the next)

22/49
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... and Proper Pairs

Proof. 1/2
Let G = (V ,E ) be a connected graph.

Fact 1. If S is a 2-packing, then S is also a 2-packing of G =
(V ,E \ e), for any edge e.

⇒ we can assume that G is a tree.

Fact 2. Suppose that there are two leaves which have a common
neighbor. Every 2-packing in G is also a 2-packing in H.

4 Junosza-Szaniawski et al.

Proof. Let G = (V, E) be a connected graph on n vertices such that pp(G) =
pp(n). We observe that if S is a 2-packing of G, then for any edge e of G, the
set S is also a 2-packing of G = (V, E \ {e}). Thus removing an edge does not
decrease the number of proper pairs and we can remove edges from the graph
as long as it stays connected. Hence without loss of generality, we assume that
G is a tree.

(∗) Suppose in G there are two leaves v1 and v2, which have a common neighbor
v3. Notice that every proper pair in G is proper in the graph H obtained
from G by removing the edge v1v3 and adding the edge v1v2 (see Figure 1).
Since this operation does not reduce the number of proper pairs, we can
assume that there are no two or more leaves with a common neighbor in G.

!!!
"""
!! ! " " "v1

v2

v3
# ! ! ! " " "v1 v2 v3

Fig. 1. Transformation of two leaves with a common neighbor.

It is easy to observe that pp(0) = 1, pp(1) = 3 and pp(2) = 8. Assume that
|V (G)| ≥ 3 and let P be a longest path in G. Let v be an end-vertex of the path
P , u its neighbor on P , and c a neighbor of u on P other that v (the third vertex
on P ). By the observation (∗) we can assume that deg(u) = 2.

(A) If deg(c) ≤ 2, we can partition all proper pairs (S, X) to two subsets: those
in which v /∈ S and those in which v ∈ S (see Figure 2).

! ! ! " " "v u c

Fig. 2. Case (A) with deg(c) ≤ 2.

Notice that if v /∈ S, then v can be in X or outside S ∪ X. If v ∈ S, then
none of the vertices {u, c} can belong to S. Each of them can be in X or outside
S ∪ X. Since the graphs G − v and G − {v, u, c} are connected, we obtain the
following recursion:

pp(n) ≤ 2 pp(n− 1) + 4 pp(n− 3). (1)

(B) If deg(c) > 2, then all vertices in the set {v ∈ V (G) : distG(v, c) = 2} except
at most one (the one belonging to the path P ) are leaves (since otherwise P is
not the longest path) and all neighbors of the vertex c except at most one are
of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No neighbor of c is a leaf in G (see Figure 3(a)).

⇒ we can assume that there are no two or more leaves with a
common neighbor

23/49
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... and Proper Pairs

Proof. 2/2
(A) If deg(c) ≤ 2 then
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Notice that if v /∈ S, then v can be in X or outside S ∪ X. If v ∈ S, then
none of the vertices {u, c} can belong to S. Each of them can be in X or outside
S ∪ X. Since the graphs G − v and G − {v, u, c} are connected, we obtain the
following recursion:

pp(n) ≤ 2 pp(n− 1) + 4 pp(n− 3). (1)

(B) If deg(c) > 2, then all vertices in the set {v ∈ V (G) : distG(v, c) = 2} except
at most one (the one belonging to the path P ) are leaves (since otherwise P is
not the longest path) and all neighbors of the vertex c except at most one are
of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No neighbor of c is a leaf in G (see Figure 3(a)).

pp(n) ≤ 2 pp(n − 1) + 4 pp(n − 3)

(B) If deg(c) > 2 and Fast Exact Algorithm for L(2, 1)-Labeling of Graphs 5

!
!

!"""
###

$
$

$

!! """ !!!
! !! ! " " "

w1

w2 c

w3

wq

u1

u2

u3

uq

for q ≥ 2

(a) Case (B0) with deg(c) > 2 and no
neighbor of c is a leaf.

!
!

!"""
###

$
$
$

!! """ !!! !! ! " " "w1 c

w2

wq

x

u1

u2

uq

for q ≥ 1
]

(b) Case (B1) with deg(c) > 2 and one
neighbor of c is a leaf.

Fig. 3. Cases (B0) and (B1)

(B1) There exists a vertex x ∈ N(c) which is a leaf in G (there can be at most
one such vertex by the observation (∗)) – (see Figure 3(b)).

Let W = {w1, . . . , wq} = {w ∈ V (G) : w is a leaf in G and distG(w, c) = 2}
and U = N(W ) in the case (B0) and U = N(W )∪ {x} in the case (B1). We can
partition the set of proper pairs (S, X) to whose in which S ∩ (W ∪ U) = ∅ and
the others.

If S ∩ (W ∪ U) = ∅, each of the vertices in W ∪ U can be in X or outside
S ∪X.

If S∩ (W ∪U) = Ŝ &= ∅, Ŝ must be a 2-packing in G. Notice that the number

of proper pairs (Ŝ, X̂) in G[W ∪U ∪ {c}], such that Ŝ &= ∅ and c /∈ Ŝ is equal to:

1. (3q − 2q)2q+1 + q · 3q−12q+1 = 3q−12q+1(3 + q)− 22q+1 for q ≥ 2 in the case
(B0).

2. (3q − 2q)2q+2 + q · 3q−12q+2 + 3q2q+1 = 3q−12q+1(9 + 2q)− 22q+2 for q ≥ 1
in the case (B1).

Each of the vertices in (W ∪ U ∪ {c}) \ Ŝ can be in X or outside S ∪X.
Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected, we

obtain the following recursions:

pp(n) ≤ 22q pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1) (2)

pp(n) ≤ 22q+1 pp(n− 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n− 2q − 2). (3)

We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (4)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.

It is easy to observe that the inequality (4) holds for n ≤ 2. Now assume that
the inequality holds for all values smaller than n.

Case (A)
pp(n) ≤ 2 pp(n − 1) + 4pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <

2 · τ3 · τn−3 = 2 · τn

(B0) no neighbor of c is a leaf ...

pp(n) ≤ 22q pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1)

(B1) one neighbor of c is a leaf ...

pp(n) ≤ 22q+1 pp(n − 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n − 2q − 2)
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Proof. Let G = (V, E) be a connected graph on n vertices such that pp(G) =
pp(n). We observe that if S is a 2-packing of G, then for any edge e of G, the
set S is also a 2-packing of G = (V, E \ {e}). Thus removing an edge does not
decrease the number of proper pairs and we can remove edges from the graph
as long as it stays connected. Hence without loss of generality, we assume that
G is a tree.

(∗) Suppose in G there are two leaves v1 and v2, which have a common neighbor
v3. Notice that every proper pair in G is proper in the graph H obtained
from G by removing the edge v1v3 and adding the edge v1v2 (see Figure 1).
Since this operation does not reduce the number of proper pairs, we can
assume that there are no two or more leaves with a common neighbor in G.
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Fig. 1. Transformation of two leaves with a common neighbor.

It is easy to observe that pp(0) = 1, pp(1) = 3 and pp(2) = 8. Assume that
|V (G)| ≥ 3 and let P be a longest path in G. Let v be an end-vertex of the path
P , u its neighbor on P , and c a neighbor of u on P other that v (the third vertex
on P ). By the observation (∗) we can assume that deg(u) = 2.

(A) If deg(c) ≤ 2, we can partition all proper pairs (S, X) to two subsets: those
in which v /∈ S and those in which v ∈ S (see Figure 2).
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Fig. 2. Case (A) with deg(c) ≤ 2.
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following recursion:
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at most one (the one belonging to the path P ) are leaves (since otherwise P is
not the longest path) and all neighbors of the vertex c except at most one are
of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No neighbor of c is a leaf in G (see Figure 3(a)).
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We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (4)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.

It is easy to observe that the inequality (4) holds for n ≤ 2. Now assume that
the inequality holds for all values smaller than n.

Case (A)
pp(n) ≤ 2 pp(n − 1) + 4pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <
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(∗) Suppose in G there are two leaves v1 and v2, which have a common neighbor
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on P ). By the observation (∗) we can assume that deg(u) = 2.
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Notice that if v /∈ S, then v can be in X or outside S ∪ X. If v ∈ S, then
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(B1) There exists a vertex x ∈ N(c) which is a leaf in G (there can be at most
one such vertex by the observation (∗)) – (see Figure 3(b)).

Let W = {w1, . . . , wq} = {w ∈ V (G) : w is a leaf in G and distG(w, c) = 2}
and U = N(W ) in the case (B0) and U = N(W )∪ {x} in the case (B1). We can
partition the set of proper pairs (S, X) to whose in which S ∩ (W ∪ U) = ∅ and
the others.

If S ∩ (W ∪ U) = ∅, each of the vertices in W ∪ U can be in X or outside
S ∪X.

If S∩ (W ∪U) = Ŝ &= ∅, Ŝ must be a 2-packing in G. Notice that the number

of proper pairs (Ŝ, X̂) in G[W ∪U ∪ {c}], such that Ŝ &= ∅ and c /∈ Ŝ is equal to:

1. (3q − 2q)2q+1 + q · 3q−12q+1 = 3q−12q+1(3 + q)− 22q+1 for q ≥ 2 in the case
(B0).

2. (3q − 2q)2q+2 + q · 3q−12q+2 + 3q2q+1 = 3q−12q+1(9 + 2q)− 22q+2 for q ≥ 1
in the case (B1).

Each of the vertices in (W ∪ U ∪ {c}) \ Ŝ can be in X or outside S ∪X.
Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected, we

obtain the following recursions:

pp(n) ≤ 22q pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1) (2)

pp(n) ≤ 22q+1 pp(n− 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n− 2q − 2). (3)

We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (4)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.

It is easy to observe that the inequality (4) holds for n ≤ 2. Now assume that
the inequality holds for all values smaller than n.

Case (A)
pp(n) ≤ 2 pp(n − 1) + 4pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <

2 · τ3 · τn−3 = 2 · τn

(B0) no neighbor of c is a leaf ...
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(∗) Suppose in G there are two leaves v1 and v2, which have a common neighbor
v3. Notice that every proper pair in G is proper in the graph H obtained
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Since this operation does not reduce the number of proper pairs, we can
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Notice that if v /∈ S, then v can be in X or outside S ∪ X. If v ∈ S, then
none of the vertices {u, c} can belong to S. Each of them can be in X or outside
S ∪ X. Since the graphs G − v and G − {v, u, c} are connected, we obtain the
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at most one (the one belonging to the path P ) are leaves (since otherwise P is
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2. (3q − 2q)2q+2 + q · 3q−12q+2 + 3q2q+1 = 3q−12q+1(9 + 2q)− 22q+2 for q ≥ 1
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Each of the vertices in (W ∪ U ∪ {c}) \ Ŝ can be in X or outside S ∪X.
Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected, we
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pp(n) ≤ 22q+1 pp(n− 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n− 2q − 2). (3)

We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (4)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.

It is easy to observe that the inequality (4) holds for n ≤ 2. Now assume that
the inequality holds for all values smaller than n.

Case (A)
pp(n) ≤ 2 pp(n − 1) + 4pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <
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To show the lower bound, we consider the following graphs :
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Case (B0)

pp(n) ≤ 22q pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1) ≤ 2(22q ·
τn−2q + (3q−12q+1(3 + q)− 22q+1) · τn−2q−1) = 2 · τn(22q · τ−2q + (3q−12q+1(3 +

q)− 22q+1) · τ−2q−1) = 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1)

One can easily verify that the function h0(x) = ( 2
τ )2x−( 2

τ )2x+1+ 4(3+x)
τ3 ( 6

τ2 )x−1

is decreasing for all real x > 2 and h0(2) = 1.

Hence pp(n) ≤ 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1) ≤ 2 · τn.

Case (B1)

pp(n) ≤ 22q+1 pp(n− 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n− 2q − 2) ≤
2(22q+1τn−2q−1+(3q−12q+1(9+2q)−22q+2)τn−2q−2) = 2·τn(( 2

τ )2q+1−( 2
τ )2q+2)+

4(9+2q)
τ4 ( 6

τ2 )q−1)

Since the function h1(x) = ( 2
τ )2x+1− ( 2

τ )2x+2 + 4(9+2x)
τ4 ( 6

τ2 )x−1 is decreasing
for all real x > 1 and h1(1) < 1, we obtain:

pp(n) ≤ 2 · τn(( 2
τ )2q+1 − ( 2

τ )2q+2 + 4(9+2q)
τ4 ( 6

τ2 )q−1) < 2 · τn.

We have shown that regardless of the structure of G, the function 2 · τn is
an upper bound on the number of proper pairs in G. Hence pp(n) = O(τn) =
O(2.6488n). #$

One is inclined to conjecture that the worst case is attained in the case of a
path Pn on n vertices. A simple calculation shows that pp(Pn) = Θ(2.5943..n).
The following example shows that intuition fails in this case.

Theorem 3. The value of pp(n) is bounded from below by Ω(2.6117n).

Proof. We shall prove the theorem by showing a graph with Θ(2.6117..n) proper
pairs. Let us consider the following graphs:

! ! !" " " " "
" " " " "
" " " " "#

1 2 3 4 k

Ak ! ! !" " " " " "
" " " "
" " " "

#
1 2 3 k

Bk

! ! !" " " " "
" " " "
" " " "

#
1 2 3 k

Ck ! ! !" " " " "
" " " " "
" " " " "

!!""

#

1 2 3 4 k

Dk

Let ak, bk and ck denote the number of proper pairs in the graphs Ak, Bk

and Ck, respectively. Let dk denote the number of such proper pairs (S, X) in
the graph Dk, in which the 2-packing S does not contain the crossed out vertex.

Considering separately the number of proper pairs (S, X), in which S con-
tains and does not contain marked vertices, we obtain the following system of





ak = 2bk−1 + 4ak−1

bk = 2ck + 2dk
ck = 2ak + 12dk−1

dk = 4dk−1 + 12ak−1

Theorem

2.6117n ≤ pp(n) ≤ 2.6488n
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One key ingredient of our algorithm

Main idea : Use algebraic manipulations similar to

fast matrix multiplication

Assume that A and B are 2k × 2k matrices.

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)

where

C1,1 = A1,1 · B1,1 + A1,2 · B2,1

C1,2 = A1,1 · B1,2 + A1,2 · B2,2

C2,1 = A2,1 · B1,1 + A2,2 · B2,1

C2,2 = A2,1 · B1,2 + A2,2 · B2,2

Thus, 8 matrix multiplications of 2k−1 × 2k−1 matrices are
necessary :

T (n) = 8 · T (n/2) = O(n3)
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One key ingredient of our algorithm

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)

By Strassen [Stra69] :
M1 = (A1,1 + A2,2) · (B1,1 + B2,2)
M2 = (A2,1 + A2,2) · B1,1

M3 = A1,1 · (B1,2 − B2,2)
M4 = A2,2 · (B2,1 − B1,1)
M5 = (A1,1 + A1,2) · B2,2

M6 = (A2,1 − A1,1) · (B1,1 + B1,2)

M7 = (A1,2 − A2,2) · (B2,1 + B2,2)

and
C1,1 = M1 + M4 −M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 −M2 + M3 + M6

Then,
T (n) = 7 · T (n/2) = O(n2.807)
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Our approach

29/49

Our algorithm uses Dynamic Programming

We reduce the number of operations (like in Strassen’s algo)

+
We use a representation for partial L(2, 1)-labelings
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Representation of partial L(2, 1)-labelings

Span 1 Table T1

30/49
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Representation of partial L(2, 1)-labelings
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Representation of partial L(2, 1)-labelings

Span 3 Table T3
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Representation of partial L(2, 1)-labelings

Table T` contains a vector ~a ∈ {0, 0, 1, 1}n if and only if there is a
partial labeling ϕ : V → {0, . . . , `} such that :

I ai = 0 iff vi is not labeled by ϕ
and there is no neighbor u of vi with ϕ(u) = `

I ai = 0 iff vi is not labeled by ϕ
and there is a neighbor u of vi with ϕ(u) = `

I ai = 1 iff ϕ(vi ) < `

I ai = 1 iff ϕ(vi ) = `

31/49

Jump to a compact representation
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Representation of partial L(2, 1)-labelings

Span 3 Table T3
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Computing the tables

33/49

How to compute table T`+1 from table T` ?
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Computing the tables

Let P ⊆ {0, 1}n be the encodings of all 2-packings of G .

Formally, ~p ∈ P ⇔ ∃ a 2-packing S ⊆ V such that ∀i , pi = 1 iff vi ∈ S .

We compute T`+1 from T` ⊕ P.

We define the partial function ⊕ : {0, 0, 1, 1} × {0, 1} → {0, 1, 1} :

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

Entry “–” signifies that ⊕ is not defined.

We generalize ⊕ to vectors :

a1a2 . . . an⊕b1b2 . . . bn =

{
(a1 ⊕ b1) . . . (an ⊕ bn) if ⊕ is defined

undefined otherwise

34/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing the tables

Then T` ⊕ P is already almost the same as T`+1 :

~a ∈ T`+1 iff there is an ~a′ ∈ T` ⊕ P such that

I ai = 0 iff a′i = 0 and there is no vj ∈ N(vi ) with a′j = 1

I ai = 0 iff a′i = 0 and there is a vj ∈ N(vi ) with a′j = 1

I ai = 1 iff a′i = 1

I ai = 1 iff a′i = 1
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Computing efficiently the tables

What remains is to find a method to compute T` ⊕ P

fast

36/49
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Computing efficiently the tables

Definition

Aw = {~v | w · v ∈ A}

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

A⊕ B = 0((A0 ∪ A0)⊕ B0)

∪ 1((A1 ∪ A1)⊕ B0)

∪ 1(A0 ⊕ B1)

37/49
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Computing efficiently the tables

38/49

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

for two adjacent vertices

for two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00
01
10
11
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Computing efficiently the tables
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⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

for two adjacent vertices

for two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00
01
10
11 - - - - - - - - - - - - - - - -
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Computing efficiently the tables
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⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

for two adjacent vertices

for two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00
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10 – – – – – – – –
11 - - - - - - - - - - - - - - - -
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⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

for two adjacent vertices

for two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00
01 ∼ – – ∼ – – ∼ – – ∼ – –
10 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -
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Computing efficiently the tables
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Computing efficiently the tables

38/49

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

for two adjacent vertices

for two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

→ Prefix 11 cannot appear.



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B =

00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables

39/49

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)

∪ 01((A01 ∪ A01 ∪ A01 ∪ A01)⊕ B00)

∪ 10((A10 ∪ A10 ∪ A10 ∪ A10)⊕ B00)

∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Computing efficiently the tables
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⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -
01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

A⊕ B = 00((A00 ∪ A00 ∪ A00 ∪ A00)⊕ B00)
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∪ 11((A11 ∪ A11 ∪ A11)⊕ B00)

∪ 01((A00 ∪ A00)⊕ B01)

∪ 11((A10 ∪ A10)⊕ B01)

∪ 10((A00 ∪ A00)⊕ B10)

∪ 11((A01 ∪ A01)⊕ B10)

Running-time : T (n) = 8 · T (n − 2) = 8n/2 < 2.8285n
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Decomposing the graph into connected subgraphs

Imagine that a graph can be decomposed into some connected
subsets of constant size k ′ ...

40/49

What about using a ⊕-table for k ′ = O(1) vertices ?
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Decomposing the graph into connected subgraphs

Theorem (?)
Let G be a connected graph of order n.
Let k < n be a positive integer.

Then there exist connected subgraphs G1,G2, . . . ,Gq of G s.t.

(i) every vertex of G belongs to at least one of them

(ii) the order of each of G1,G2, . . . ,Gq−1 is at least k and
at most 2k (while for Gq we only require |V (Gq)| ≤ 2k)

(iii) the sum of the numbers of vertices of G ′i s is at most n(1 + 1
k )

41/49
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Decomposing the graph into connected subgraphs

Proof 1/2
I Consider a DFS-tree T of G rooted at r .

I For every v let T (v) be the subtree rooted in v .

I If |T (r)| ≤ 2k then add G to the set of desired subgraphs and stop.

I If there is a vertex v such that k ≤ |T (v)| ≤ 2k then add
G [V (T (v))] to the set of desired subgraphs and
proceed recursively with G \ V (T (v)).

42/49
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Decomposing the graph into connected subgraphs

Proof 2/2
I Otherwise there must be a vertex v such that |T (v)| > 2k and for

its every child u, |T (u)| < k .

In such a case find a subset {u1, . . . , ui} of children of v such that
k − 1 ≤ |T (u1)|+ · · ·+ |T (ui )| ≤ 2k − 1.

Add G [{v} ∪ V (T (u1)) ∪ · · · ∪ V (T (ui ))] to the set of desired
subgraphs and proceed recursively with
G \ (V (T (u1)) ∪ .. ∪ V (T (ui ))).

I This procedure terminates after at most n
k steps and in each of

them we have left at most one vertex of the identified connected
subgraph in the further processed graph.
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An exact algorithm

Let A ⊆ {0, 0, 1, 1}n and B ⊆ {0, 1}n where n > k ′.

We compute A⊕ B is the following way :

A⊕ B =
⋃

~u∈{0,0,1,1}k′

~v∈{0,1}k′

s.t. ~u⊕~v is defined

(~u ⊕ ~v)(A~u ⊕ B~v )

=
⋃

~v∈{0,1}k′

~w∈{0,1,1}k′

[( ⋃

~u∈{0,0,1,1}k′

s.t. ~u⊕~v=~w

A~u

)
⊕ B~v

]

Remark :

Computation can be omitted whenever
(⋃

~u∈{0,0,1,1}k′
s.t. ~u⊕~v=~w

A~u

)
is empty.
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An exact algorithm – Running-time analysis

How many pairs ~v , ~w are there s.t. there is at least one ~u
with ~u ⊕ ~v = ~w ?

If ~v is fixed, then vi = 1⇒ wi = 1.

Thus, for a fixed ~v there are at most 2k
′−||~v || many ~w ’s, where ||~v ||

denotes the number of positions i such that vi = 1.

The total number of pairs ~v , ~w such that ~w = ~v ⊕ ~u for some ~u is
therefore at most

∑

~v∈{0,1}k′
2k
′−||~v || ≤ pp(k ′)

⇒ We need to make pp(k ′) recursive computations of ⊕ on sets of
vectors of length n − k ′.
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An exact algorithm – Running-time analysis

By Theorem (?), the total length of the vectors is n′ ≤ n(1 + 1/k).

In each recursive computation :

I Prepare up to pp(k ′) many pairs of sets of vectors of length n′ − k ′

I Recursively compute ⊕ on these pairs

I From the result, compute T`+1 in linear time

I The size of B is at most O(n2n′) bits

I The size of A is at most O(npp(n′)) bits :
the 1’s form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.

Thus the running-time is given by

T (n) ≤ O(n · pp(n′) + pp(k ′) · T (n′ − k ′))

where k ≤ k ′ ≤ 2k .
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An exact algorithm – Running-time analysis

The solution of

T (n) ≤ O(n · pp(n′) + pp(k ′) · T (n′ − k ′))

is
T (n) = O∗(pp(n′)) = O∗(pp(n(1 + 1/k)))

Choosing constant k big enough :

T (n) = O(2.6488n)

47/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

An exact algorithm – Running-time analysis

The solution of

T (n) ≤ O(n · pp(n′) + pp(k ′) · T (n′ − k ′))

is
T (n) = O∗(pp(n′)) = O∗(pp(n(1 + 1/k)))

Choosing constant k big enough :

T (n) = O(2.6488n)

47/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Conclusion

1 Definitions and Known Results

2 A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

4 A Faster Exact Exponential-Time Algorithm

5 Conclusion

48/49



introduction DP algorithm combinatorial result faster exact algorithm conclusion

Conclusion

I Combinatorial result : number of proper pairs

2.6117n ≤ pp(n) ≤ 2.6488n

I Exact exponential-time algorithm for L(2, 1)-labelings

O(2.6488n)

Interesting questions :

I Does inclusion/exclusion or subset convolution can achieve
a O(2n)-time algorithm ?

I Is it possible to find a 2-approx in O(cn) with c ≤ 2 ?

I In [GY92], it is conjectured that λ(G ) ≤ ∆(G )2.
It is still not fully resolved. It has been proved for graphs of large
maximum degree [HRS08].
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