Circles graphs Dominating set Some positive results Open Problems

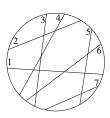
Domination in circle graphs

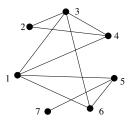
Nicolas Bousquet Daniel Gonçalves George B. Mertzios Christophe Paul Ignasi Sau Stéphan Thomassé

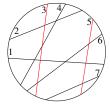
Agape 2012

Circles graphs

2 Dominating set

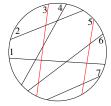

3 Some positive results


4 Open Problems

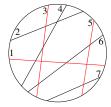

Circle graphs

Circle graph

A circle graph is a graph which can be represented as an intersection graph of chords in a circle.

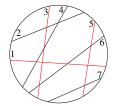


Dominating set


Set of chords which intersects all the chords of the graph.

Dominating set

Set of chords which intersects all the chords of the graph.


• Independent dominating sets.

Dominating set

Set of chords which intersects all the chords of the graph.

- Independent dominating sets.
- Connected dominating sets.

Dominating set

Set of chords which intersects all the chords of the graph.

- Independent dominating sets.
- Connected dominating sets.
- Total dominating sets.

All these problems are NP-complete

Parameterized complexity

FPT

A problem parameterized by k is FPT (Fixed Parameter Tractable) iff it admits an algorithm which runs in time $Poly(n) \cdot f(k)$ for any instances of size n and of parameter k.

Parameterized complexity

FPT

A problem parameterized by k is FPT (Fixed Parameter Tractable) iff it admits an algorithm which runs in time $Poly(n) \cdot f(k)$ for any instances of size n and of parameter k.

W[1]-difficulty

Under some algorithmic hypothesis, the W[1]-hard problems do not admit FPT algorithms.

Circles graphs

2 Dominating set

Some positive results

4 Open Problems

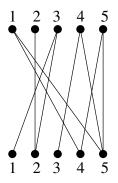
Theorem (B., Gonçalves, Mertzios, Paul, Sau, Thomassé)

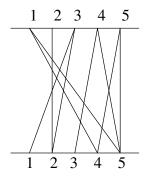
Dominating set parameterized by the size of the solution is W[1]-hard.

k-colored clique

Input : *G* colored with *k*-colors. *n* vertices of each color.

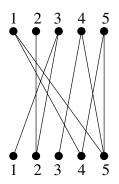
Parameter: k.

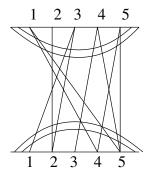

Output : YES iff there is a clique of size k with one vertex of each color.

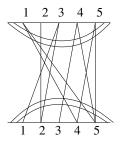

Theorem

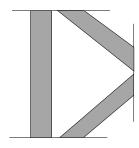
k-colored clique is W[1]-hard parameterized by k.

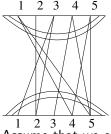
Reduction from *k*-colored clique

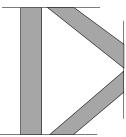

Idea: Simulate the behaviour of the vertices of each color.

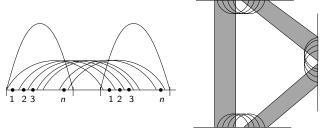


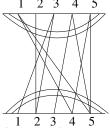


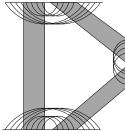

Reduction from k-colored clique


Idea: Simulate the behaviour of the vertices of each color.

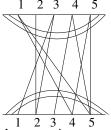


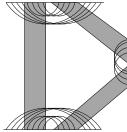


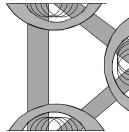


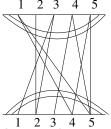

Assume that we only use chords of the bipartite graphs.

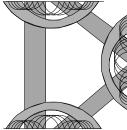
• At least k(k-1)/2 chords in the dominating set.

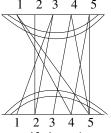


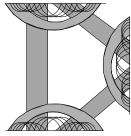

- At least k(k-1)/2 chords in the dominating set.
- The "value" can only decrease.

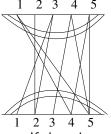

- At least k(k-1)/2 chords in the dominating set.
- The "value" can only decrease.

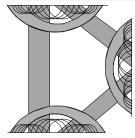


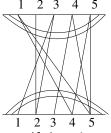

- At least k(k+1)/2 chords in the dominating set.
- The "value" can only decrease.

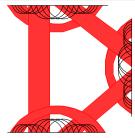


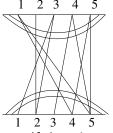

- At least k(k+1)/2 chords in the dominating set.
- The "value" can only decrease.

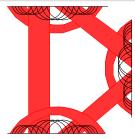



- At least k(k+1)/2 chords in the dominating set.
- The "value" can only decrease.
- The first and the last "values" are the same.




• If there is a multicolored clique, there is a dominating set of size k(k+1)/2.

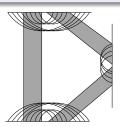


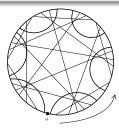

- If there is a multicolored clique, there is a dominating set of size k(k+1)/2.
- A dominating set has size at least k(k+1)/2.
- A dominating set of such a size has one endpoint in each "part".

- If there is a multicolored clique, there is a dominating set of size k(k+1)/2.
- A dominating set has size at least k(k+1)/2.
- A dominating set of such a size has one endpoint in each "part".

- If there is a multicolored clique, there is a dominating set of size k(k+1)/2.
- A dominating set has size at least k(k+1)/2.
- A dominating set of such a size has one endpoint in each "part".
- \Rightarrow The possible chords are the red chords.
- \Rightarrow There is a dominating set of size k(k+1)/2 iff there is a k-colored clique.

Corrolaries

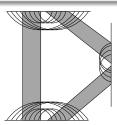

Theorem

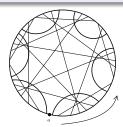

Connected Dominating set is W[1]-hard in circle graphs parameterized by the size of the solution.

Corrolaries

Theorem

Connected Dominating set is W[1]-hard in circle graphs parameterized by the size of the solution.





Corrolaries

Theorem

Connected Dominating set is W[1]-hard in circle graphs parameterized by the size of the solution.

Theorem

Total Dominating set is W[1]-hard in circle graphs parameterized by the size of the solution.

Independent Dominating set

Theorem

The independent dominating set problem is W[1]-hard for circle graphs parameterized by the size of the solution.

Independent Dominating set

Theorem

The independent dominating set problem is W[1]-hard for circle graphs parameterized by the size of the solution.

Theorem

The acyclic dominating set problem is W[1]-hard parameterized by the size of the solution.

Circles graphs

2 Dominating set

Some positive results

Open Problems

Some positive results

Theorem

Input: A circle graph *G*, an integer *k*.

Output : YES iff there exists a dominating path of length k.

This problem is in P.

Some positive results

Theorem

Input: A circle graph G, an integer k.

Output : YES iff there exists a dominating path of length k.

This problem is in P.

Theorem

Input: A circle graph G, an integer k.

Output : YES iff there exists a dominating tree of size k.

This problem is in P.

An FPT result

Theorem

Input: A circle graph G, a tree T of size k.

Parameter : k

Output: YES iff there exists a dominating tree isomorphic to T.

This problem is in NP-complete and FPT.

Circles graphs Dominating set Some positive results Open Problems

Circles graphs

2 Dominating set

3 Some positive results

4 Open Problems

Open problems

Conjecture

The Bounded Treewidth Dominating Set problem is polynomial in circle graphs.

Open problems

Conjecture

The Bounded Treewidth Dominating Set problem is polynomial in circle graphs.

Open problems

Does the domination problem in circle graphs admits a polynomial kernel parameterized by treewidth? by vertex cover?

Thanks for your attention

Any question?