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Kernels, domatic partition

Kernel

Given a parameterized problem Q C X* x N, a kernel for Q is a polynomial
algorithm with:

@ input: an instance (x, k) of Q

@ output: an instance (x’, k') of Q
such that:

° (x,k)eQe (X, K)eQ

o |x'|, k" < f(k) for some function f
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Kernel

Given a parameterized problem Q C X* x N, a kernel for Q is a polynomial
algorithm with:

@ input: an instance (x, k) of Q

@ output: an instance (x’, k') of Q
such that:

° (x,k)eQe (X, K)eQ

o |x'|, k" < f(k) for some function f

Theorem
Q € FPT & Q has a kernel
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k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G 7

Rémi Watrigant Kernel lower bound for the k-pomaTic PARTITION problem



k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G ?

k=3

Rémi Watrigant Kernel lower bound for the k-pomATIC PARTITION problem



k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G ?

k=3

Rémi Watrigant Kernel lower bound for the k-pomATIC PARTITION problem a/27



k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G 7

Known results:

Rémi Watrigant Kernel lower bound for the k-pomaTic PARTITION problem



k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G 7

Known results:
@ Any graph admits a 1-domatic partition and a 2-domatic partition

Rémi Watrigant Kernel lower bound for the k-pomaTic PARTITION problem 4/27



k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G ?

Known results:
@ Any graph admits a 1-domatic partition and a 2-domatic partition

@ for any fixed k > 3, the problem is N"P-complete [Garey, Johnson, Tarjan, 76]

= k is useless as a parameter (for FPT, kernels...)
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k-DOMATIC PARTITION (for fixed k € N)

Input : a graph G = (V, E)
Question : Is there a k-partition of V: {V4, ..., Vk} such that each V; is a
dominating set of G ?

Known results:

@ Any graph admits a 1-domatic partition and a 2-domatic partition

@ for any fixed k > 3, the problem is N"P-complete [Garey, Johnson, Tarjan, 76]
= k is useless as a parameter (for FPT, kernels...)

@ FPT when parameterized by treewidth(G) (MSO formula)

@ 3-DOMATIC PARTITION does not admit a polynomial kernel when
parameterized by treewidth(G) [Bodlaender et al. 2009]
(unless all coNP problems have a distillation algorithm...)
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Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized
by treewidth(G)

(unless all coNP problems have a distillation algorithm...)

What about larger parameters ?
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Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized
by treewidth(G)

(unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G) < poly(FVS(G)) < poly(VC(G))
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Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized
by treewidth(G)
(unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G) <treewidth < t + kv< poly(FVS(G)) < poly(VC(G))

treewidth < 1+ kv treewidth < 0 + kv

Our result:

For any fixed k > 3, k-DOMATIC PARTITION does not admit a polynomial kernel
when parameterized by the size of a vertex cover of G
(unless coNP C NP/ Poly)
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Our result:

For any fixed k > 3, k-DOMATIC PARTITION does not admit a polynomial kernel
when parameterized by the size of a vertex cover of G
(unless coNP C NP/ Poly)

Sketch of proof:

@ cross-composition of HYPERGRAPH-2-COLORABILITY to itself
= no polynomial kernel for HYPERGRAPH-2-COLORABILITY
(parameterized by the number of vertices)

@ polynomial time and parameter transformation to k-DOMATIC
PARTITION
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Lower bound for HYPERGRAPH-2-COLORABILITY

HYPERGRAPH-2-COLORABILITY

Input : a hypergraph H = (V, E)

Question : Is there a bipartition of V into (V4, V») such that each hyperedge has
at least one vertex in V4 and one vertex in V5 ?

Parameter : n=|V/|
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HYPERGRAPH-2-COLORABILITY

Input : a hypergraph H = (V, E)

Question : Is there a bipartition of V into (V4, V») such that each hyperedge has
at least one vertex in V; and one vertex in V5 ?

Parameter : n=|V/|

Theorem [Bodlaender, Jansen, Kratsch, 2011]

If there exists a cross-composition from an A/P-complete problem A to a
parameterized problem Q, then Q does not admit a polynomial kernel unless
coNP C NP /Poly
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Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]
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Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A cross-composition from a problem A C Y* to a parameterized problem Q
C X* x N is a polynomial algorithm with:

@ input: a sequence of equivalent instances of A: {x1,...,x¢}

@ output : an instance of Q: (x*, k*)
such that:
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A cross-composition from a problem A C Y* to a parameterized problem Q
C X* x N is a polynomial algorithm with:

@ input: a sequence of equivalent instances of A: {x1,...,x¢}

@ output : an instance of Q: (x*, k*)
such that:

@ x* is a positive instance of @ < 3i € {1, ..., t} such that x; is a positive
instance of A

@ k* < po/y(_mlax |xi| + log t)
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Lower bound for HYPERGRAPH-2-COLORABILITY

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A cross-composition from a problem A C Y* to a parameterized problem Q
C X* x N is a polynomial algorithm with:

@ input: a sequence of equivalent instances of A: {x1,...,x¢}

@ output : an instance of Q: (x*, k*)
such that:

@ x* is a positive instance of @ < 3i € {1, ..., t} such that x; is a positive

instance of A
@ k* < poly( max |xi| +log t)

Equivalence relation:
@ computable in polynomial time

@ partition a set S into less than ma§<|x|o(1) classes
NS
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Lower bound for HYPERGRAPH-2-COLORABILITY
Let (Hi, ..., H:) be a sequence of instances of HYPERGRAPH-2-COLORABILITY
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Lower bound for HYPERGRAPH-2-COLORABILITY
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Lower bound for HYPERGRAPH-2-COLORABILITY

hyperedge e; of H; = 2 hyperedgesin H*

Vi

Vo V3 V4

Vn

Suppose H; is a positive instance: there exists a 2-coloring that covers all

hyperedges of H;
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Lower bound for HYPERGRAPH-2-COLORABILITY

%1 Vo V3 7 Vn

ai an ap+1

N N N

b b bpt1

Suppose H* is a positive instance
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Lower bound for HYPERGRAPH-2-COLORABILITY

hyperedge e; of H; = 2 hyperedgesin H*

Finally : the number of vertices (parameter) is polynomial in the size of the
biggest instance of the sequence + log t
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Transformation to k-DOMATIC PARTITION

(proof for k = 3, but can be extended for every fixed k > 3)

Let H = (V, E) be an hypergraph, with V = {v,...,v,} and E = {e1,...,em}
We build the following graph:
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Transformation to k-DOMATIC PARTITION

G’ has a 3-domatic partition < H has a proper 2-coloring.

€1 € €m
| @«

viZ vy p ——clique
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Transformation to k-DOMATIC PARTITION

Finally : the clique is a vertex cover (parameter) of size n+ 1

[ VW v~ vy P |——clique
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Future work using "hierarchies of parameters":
@ not only negative results !
VERTEX COVER
> no poly kernel when parameterized by Treewidth
» cubic kernel when parameterized by FeedbackVertexSet ( Treewidth < 1+ kv)
= open for Treewidth < t + kv (for t > 2)
@ considering other hierarchies :

> distance to other invariants (CliqueWidth, x — width)
» here, distance = set of vertices to remove

* set of edges to remove
* set of edges to edit...
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Thank you for your attention!
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