Kernel lower bound for the *k*-DOMATIC PARTITION problem

Rémi Watrigant joint work with Sylvain Guillemot and Christophe Paul

LIRMM, Montpellier, France

AGAPE Workshop, February 6-10, 2012, Montpellier, France

Contents

- Mernels, domatic partition
- 2 hypergraph-2-colorability
- 3 Transformation to k-DOMATIC PARTITION
- 4 Conclusion, open question

Kernels, domatic partition

Kernels, domatic partition

Kernel

Given a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, a **kernel** for Q is a **polynomial** algorithm with:

- input: an instance (x, k) of Q
- output: an instance (x', k') of Q

such that:

- $(x,k) \in Q \Leftrightarrow (x',k') \in Q$
- $|x'|, k' \le f(k)$ for some function f

Kernels, domatic partition

Kernel

Given a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, a **kernel** for Q is a **polynomial** algorithm with:

- input: an instance (x, k) of Q
- output: an instance (x', k') of Q

such that:

- $(x,k) \in Q \Leftrightarrow (x',k') \in Q$
- $|x'|, k' \le f(k)$ for some function f

Theorem

 $Q \in FPT \Leftrightarrow Q$ has a kernel

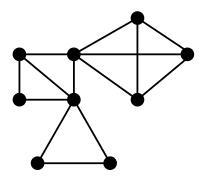
 $\underline{\mathsf{Input}} : \mathsf{a} \; \mathsf{graph} \; \mathsf{G} = (\mathsf{V}, \mathsf{E})$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

Input: a graph G = (V, E)

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

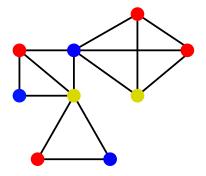
k = 3



 $\underline{\mathsf{Input}} : \mathsf{a} \; \mathsf{graph} \; G = (V, E)$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

k = 3



 $\underline{\mathsf{Input}} : \mathsf{a} \mathsf{ graph } G = (V, E)$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

 $\underline{\mathsf{Input}} : \mathsf{a} \mathsf{ graph } G = (V, E)$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

Known results:

Any graph admits a 1-domatic partition and a 2-domatic partition

 $\frac{\mathsf{Input}}{\mathsf{a}} : \mathsf{a} \mathsf{ graph } G = (V, E)$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed $k \ge 3$, the problem is \mathcal{NP} -complete [Garey, Johnson, Tarjan, 76] $\Rightarrow k$ is useless as a parameter (for FPT, kernels...)

 $\underline{\mathsf{Input}} : \mathsf{a} \mathsf{ graph } G = (V, E)$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed $k \ge 3$, the problem is \mathcal{NP} -complete [Garey, Johnson, Tarjan, 76] $\Rightarrow k$ is useless as a parameter (for FPT, kernels...)
- FPT when parameterized by treewidth(G) (MSO formula)

 $\underline{\mathsf{Input}} : \mathsf{a} \mathsf{ graph } G = (V, E)$

Question: Is there a k-partition of $V: \{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed $k \ge 3$, the problem is \mathcal{NP} -complete [Garey, Johnson, Tarjan, 76] $\Rightarrow k$ is useless as a parameter (for FPT, kernels...)
- FPT when parameterized by *treewidth(G)* (MSO formula)
- 3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth(G) [Bodlaender et al. 2009] (unless all coNP problems have a distillation algorithm...)

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G)

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G)

 \leq

poly(VC(G))

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G)

 $poly(FVS(G)) \leq poly(VC(G))$

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

$$\leq \text{poly}(VC(G))$$

$$treewidth \leq 0 + kv$$

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

$$\begin{array}{ccc} \text{poly}(\text{FVS}(G)) & \leq & \text{poly}(\text{VC}(G)) \\ & & & \downarrow \\ \textit{treewidth} \leq 1 + \textit{kv} & \textit{treewidth} \leq 0 + \textit{kv} \end{array}$$

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

$$treewidth(G) \leq \underbrace{treewidth} \leq t + kv \leq \quad poly(FVS(G)) \quad \leq \quad poly(VC(G)) \\ \downarrow \quad \qquad \downarrow \quad \qquad \downarrow \\ treewidth \leq 1 + kv \quad treewidth \leq 0 + kv$$

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

Our result:

For any fixed $k \geq 3$, k-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by the size of a **vertex cover** of G (unless $coNP \subseteq NP/Poly$)

Our result:

For any fixed $k \geq 3$, k-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by the size of a **vertex cover** of G (unless $coNP \subseteq NP/Poly$)

Sketch of proof:

- cross-composition of HYPERGRAPH-2-COLORABILITY to itself
 ⇒ no polynomial kernel for HYPERGRAPH-2-COLORABILITY
 (parameterized by the number of vertices)
- polynomial time and parameter transformation to k-DOMATIC PARTITION

Contents

- Kernels, domatic partition
- 2 hypergraph-2-colorability
- Transformation to k-DOMATIC PARTITION
- 4 Conclusion, open question

HYPERGRAPH-2-COLORABILITY

Input: a hypergraph H = (V, E)

Question: Is there a bipartition of V into (V_1, V_2) such that each hyperedge has at least one vertex in V_1 and one vertex in V_2 ?

Parameter: n = |V|

HYPERGRAPH-2-COLORABILITY

Input: a hypergraph H = (V, E)

Question : Is there a bipartition of V into (V_1,V_2) such that each hyperedge has

at least one vertex in V_1 and one vertex in V_2 ?

 $\underline{\mathsf{Parameter}}: \ n = |V|$

Theorem [Bodlaender, Jansen, Kratsch, 2011]

If there exists a **cross-composition** from an \mathcal{NP} -complete problem A to a parameterized problem Q, then Q does not admit a polynomial kernel unless $coNP \subseteq NP/Poly$

Definition: cross-composition [Bodlaender, Jansen, Kratsch, 2011]

Definition: cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A cross-composition from a problem $A \subseteq \Sigma^*$ to a parameterized problem $Q \subset \Sigma^* \times \mathbb{N}$ is a **polynomial algorithm** with:

- input: a sequence of **equivalent** instances of A: $\{x_1,...,x_t\}$
- output : an instance of Q: (x^*, k^*)

such that:

Definition: cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A **cross-composition** from a problem $A \subseteq \Sigma^*$ to a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a **polynomial algorithm** with:

- input: a sequence of **equivalent** instances of **A**: $\{x_1,...,x_t\}$
- output : an instance of Q: (x^*, k^*)

such that:

- x^* is a positive instance of $Q \Leftrightarrow \exists i \in \{1,...,t\}$ such that x_i is a positive instance of A
- $\bullet \ k^* \leq poly(\max_{i=1...t}|x_i| + \log t)$

Definition: cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A **cross-composition** from a problem $A \subseteq \Sigma^*$ to a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a **polynomial algorithm** with:

- input: a sequence of **equivalent** instances of **A**: $\{x_1,...,x_t\}$
- output : an instance of Q: (x^*, k^*)

such that:

- x^* is a positive instance of $Q \Leftrightarrow \exists i \in \{1,...,t\}$ such that x_i is a positive instance of A
- $\bullet \ k^* \leq poly(\max_{i=1...t}|x_i| + \log t)$

Equivalence relation:

- computable in polynomial time
- partition a set S into less than $\max_{x \in S} |x|^{O(1)}$ classes

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

• Equivalence relation: $|V_i| = n$ for all i = 1...t

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

$$v_1 \qquad v_2 \qquad v_3 \qquad v_4 \quad \cdots \quad v_r$$

$$a_1$$
 a_2 a_{p+1}

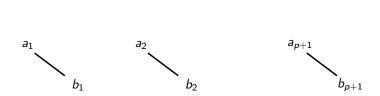
$$b_1$$
 b_2

 b_{p+1}

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

V3

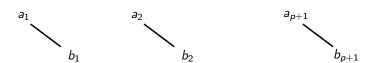


 V_1

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

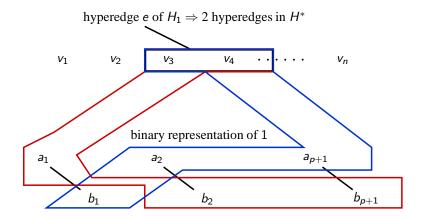
- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

hyperedge e of $H_1 \Rightarrow 2$ hyperedges in H^* $v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad \cdots \qquad v_r$



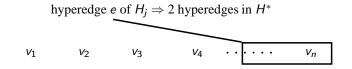
Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$



Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

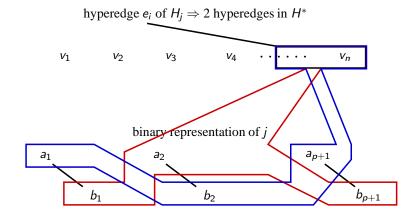
- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

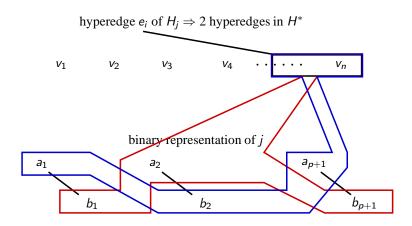


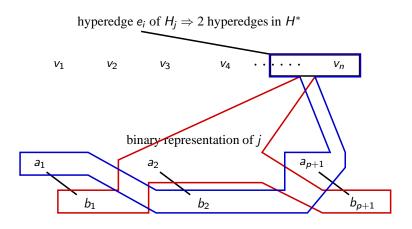
binary representation of j

Let $(H_1,...,H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

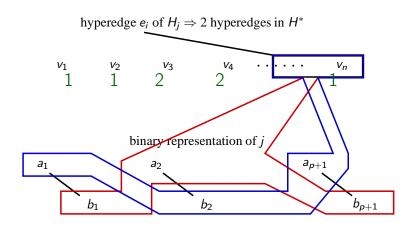
- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$
- \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$



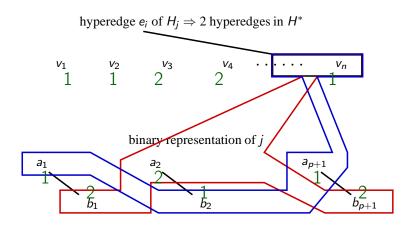




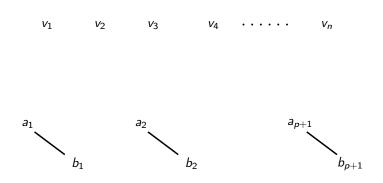
Suppose H_j is a positive instance: there exists a 2-coloring that covers all hyperedges of H_i



Suppose H_j is a positive instance: there exists a 2-coloring that covers all hyperedges of H_i



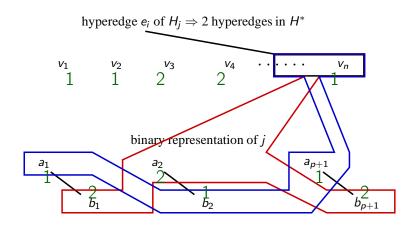
Suppose H_j is a positive instance: there exists a 2-coloring that covers all hyperedges of H_i



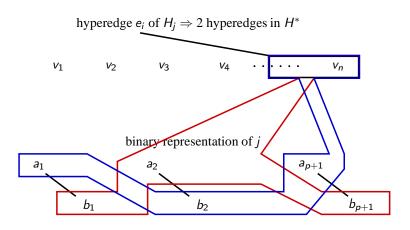
Suppose H^* is a positive instance

$$b_1$$
 b_2 b_2

Suppose H^* is a positive instance



Suppose H^* is a positive instance



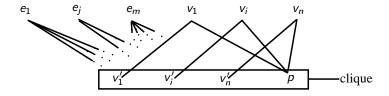
Finally: the number of vertices (parameter) is polynomial in the size of the biggest instance of the sequence $+ \log t$

Contents

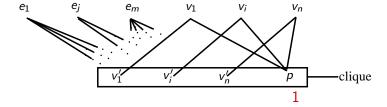
- Kernels, domatic partition
- 2 hypergraph-2-colorability
- \bigcirc Transformation to k-DOMATIC PARTITION
- 4 Conclusion, open question

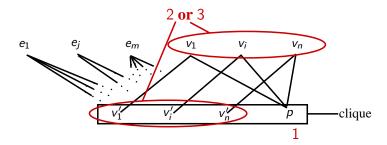
(proof for k=3, but can be extended for every fixed $k \geq 3$) Let H=(V,E) be an hypergraph, with $V=\{v_1,...,v_n\}$ and $E=\{e_1,...,e_m\}$ We build the following graph:

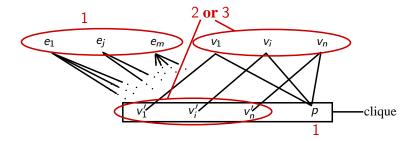
(proof for k=3, but can be extended for every fixed $k\geq 3$) Let H=(V,E) be an hypergraph, with $V=\{v_1,...,v_n\}$ and $E=\{e_1,...,e_m\}$ We build the following graph:



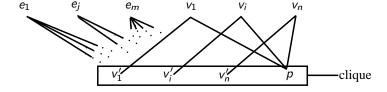








Finally: the clique is a vertex cover (parameter) of size n+1



Contents

- Mernels, domatic partition
- 2 hypergraph-2-colorability
- \bigcirc Transformation to k-DOMATIC PARTITION
- 4 Conclusion, open question

Future work using "hierarchies of parameters":

not only negative results!
 VERTEX COVER

- not only negative results!
 VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - ▶ cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1 + kv$)

- not only negative results!
 VERTEX COVER
 - ▶ no poly kernel when parameterized by *Treewidth*
 - ▶ cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1 + kv$) \Rightarrow open for Treewidth $\leq t + kv$ (for $t \geq 2$)

- not only negative results!
 VERTEX COVER
 - ▶ no poly kernel when parameterized by *Treewidth*
 - ▶ cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1 + kv$) \Rightarrow open for Treewidth $\leq t + kv$ (for $t \geq 2$)
- considering other hierarchies :

- not only negative results!
 VERTEX COVER
 - ▶ no poly kernel when parameterized by *Treewidth*
 - ▶ cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1 + kv$) \Rightarrow open for Treewidth $\leq t + kv$ (for $t \geq 2$)
- considering other hierarchies :
 - ▶ distance to other invariants (CliqueWidth, * width)

- not only negative results!
 VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - ▶ cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1 + kv$) \Rightarrow open for Treewidth $\leq t + kv$ (for $t \geq 2$)
- considering other hierarchies :
 - distance to other invariants (CliqueWidth, * width)
 - ▶ here, distance = set of vertices to remove
 - ★ set of edges to remove
 - ★ set of edges to edit...

Thank you for your attention!