
Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier

Université de Montpellier

Speciality: Computer Science

Habilitation à Diriger des Recherches
(HDR)

Ignasi Sau Valls

Some Contributions to Parameterized Complexity

Quelques Contributions en Complexité Paramétrée

Version of June 21, 2018 – Defended on June 25, 2018

Committee:

Reviewers: Michael R. Fellows - University of Bergen (Norway)
Fedor V. Fomin - University of Bergen (Norway)
Rolf Niedermeier - Technische Universität Berlin (Germany)

Examinators: Jean-Claude Bermond - CNRS, U. de Nice-Sophia Antipolis (France)
Marc Noy - Univ. Politècnica de Catalunya (Catalonia)
Dimitrios M. Thilikos - CNRS, Université de Montpellier (France)
Gilles Trombettoni - Université de Montpellier (France)





Contents

0 Résumé et projet de recherche 7

1 Introduction 13

1.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Scientific collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Curriculum vitae 19

2.1 Education and positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Full list of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Supervised students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Awards, grants, scholarships, and projects . . . . . . . . . . . . . . . . . . . 33

2.5 Teaching activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Committees and administrative duties . . . . . . . . . . . . . . . . . . . . . 35

2.7 Research visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Research talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Journal and conference refereeing . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Preliminaries 45

3.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Graph minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 (Counting) Monadic Second Order Logic . . . . . . . . . . . . . . . . 49

3.2 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Some classical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Summary of my contributions 57

4.1 FPT algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Combinatorial results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Problems arising from applications . . . . . . . . . . . . . . . . . . . . . . . 77

5 Linear kernels and single-exponential algorithms via protrusion de-
compositions 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Protrusions, t-boundaried graphs, and finite integer index . . . . . . . . . . 87

5.3 Constructing protrusion decompositions . . . . . . . . . . . . . . . . . . . . 92

5.4 Linear kernels on graphs excluding a topological minor . . . . . . . . . . . . 96

5.4.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Problems affected by our result . . . . . . . . . . . . . . . . . . . . . 102



5.4.3 A comparison with earlier results . . . . . . . . . . . . . . . . . . . . 104

5.4.4 The limits of our approach . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.5 An illustrative example: Edge Dominating Set . . . . . . . . . . 106

5.5 Single-exponential algorithm for Planar-F-Deletion . . . . . . . . . . . 108

5.5.1 Analysis of the bag marking algorithm . . . . . . . . . . . . . . . . . 110

5.5.2 Branching step and linear protrusion decomposition . . . . . . . . . 111

5.5.3 Solving Planar-F-Deletion with a linear protrusion decomposition112

5.5.4 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Some deferred results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6.1 Edge modification problems are not minor-closed . . . . . . . . . . . 117

5.6.2 Disconnected planar obstructions . . . . . . . . . . . . . . . . . . . . 117

5.6.3 Disconnected Planar-F-Deletion has not finite integer index . . 118

5.6.4 MSO formula for topological minor containment . . . . . . . . . . . 119

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Explicit linear kernels via dynamic programming 123

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 An explicit protrusion replacer . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.2 Equivalence relations and representatives . . . . . . . . . . . . . . . 132

6.3.3 Explicit protrusion replacer . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 An explicit linear kernel for r-Dominating Set . . . . . . . . . . . . . . . 140

6.4.1 Description of the encoder . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4.2 Construction of the kernel . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 An explicit linear kernel for r-Scattered Set . . . . . . . . . . . . . . . . 145

6.5.1 Description of the encoder . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5.2 Construction of the kernel . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 An explicit linear kernel for Planar-F-Deletion . . . . . . . . . . . . . . 149

6.6.1 The encoder for F-Deletion and the index of ∼G,t . . . . . . . . . 150

6.6.2 Construction of the kernel on H-minor-free graphs . . . . . . . . . . 152

6.6.3 Linear kernels on H-topological-minor-free graphs . . . . . . . . . . 153

6.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 On the number of labeled graphs of bounded treewidth 157

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.1 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.2 Description of the construction . . . . . . . . . . . . . . . . . . . . . 160

7.2.3 Bounding the treewidth . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3.1 Number of constructible triples (σ, f,N) . . . . . . . . . . . . . . . . 163

7.3.2 Bounding the number of duplicates . . . . . . . . . . . . . . . . . . . 163

7.3.3 Choosing the parameter s . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



8 Finding a spanning tree with minimum reload cost diameter 169

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.3 Para-NP-hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.4 A polynomial-time algorithm on cactus graphs . . . . . . . . . . . . . . . . 180

8.5 FPT algorithm parameterized by k + tw + ∆ . . . . . . . . . . . . . . . . . 187

8.6 Polynomially bounded costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9 Further research 195

Bibliography 197





Chapter 0

Résumé et projet de recherche

Nous présentons ici un petit résumé de ce manuscrit, ainsi que quelques pistes de recherche
pour les années à venir, en relation avec le contenu scientifique exposé dans le manuscrit.

Résumé

Ce document contient une synthèse de mes principales contributions scientifiques après
ma soutenance de thèse, qui a eu lieu en octobre 2009, et surtout pendant le temps que
j’ai passé au LIRMM (Montpellier, France) en tant que Chargé de Recherche au CNRS.

Au lieu d’une compilation exhaustive de toutes mes contributions, ce qui serait certaine-
ment trop long et trop hétérogène, ce manuscrit contient deux parties principales. Dans
la première, on présente une description courte de toutes mes contributions, en les met-
tant en contexte et en énonçant les résultats principaux, mais sans rentrer dans les détails
scientifiques. Cette description permet d’avoir une vision globale sur l’ensemble de mes
contributions. Dans la seconde partie, on présente quatre de ces contributions avec tous
les détails. Ces quatre contributions ont été choisies avec le critère d’être représentatives
à la fois sur les thématiques sur lequelles elles portent, et aussi sur le type de techniques
utilisées pour obtenir les résultats.

En rentrant sur la thématique de mes recherches, la grande plupart de mes contributions
se placent dans le cadre de la complexité paramétrée. Cette théorie a été développée par
Downey et Fellows dans les années 90, et aujourd’hui est déjà un domaine de recherche
complètement établi avec, par exemple, quatre bouquins publiés sur le sujet, et de centaines
d’articles acceptés annuellement dans les plus prestigieuses conférences internationales en
informatique théorique. Nous allons maintenant introduire de manière succincte les idées
principales de la complexité paramétrée, pour pouvoir mettre en contexte mes contribu-
tions scientifiques.

La théorie de la NP-complétude “classique” considère qu’un problème est facile s’il admet
un algorithme polynomial pour le résoudre. Mais beaucoup de problèmes sont NP-difficiles,
c’est-à-dire, ils n’admettent pas de tels algorithmes à moins que P = NP, une hypothèse
que, au jour d’aujourd’hui, est considérée de manière presque unanime comme essez peu
probable dans la communauté.

7



8 Résumé et projet de recherche

Cependant, une fois qu’un problème est montré NP-difficile, que faire si on doit malgré
tout le résoudre? Plusieurs méthodologies peuvent être envisagées, les plus connues étant
les suivantes: algorithmes d’approximation, algorithmes randomisés, heuristiques, ou bien
algorithmes exponentiels exacts. Logiquement, chacune de ces méthodes a des avantages
et désavantages.

L’algorithmique à paramètre fixée se place dans l’approche des algorithmes exponentiels
exacts, notamment en proposant une analyse de la complexité bidimensionnelle, et donc
plus fine que l’analyse classique. La motivation principale est d’essayer d’obtenir une
meilleure vision de la complexité d’un problème en explorant comment certains paramètres,
spécifiques du problème ou des instances, influencent cette complexité.

Idéalement, on cherche à identifier un paramètre k tel que si k est petit alors le problème
peut être résolu efficacement. Mais qu’est-ce qu’on veut dire par“efficacement”? La notion
fondamentale de la théorie paramétrée est la définition suivante d’algorithme “efficace”: un
algorithme tel que son temps d’exécution peut être borné par f(k) · |x|O(1), où f est une
fonction quelconque qui ne dépend que du paramètre k, et |x| représente la taille de
l’entrée du problème. Les problèmes paramétrés qui possèdent un tel algorithme sont
appelés solubles a paramètre fixé (en anglais, fixed-parameter tractable), et notés FPT.

Il existe de techniques très puissantes et très générales pour démontrer que de familles
entières de problèmes paramétrés sont FPT. Par exemple, le théorème de Courcelle sur
la logique monadique du second ordre et les graphes de largeur arborescente bornée, ou
le théorème de Robertson et Seymour sur les mineurs de graphes, impliquent l’existence
d’algorithmes FPT pour tout problème qui satisfait certaines conditions générales. Mais le
prix qu’on doit payer pour une telle généralité est que les algorithmes FPT qui découlent
de ces “meta-théorèmes” ont un temps d’exécution extrêmement élevé. En plus, souvent
on ne connâıt même pas une borne supérieure sur le temps d’exécution, ou encore pire,
on peut ne même pas connâıtre explicitement quel est l’algorithme qu’on cherche; on sait
juste qu’il existe.

Motivé par la problematique évoquée ci-dessus, une bonne partie de mes recherches porte
sur la conception d’algorithmes FPT qui soient, souhaitablement, efficaces, constructifs,
et avec de temps d’exécution explicites. Une de mes contributions principales dans cet
axe de recherche concerne le problème de Planar F-Deletion: pour une famille finie
et fixée de graphes F contenant au moins un graphe planaire, et étant donné un graphe
G et un entier k en tant que paramètre, le but est de décider si l’on peut supprimer au
plus k sommets de G pour obtenir un graphe qui ne contient aucun des graphes dans F en
tant que mineur. Ce problème généralise, par exemple, les problèmes de Vertex Cover
et Feedback Vertex Set. Nous avons obtenu le premier algorithme pour résoudre
Planar F-Deletion, pour une famille quelconque F contenant un graphe planaire, en
temps exponentiel simple, c’est-à-dire, en temps 2O(k)·nO(1), où n est le nombre de sommets
de G. En plus, cet algorithme est asymptotiquement optimal si l’on suppose l’hypothèse
de temps exponentiel (ETH en anglais).



Résumé et projet de recherche 9

En complexité paramétrée, un autre concept central et en forte relation avec les algorithmes
FPT est celui de kernelization, qui pourrait être traduit en français par extraction de noyau.
Formellement, un algorithme de kernelization, ou juste kernel (en français, noyau), pour
un problème paramétrée Π, reçoit une instance (x, k) du problème et, en temps polynomial
en |x|+k, calcule une instance (x′, k′) telle que |x′|, k′ 6 g(k) pour une certaine fonction g,
et (x, k) ∈ Π si et seulement si (x′, k′) ∈ Π. La fonction g est connue comme la taille du
noyau, et peut être interprétée comme le degré de “compressibilité” d’un problème en
utilisant de règles de pretraitement polynomiales.

Un noyau est polynomial (resp. linéaire) si la fonction g est une fonction polynomiale (resp.
linéaire) en k. Il est bien connu que tout problème décidable est FPT si et seulement s’il
admet un noyau. Mais typiquement la taille des noyaux qu’on obtient de cette manière
est exponentielle en fonction du paramètre k. Dans ce contexte, un problème naturel
est de décider si un problème FPT admet on noyau polynomial ou pas. Comme c’est le
cas des algorithmes FPT, il existe de “méta-noyaux” pour déduire l’existence de noyaux
polynomiaux ou linéaires pour tout problème et classe de graphes qui satisfont certaines
conditions générales. Mais encore une fois, souvent ces méta-noyaux ne permettent pas
d’obtenir une fonction g explicite, ou même de construire le noyau qu’on cherche.

Une bonne partie de mes contributions en kernelization se placent dans cette probléma-
tique. Un de mes résultats principaux ici est une méthodologie pour obtenir de noyaux
linéaires, de manière constructive et avec de constantes explicites, pour des familles très
larges de problèmes dans les graphes sparses, c’est-à-dire, de graphes qui ont un nombre
faible d’arêtes par rapport à leur nombre de sommets, comme les graphes planaires, les
graphes qui peuvent être dessinés sur une surface fixée, ou les graphes qui excluent un
graphe fixé en tant que mineur ou mineur topologique. Notre méthodologie est basée sur
une formalisation de la technique de programmation dynamique sur une décomposition
arborescente du graphe en entrée, ce qui permet d’abstraire les propriétés critiques qu’il
faut préserver lors qu’on veut résoudre un certain problème dans ces classes de graphes,
pour obtenir de manière constructive un noyau avec de constantes explicites.

Même si mon domaine principal de recherche est celui de la complexité paramétrée, j’ai
aussi investi une bonne partie de mon temps à l’étude de problèmes purement combina-
toires, la plupart motivés par l’étude de problèmes paramétrés. À titre d’exemple, on
dit qu’une classe de graphes G satisfait la propriété d’Erdős-Pósa s’il existe une fonction
fG : IN→ IN telle que, pour tout graphe G et tout entier positif k, soit G contient k sous-
graphes deux à deux disjoints en sommets, tous isomorphes à un graphe dans la classe G,
soit il contient un ensemble S de sommets, avec |S| 6 fG(k), tel que G − S ne contient
aucun sous-graphe isomorphe à un graphe dans G. Quand cette propriété est satisfaite
pour une classe G, la fonction fG est connue comme le gap de la propriété d’Erdős-Pósa
pour la classe G. Avec ces définitions, le théorème classique d’Erdős et Pósa dit que la
classe contenant tous les cycles satisfait la propriété d’Erdős-Pósa avec gap O(k · log k).

Quand on sait que une classe de graphes G satisfait la propriété d’Erdős-Pósa, le problème
naturel associé d’un point de vu combinatoire est de trouver le plus petit gap fG possible.
En particulier, j’ai étudié le cas où la classe de graphe G est définie comme tous les graphes
qui contient un graphe fixé H en tant que mineur. Ce cas a été beaucoup étudié dans



10 Résumé et projet de recherche

la littérature, et Robertson et Seymour ont demontré que la propriété d’Erdős-Pósa est
satisfaite si et seulement si le graphe H est planaire. Cependant, on ne sait pas encore
quel est le plus petit gap fH possible pour un graphe planaire quelconque H. En utilisant
de techniques de décomposition de graphes, nous avons trouvé les meilleurs gaps possibles
(asymptotiquement) quand H appartient à une de ces deux familles de graphes planaires:
les citrouilles et les roues.

Finalement, je me suis aussi intéressé à de problèmes qui sont motivés par des applications
pratiques. Par exemple, de problèmes issus des réseaux de télécommunications, ou de
problèmes qui viennent de la bioinformatique. Mes contributions dans ce genre de prob-
lèmes sont diverses: algorithmes polynomiaux et FPT, ou bien preuves de NP-complétude
et de non-existence d’algorithmes FPT.

Pour conclure ce petit résumé, j’aimerais rajouter que toutes mes recherches ont été effec-
tuées en collaboration avec mes nombreux collègues. Un grand merci à vous tous!



Résumé et projet de recherche 11

Projet de recherche

Dans les anées a venir, je compte continuer à travailler en complexité paramétrée, en
particulier sur des algorithmes FPT et la kernelization. J’aimerais aussi continuer l’étude
des problèmes combinatoires auxquels je me suis attaqué.

En particulier, la liste qui suit contient quelques problèmes particuliers que j’ai rencontré
lors de mes travaux de recherche, et je que voudrais essayer de résoudre, ou étudier en
détail:

1. On a exploré le rôle joué par la planarité dans les problèmes de connexité paramétrés
par la largeur arborescente, comme Longest Path ou Cycle Packing. Un prob-
lème notoire reste ouvert: est-ce qu’on peut résoudre Planar Disjoint Paths
paramétré par la largeur arborescente en temps exponentiel simple dans les graphes
planaires? Dans les graphes généraux, on sait résoudre le problème en temps
2O(tw log tw) · nO(1), et que ce temps est optimal si on suppose l’ETH, mais on ne
connâıt pas la réponse dans les graphes planaires.

2. On a étudié la complexité du problème F-Deletion paramétrée, encore une fois,
par la largeur arborescente. Ce problème est défini comme Planar-F-Deletion,
mais sans la condition que la famille F doit contenir un graphe planaire. Trouver la
complexité “exacte” de ce problème (dans le sens de trouver un temps d’exécution
qui soit optimal en supposant l’ETH) est un projet de rechercher à la fois ambitieux
et passionant. Les deux questions suivantes pourraient être un peu plus faciles à
répondre, mais elles ont aussi l’air bien difficiles:

• On ne sait pas s’il existe une famille F pour laquelle F-Deletion ne puisse pas
être résolu, en supposant l’ETH, en temps 2poly(tw) ·nO(1). Les résultats récents
de Kociumaka and Pilipczuk pourraient aider à trouver la réponse, qui parâıt
avoir plus de chances d’être négative.

• De l’autre côté, la cas où F contient un graphe planaire, c’est-à-dire, le problème
Planar-F-Deletion, est déjà extrêmement intéressant. On sait que Planar-
F-Deletion peut être résolu en temps 2O(tw log tw) ·nO(1), et que dans quelques
cas particuliers il peut être résolu en temps 2O(tw) · nO(1). On croit que cette
dernière possibilité arrive si et seulement si la famille F contient un des graphes
P2, P3, P4, C3, C4, ouK1,3. On travaille actuellement pour essayer de démontrer
ce fait.

3. Dans un de mes articles récents, on a étudié comment un paramètre structurel de
graphes, la treedepth, peut être utilisé pour obtenir de noyaux polynomiaux dans les
graphes denses (en arêtes) pour de problèmes classiques comme Vertex Cover ou
Dominating Set. Deux directions de recherche naturelles apparaissent:

• Y a-t-il de paramètres naturels qui permettent d’obtenir de résultats de méta-
kernelization dans les graphes denses? Ici, par méta-kernelization on veut dire



12 Résumé et projet de recherche

un résultat qui garantit l’existence d’un type particulier de noyau pour tout
problème satisfaisant certaines conditions génériques.

• Pour le cas particulier de la treedepth, et en continuant la ligne de recherche
qu’on a initié dans notre article, quels sont les problèmes qui admettent de
noyaux polynomiaux paramétrées par la taille d’un modulateur de treedepth?
Un modulateur de treedepth dans un graphe est un ensemble de sommets tel
que si l’on le supprime, le graphe qu’on obtient a treedepth bornée par une
constante.

4. La question suivante est simple à poser, mais probablement compliquée à répondre:
est-ce que le problème Minimum Colored Cut est NP-complet? Dans ce problème,
étant donné un graphe avec une coloration sur les arêtes, le but est de trouver une
coupe d’arêtes qui utilise le nombre minimum de couleurs. Sans les couleurs, le
problème peut être résolu en temps polynomial en utilisant la dualité flot max-coupe
min, mais sa complexité dans le cas avec couleurs reste un problème ouvert.

5. On dit qu’un graphe est (r, `) s’il admet une (r, `)-partition, c’est-à-dire, une partition
de son ensemble de sommets en r ensembles indépendants et ` cliques. Un graphe
est bien-couvert si tout ensemble indépendant maximal est aussi maximum. Un
graphe est (r, `)-bien-couvert s’il est à la fois (r, `) et bien-couvert. On a réussi
classer la complexité du problème de décider si un graphe donné avec une (r, `)-
partition est bien-couvert pour toutes les valeurs de r et `, sauf pour ` = 0 et r > 3.
En particulier, étant donné un graphe triparti G avec une tripartition de V (G), le
problème de décider si G est bien-couvert est NP-complet?

6. En changeant vers de questions purement combinatories, nous avons démontré que
le nombre Tn,k de graphes étiquetés à n sommets satisfait

(
c · k 2kn

log k

)n
2−

k(k+3)
2 k−2k−2 6 Tn,k 6

(
k 2kn

)n
2−

k(k+1)
2 k−k,

pour k > 1 et une constante explicite absolue c > 0. Trouver la bonne valeur de Tn,k
reste un problème ouvert très intéressant.

On croit fortement qu’il existe une constante universelle d et une fonction f , avec
k−2k−2 6 f(k) 6 k−k pour tout entier positif k, tels que

Tn,k > (d · k · 2k · n)n · 2−
k(k+1)

2 · f(k).

7. Finalement, sur la propriété d’Erdős-Pósa pour les mineurs de graphes, on sait que
quand H est un graphe planaire, le gap fH de la propriété d’Erdős-Pósa pour les
H-mineurs satisfait fH(k) = O(k · logO(1) k) et que, si H contient un cycle, alors
fH(k) = Ω(k · log k). On a prouvé récemment que fH(k) = Θ(k · log k) quand H est
une roue, et on conjecture que cette fonction est le bon gap pour tout graphe planaire
H. De nouvelles techniques et idées ont l’air d’être nécessaires pour résoudre cette
conjecture.



Chapter 1

Introduction

This document contains an overview of the research activity that I have conducted in the
last years, after I defended my Ph.D in October 2009, and mostly during the time that I
have spent at the LIRMM (Montpellier, France) as a Chargé de Recherche of the CNRS.

Rather than an exhaustive summary of my articles, this document contains mainly two
parts, aside from my curriculum vitae, the scientific preliminaries, and some questions for
further research. Namely, on the one hand, we first provide a list of “stuffed” abstracts
of my contributions, in order to provide a global picture of them. On the other hand,
the document contains four chapters corresponding to four selected articles that, in my
opinion, provide a good flavor of the topics I work on, with all the scientific details.

All my research has been carried out with the invaluable help of my collaborators, which
I will not list here. Without them, I would probably not find a sense to my everyday
activity. Thanks a lot to all of you!!!

The remainder of this introduction is devoted to a brief contextualization of my research,
a description of several recent and significant scientific collaborations, and a more detailed
explanation about how this manuscript is organized.

Contents

1.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Scientific collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Contextualization

I will start by briefly describing my current research field and how it has evolved since
I started my Ph.D in 2006. The title of my Ph.D was “Optimization in Graphs under
Degree Constraints Application to Telecommunication Networks” (the full manuscript can
be found at www.lirmm.fr/∼sau/PhD_Ignasi.pdf).

During my first two years of research I devoted most of the time to a problem called traffic
grooming that, loosely speaking, consists in partitioning the edges of a request graph
under some constraints while optimizing the total number of vertices (or edges) in the
decomposition. This problem has a number of different variants, and arises from optical
networks, where traffic grooming has been used extensively to reduce the equipment cost
of telecommunication networks.

13



14 Introduction

The techniques and problems that I faced while working on traffic grooming attracted
my interest, and I started to work also on complexity and approximation of problems
arising purely from graph theory, mostly concerning optimization problems under degree
constraints. In particular, one of the aspects that I started to study about these prob-
lems is their parameterized complexity, which has steadily gained important among my
research interests until becoming nowadays my main area of expertise. In particular, I am
interested in two of the main subareas of parameterized complexity: FPT algorithms and
kernelization.

It is worth saying that some of my recent contributions have a more combinatorial flavor,
in the sense that the results do not necessarily lead to algorithms or to complexity results.
Finally, while most of my research focuses on purely graph-theoretic problems, in the last
years I have also applied my expertise to problems arising from several applications, such
as communication networks or bioinformatics.

The field of parameterized complexity originated in the 90’s after the seminal work of
Downey and Fellows (cf. for instance the foundational articles [113, 114]), and it has
become nowadays one of the most active fields in theoretical computer science. While
an introduction to parameterized complexity can be found in Section 3.2, we will provide
here just a succinct introduction to the field in order to provide a closer zoom to the areas
where most of my articles contribute.

Namely, parameterized complexity deals with algorithms for decision problems whose in-
stances consist of a pair (x, k), where k is a secondary measurement of the input known
as the parameter. A major goal in parameterized complexity is to investigate whether a
problem with parameter k admits an algorithm with running time f(k) · |x|O(1), where f
is a function depending only on the parameter and |x| represents the input size. Parame-
terized problems that admit such algorithms are called fixed-parameter tractable, and the
class of all such problems is denoted FPT.

During the last decades, parameterized complexity theory has brought forth several algo-
rithmic meta-theorems that imply that a wide range of problems are in FPT. For instance,
Courcelle’s theorem [90] states that every decision problem expressible in Monadic Sec-
ond Order Logic can be solved in linear time when parameterized by the treewidth of the
input graph. At the price of generality, such algorithmic meta-theorems may suffer from
the fact that the function f(k) is huge [144,189] or non-explicit [90,226]. Therefore, it has
become a central task in parameterized complexity to provide FPT algorithms such that
the behavior of the function f(k) is reasonable; in other words, a function f(k) that could
lead to a practical algorithm. Most of my contributions to the area of FPT algorithms fit
into this programme: even if one knows that a problem is FPT, which is the fastest FPT
algorithm one could hope for, subject to reasonable complexity assumptions?

A concept closely related to FPT algorithms is that of kernelization. A kernelization
algorithm, or just kernel, for a parameterized problem Π takes an instance (x, k) of the
problem and, in time polynomial in |x|+k, outputs an instance (x′, k′) such that |x′|, k′ 6
g(k) for some function g, and (x, k) ∈ Π if and only if (x′, k′) ∈ Π. The function g is
called the size of the kernel and may be viewed as a measure of the “compressibility” of
a problem using polynomial-time preprocessing rules. A kernel is called polynomial (resp.



Introduction 15

linear) if the function g(k) is a polynomial (resp. linear) function in k. As mentioned by
Fellows in [123], it is often (inaccurately) attributed to “folklore” that a decidable problem
is in FPT if and only if it has a kernelization algorithm; this foundational observation
appeared first in [76, 116]. However, the kernel that one obtains in this way is typically
of size at least exponential in the parameter. A natural problem in this context is to find
polynomial or linear kernels for problems that are in FPT, and most of my contributions
to the area of kernelization are along this line of research.

1.2 Scientific collaborations

Most of the research I have carried out since 2010 has been in collaboration with my
colleagues in the AlGCo team in Montpellier, specially with Dimitrios M. Thilikos and
Christophe Paul, with whom I have co-authored a number of articles.

Beside my group in Montpellier, I collaborate regularly with researchers from other groups,
both in Europe and in other continents. The following are my most active collaborations
during the last years, which have given me the opportunity to start working on many
interesting new problems:

• Since 2014, I have very active collaborations with two research groups in Brazil:

1. Fortaleza: Júlio Araujo and Ana Karolinna Maia, from the Departamento de
Matemática e Computaçao da Universidade Federal do Ceará (UFC) in Fort-
aleza, did their Ph.D at the same place where I did mine: the MASCOTTE project
of INRIA Sophia Antipolis. Since we knew each other quite well, they in-
vited me in Fortaleza in 2015 to collaborate with their research group. This
collaboration was very successful, and this is the main reason that motivated
me to spend the academic year 2016/2017 as Professor Visitante in Fortaleza.
This year has been an amazing experience for me, both from a personal and
a professional point of view. Concerning the latter, this position has given me
the opportunity to teach regularly during a whole academic year, and to start
several new projects with my colleagues in Fortaleza that have substantially
broadened the topics I usually work on. In particular, we have been working
on several problems concerning graph coloring. In the next years, we plan to
continue the collaboration with the members of the ParGO research group in
Fortaleza, in particular Júlio Araujo, Ana Karolinna Maia, Ana Shirley, Victor
A. Campos, Fabŕıcio Benevides, and Cláudia Linhares-Sales.

2. Rio de Janeiro: Funded by the COFECUB project MA 622-08, entitled“Con-
nexité et séparateurs”, I visited in December 2014 the Departamento de Ciência
da Computaçao da Universidade Federal do Rio de Janeiro (UFRJ), to work
with Sulamita Klein and Luerbio Faria. This collaboration turned out to be
very productive, and we have currently a number of joint articles. I visited them
again in 2016 and 2017, and Luerbio came also once to visit me in Montpellier.
During my trips to Rio de Janeiro, I also started a fruitful collaboration with
Uéverton Souza from Universidade Federal Fluminense.



16 Introduction

• Since I did a postdoc in the Technion (Haifa, Israel) in 2009-2010, I collaborate
regularly with Mordechai Shalom. Given that Mordechai is Turkish, our friendship
was at the origin of the joint CNRS-TUBITAK project (grant 114E731) between
France and Turkey for the period 2015-2016, of which I have been the coordinator of
the French side. The Turkish colleagues of the project are Didem Gözüpek and Sibel
Ökzan from the Computer Engineering Department of Gebze Technical University,
Istanbul. The visits funded by this project have already lead to two publications.

• Marc Noy, from the Department of Applied Mathematics of Universitat Politècnica
de Catalunya (UPC), Barcelona, Catalonia. I did my whole undergraduate studies
and my Ph.D (in joint supervision) in the UPC, so for me it is something like my
“home university”. I keep in touch regularly with the group working on Graph Theory
and Combinatorics. In particular, I have organized twice the JCALM (Journées
Combinatoire et Algorithmes du Littoral Méditerranéen) in Barcelona, in June 2011
and October 2013. Also, I give one talk per year (in average) in the seminar of
their group (see www.lirmm.fr/∼sau/Talks.html), and I visit them quite often.
Concerning research, we have recently conducted a research project with Marc Noy
(UPC Barcelona) and my Ph.D student Julien Baste, which is discussed in detail in
Chapter 7.

• Gwenaël Joret from the Département d’Informatique of Université Libre de Brux-
elles, Belgium. Some years ago, Gwenaël visited our group in Montpellier to give
a talk, and since them we collaborate regularly, as our research interests are quite
close and we enjoy working together. We have visited each other several times in
the last years, and our collaboration has already resulted in two joint publications.



Introduction 17

1.3 Organization of the manuscript

The remainder of this manuscript is organized as follows:

• Chapter 2 contains my curriculum vitae, including a full list of publications, super-
vised students, participation into projects, teaching activity, and research visits.

• In Chapter 3 we provide the required preliminaries needed to read the subsequent
chapters.

• Chapter 4 is devoted to a summary of my contributions in the four aforementioned
main axes: FPT algorithms, kernelization, combinatorics, and applications.

The next four chapters present four contributions in detail, corresponding to four signif-
icant articles providing good examples of the four main axes discussed above. Namely,
Chapters 5 and 6 contain contributions to the areas to FPT algorithms and kernelization,
Chapter 7 presents a combinatorial result, and Chapter 8 deals with a problem arising
from applications in telecommunication networks. Let us discuss more in detail what is
inside each of these four chapters:

• Chapter 5 uses the technique of so-called protrusion decompositions to provide linear
kernels for a wide family of problems on graphs excluding topological minors, and
the first single-exponential FPT algorithm for the Planar-F-Deletion Problem.

• Chapter 6 presents a framework to produce constructive linear kernels with explicit
constants via dynamic programming. This is the main result of the Ph.D of my
student Valentin Garnero.

• Chapter 7 is devoted to counting the number of labeled graphs of bounded treewidth.
The bounds presented in this chapter constitute of the main results in the Ph.D of
my student Julien Baste.

• Chapter 8 presents an accurate analysis of the parameterized complexity of an op-
timization problem that is part of the family of reload cost problems in telecom-
munication networks. These results are also part of the Ph.D of my student Julien
Baste.

• In Chapter 9 we present several open problems for further research. We would like
to mention that this chapter contains open questions that have not been already
mentioned at the end of Chapters 5-6-7-8.

• Finally, the manuscript ends with the bibliography that has been cited throughout
the document. This bibliography distinguishes between the personal publications
of the author and other articles (tagged as “General Bibliography”). The personal
bibliography is classified into international journals (refs. [J1-J21]), international
conferences that have not yet appeared in a journal (refs. [C22-C34]), and articles
currently submitted for publication (refs. [S35-S38]).

The figures that have not been made by the author of this manuscript are tagged with the
symbol ‘ c©’ indicating the corresponding author.





Chapter 2

Curriculum vitae

Ignasi Sau Valls

Date of birth: May 14, 1982
Place of birth: Barcelona, Catalunya
E-mail: ignasi.sau@gmail.com

Homepage: www.lirmm.fr/∼sau

2.1 Education and positions

8/2016-7/2017 Visiting Professor at Department of Mathematics of UFC1, Fortaleza,
Brazil, within ParGO2 team.

Since 10/2010 Chargé de Recherche CNRS3 (Junior Researcher) at LIRMM4,
Montpellier, France, within AlGCo5 team.

11/2009-7/2010 Postdoc at Computer Science Department of Technion, Haifa, Israel.

2/2006-10/2009 Ph.D student, defended on October 16, 2009.
Optimization in Graphs under Degree Constraints. Application to Telecommunication

Networks.

Ph.D in Computer Science and Mathematics in joint supervision:

Since 10/2006: at MASCOTTE6 team of INRIA7/CNRS/UNS8, Sophia-Antipolis, France.
Under the supervision of Jean-Claude Bermond and David Coudert.
Funded by a BDI (CNRS/région PACA) grant.
Teaching assistant at the department of Computer Science at UNS.

1UFC: Universidade Federal do Ceará
2ParGO: Paralelismo, Grafos e Otimização combinatória
3CNRS: Centre National de la Recherche Scientifique
4LIRMM: Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier
5AlGCo: Algorithmes, Graphes et Combinatoire
6MASCOTTE: Méthodes Algorithmiques, Simulation et Combinatoire pour l’OpTimisation des TElé-

communications
7INRIA: Institut National de Recherche en Informatique et en Automatique
8UNS: Université de Nice-Sophia Antipolis

19



20 Curriculum vitae

Since 2/2006: at Departament de Matemàtica Aplicada IV of UPC9, Barcelona,
Catalunya.
Under the supervision of Xavier Muñoz.

9/2005–3/2006 Erasmus Program at Université de Nice Sophia Antipolis (Nice, France).

9/2000–7/2006 Graduate in Telecommunications Engineering.
ETSETB10 and CFIS11 of UPC, Barcelona, Catalunya. 5-years course, equiv-
alent to M2.

9/2000–6/2005 Graduate in Mathematics.
FME12 and CFIS of UPC, Barcelona, Catalunya. 5-years course, equivalent
to M2.

2.2 Full list of publications

International journals

2008

[J1] I. Sau and J. Žerovnik.
An Optimal Permutation Routing Algorithm for Full-Duplex Hexagonal Mesh Net-
works.
Discrete Mathematics and Theoretical Computer Science (DMTCS), 10(3):49-62,
2008.

2009

[J2] O. Amini, S. Pérennes, and I. Sau.
Hardness and Approximation of Traffic Grooming.
Theoretical Computer Science (TCS), 410(38-40):3751-3760, 2009.

[J3] F. Huc, I. Sau, and J. Žerovnik.
(`, k)-Routing on Plane Grids.
Journal of Interconnection Networks (JOIN), 10(1-2):27-57, 2009.

[J4] G. B. Mertzios, I. Sau, and S. Zaks.
A New Intersection Model and Improved Algorithms for Tolerance Graphs.
SIAM Journal on Discrete Mathematics (SIDMA), 23(4):1800-1813, 2009.

9UPC: Universitat Politècnica de Catalunya (Polytechnical University of Catalonia)
10ETSETB: Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona, UPC
11CFIS: Centre de Formació Interdisciplinària Superior de la UPC, see www-cfis.upc.es
12FME: Facultat de Matemàtiques i Estad́ıstica, UPC



Curriculum vitae 21

2010

[J5] J.-C. Bermond, C. J. Colbourn, L. Gionfriddo, G. Quattrocchi, and I.
Sau.
Drop Cost and Wavelength Optimal Two-Period Grooming with Ratio 4.
SIAM Journal on Discrete Mathematics (SIDMA), 24(2): 400-419, 2010.

[J6] I. Sau and D. M. Thilikos.
Subexponential Parameterized Algorithms for Degree-constrained Subgraph Prob-
lems on Planar Graphs.
Journal of Discrete Algorithms (JDA), 8(3): 330-338, 2010.

[J7] D. Coudert, F. Giroire, and I. Sau.
Circuits in Graphs Through a Prescribed Set of Ordered Vertices.
Journal of Interconnection Networks (JOIN), 11(3-4): 121-141, 2010.

2011

[J8] J.-C. Bermond, X. Muñoz, and I. Sau.
Traffic Grooming in Bidirectional WDM Ring Networks.
Networks, 58(1): 20-35, 2011.

[J9] G. B. Mertzios, I. Sau, and S. Zaks.
The Recognition of Tolerance and Bounded Tolerance Graphs.
SIAM Journal on Computing (SICOMP), 40(5): 1234-1257, 2011.

[J10] I. Sau and D .M. Thilikos.
On Self-duality of Branchwidth on Graphs of Bounded Genus.
Discrete Applied Mathematics (DAM), 159(17): 2184-2186, 2011.

[J11] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos.
Faster Parameterized Algorithms for Minor Containment.
Theoretical Computer Science (TCS), 412(50): 7018-7028, 2011.

[J12] X. Muñoz, Z. Li, and I. Sau.
Edge-partitioning Regular Graphs for Ring Traffic Grooming with a Priori Placement
of the ADMs.
SIAM Journal on Discrete Mathematics (SIDMA), 25(4): 1490-1505, 2011.



22 Curriculum vitae

2012

[J13] J.-C. Bermond, D. Coudert, J. Moulierac, S. Pérennes, I. Sau, and F.
Solano Donado.
GMPLS Label Space Minimization through Hypergraph Layouts.
Theoretical Computer Science (TCS), 444:3-16, 2012.

[J14] I. Sau, P. Šparl, and J. Žerovnik.
Simpler Multicoloring of Triangle-free Hexagonal Graphs.
Discrete Mathematics (DM), 312(1): 181-187, 2012.

[J15] O. Amini, I. Sau, and S. Saurabh.
Parameterized Complexity of Finding Small Degree-constrained Subgraphs.
Journal of Discrete Algorithms (JDA), 10: 70-83, 2012.

[J16] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos.
Fast Minor Testing in Planar Graphs.
Algorithmica, 64(1): 69-84, 2012.

[J17] G. B. Mertzios, I. Sau, M. Shalom, and S. Zaks.
Placing Regenerators in Optical Networks to Satisfy Multiple Sets of Requests.
IEEE/ACM Transactions on Networking (ToN), 20(6): 1870-1879, 2012.

[J18] O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh.
On the approximability of some degree-constrained subgraph problems.
Discrete Applied Mathematics (DAM), 160(12): 1661-1679, 2012.

2013

[J19] J. Rué, I. Sau, and D. M. Thilikos.
Asymptotic Enumeration of Non-crossing Partitions on Surfaces.
Discrete Mathematics (DM), 313(5-6): 635-649, 2013.

[J20] D. Peleg, I. Sau, and M. Shalom.
On approximating the d-girth of a graph.
Discrete Applied Mathematics (DAM), 161(16-17): 2587-2596, 2013.

2014

[J21] N. Bousquet, D. Gonçalves, G. B. Mertzios, C. Paul, I. Sau, and S.
Thomassé.
Parameterized Domination in Circle Graphs.
Theory of Computing Systems (TOCS), 54(1): 45-72, 2014.

[J22] J. Rué, I. Sau, and D. M. Thilikos.
Dynamic Programming for Graphs on Surfaces.
ACM Transactions on Algorithms (TALG), 10(2): 8, 2014.

[J23] G. Joret, C. Paul, I. Sau, S. Saurabh, and S. Thomassé.
Hitting and Harvesting Pumpkins.
SIAM Journal on Discrete Mathematics (SIDMA), 28(3): 1363-1390, 2014.



Curriculum vitae 23

2015

[J24] J. Baste and I. Sau.
The role of planarity in connectivity problems parameterized by treewidth.
Theoretical Computer Science (TCS), 570: 1-14, 2015.

[J25] V. Garnero, C. Paul, I. Sau, and D.M. Thilikos.
Explicit linear kernels via dynamic programming.
SIAM Journal on Discrete Mathematics (SIDMA), 29(4): 1864-1894, 2015.

2016

[J26] E. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S.
Sikdar.
Linear kernels and single-exponential algorithms via protrusion decompositions.
ACM Transactions on Algorithms (TALG), 12(2): 21, 2016.

[J27] J.-F. Raymond, I. Sau, and D. M. Thilikos.
An edge variant of the Erdős-Pósa property.
Discrete Mathematics (DM), 339(8): 2027-2035, 2016.

2017

[J28] E. Kim, C. Paul, I. Sau, and D. M. Thilikos.
Parameterized Algorithms for Min-Max Multiway Cut and List Digraph Homomor-
phism.
Journal of Computer and System Sciences (JCSS), 86: 191-206, 2017.

[J29] L. P. Montejano and I. Sau.
On the complexity of computing the k-restricted edge-connectivity of a graph.
Theoretical Computer Science (TCS), 662: 31-39, 2017.

[J30] J. Baste, F. Beggas , H. Kheddouci, and I. Sau.
On the Parameterized Complexity of the Edge Monitoring Problem.
Information Processing Letters (IPL), 121: 39-44, 2017.

[J31] V. Garnero, I. Sau, and D.M. Thilikos.
A linear kernel for planar red-blue dominating set.
Discrete Applied Mathematics (DAM), 217: 536-547, 2017.

[J32] J. Baste, C. Paul, I. Sau, and C. Scornavacca.
Efficient FPT algorithms for (strict) compatibility of unrooted phylogenetic trees.
Bulletin of Mathematical Biology (BMAB), 79(4): 920-938, 2017.

[J33] L. Faria, S. Klein, I. Sau, and R. Sucupira.
Improved Kernels for Signed Max Cut ATLB on (r, `)-graphs.
Discrete Mathematics & Theoretical Computer Science (DMTCS), 19(1), 2017.

[J34] D. Chatzidimitriou, J.-F. Raymond, I. Sau, and D. M. Thilikos.
Minors in graphs of large θr-girth.
European Journal of Combinatorics (EJC), 65:106-121, 2017.



24 Curriculum vitae

[J35] D. Gözüpek, S. Özkan, C. Paul, I. Sau, and M. Shalom.
Parameterized complexity of the MINCCA problem on graphs of bounded decom-
posability.
Theoretical Computer Science (TCS), 690: 91-103, 2017.

[J36] J. Baste, L. Faria, S. Klein, and I. Sau.
Parameterized Complexity Dichotomy for (r, `)-Vertex Deletion.
Theory of Computing Systems (TOCS), 61(3): 777-794, 2017.

[J37] N. Cohen, D. Gonçalves, E. Kim, C. Paul, I. Sau, D. M. Thilikos, and M.
Weller.
A Polynomial-time Algorithm for Outerplanar Diameter Improvement.
Journal of Computer and System Sciences (JCSS), 89: 315-327, 2017.

2018

[J38] S. Oum, E. Kim, C. Paul, I. Sau, and D. M. Thilikos.
An FPT 2-Approximation for Tree-Cut Decomposition.
Algorithmica, 80(1): 116-135, 2018.

[J39] H. Perret du Cray and I. Sau.
Improved FPT algorithms for weighted independent set in bull-free graphs.
Discrete Mathematics (DM), 341(2): 451-462, 2018.

[J40] D. Chatzidimitriou, J.-F. Raymond, I. Sau, and D. M. Thilikos.
An O(log OPT)-approximation for covering and packing minor models of θr.
Algorithmica, 80(4): 1330-1356, 2018.

[J41] J. Baste, M. Noy, and I. Sau.
On the number of labeled graphs of bounded treewidth.
European Journal of Combinatorics (EJC), 71: 12-21, 2018.

To appear

[J42] J. Araújo, J. Baste, and I. Sau.
Ruling out FPT algorithms for Weighted Coloring on forests.
To appear in Theoretical Computer Science (TCS).

International conferences

[C1] J.-C. Bermond, D. Coudert, X. Muñoz, and I. Sau.
Traffic Grooming in Bidirectional WDM Ring Networks.
In Proc. of the IEEE-LEOS International Conference on Transparent Optical Net-
works (ICTON), volume 3, pages 19-22, Nottingham, UK, June 2006.



Curriculum vitae 25

[C2] I. Sau and J. Žerovnik.
Optimal Permutation Routing on Mesh Networks.
In Proc. of the International Network Optimization Conference (INOC), Spa, Bel-
gium, April 2007.

[C3] O. Amini, S. Pérennes, and I. Sau.
Hardness and Approximation of Traffic Grooming.
In Proc. of the 18th International Symposium on Algorithms and Computation
(ISAAC), volume 4835 of LNCS, pages 561-573, Sendai, Japan, December 2007.

[C4] O. Amini, I. Sau, and S. Saurabh.
Parameterized Complexity of the Smallest Degree-Constrained Subgraph Problem.
In Proc. of the International Workshop on Parameterized and Exact Computation
(IWPEC), volume 5008 of LNCS, pages 13-29, Victoria, Canada, May 2008.

[C5] X. Muñoz and I. Sau.
Traffic Grooming in Unidirectional WDM Rings with Bounded-Degree Request
Graph.
In Proc. of the 34th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 5344 of LNCS, pages 300-311, Durham University,
U.K., July 2008.

[C6] O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh.
Degree-Constrained Subgraph Problems: Hardness and Approximation Results.
In Proc. of the 6th Workshop on Approximation and Online Algorithms (WAOA),
volume 5426 of LNCS, pages 29-42, Universität Karlsruhe, Germany, September
2008.

[C7] I. Sau and D. M. Thilikos.
Subexponential Parameterized Algorithms for Bounded-Degree Connected Subgraph
Problems on Planar Graphs.
In Proc. of DIMAP workshop on Algorithmic Graph Theory (AGT), Electronic
Notes in Discrete Mathematics, 32:59-66, University of Warwick, U.K., March
2009.

[C8] J.-C. Bermond, D. Coudert, J. Moulierac, S. Pérennes, H. Rivano, I.
Sau, and F. Solano.
MPLS label stacking on the line network.
In Proc. of IFIP Networking, volume 5550 of LNCS, pages 809-820, Aachen,
Germany, May 2009.

[C9] J.-C. Bermond, D. Coudert, J. Moulierac, S. Pérennes, I. Sau, and F.
Solano.
Designing Hypergraph Layouts to GMPLS Routing Strategies.
In Proc. of the 16th International Colloquium on Structural Information and Com-
munication Complexity (SIROCCO), volume 5869 of LNCS, pages 57-71, Piran,
Slovenia, May 2009.



26 Curriculum vitae

[C10] I. Sau and D. M. Thilikos.
On Self-duality of Branchwidth in Graphs of Bounded Genus.
In Proc. of the 8th Cologne Twente Workshop on Graphs and Combinatorial Opti-
mization (CTW), pages 12-22. Paris, France, June 2009.

[C11] G. B. Mertzios, I. Sau, and S. Zaks.
A New Intersection Model and Improved Algorithms for Tolerance Graphs.
In Proc. of the 35th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 5911 of LNCS, pages 285-295, Montpellier, France,
June 2009.

[C12] Z. Li and I. Sau.
Graph Partitioning and Traffic Grooming with Bounded Degree Request Graph.
In Proc. of the 35th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 5911 of LNCS, pages 250-261, Montpellier, France,
June 2009.
Best student paper award.

[C13] D. Coudert, F. Giroire, and I. Sau.
Edge-Simple Circuits Through 10 Ordered Vertices in Square Grids.
In Proc. of the 20th International Workshop on Combinatorial Algorithms
(IWOCA), volume 5874 of LNCS, pages 134-145, Opava, Czech Republic, June
2009.

[C14] G. B. Mertzios, I. Sau, and S. Zaks.
The Recognition of Tolerance and Bounded Tolerance Graphs.
In Proc. of the 27th International Symposium on Theoretical Aspects of Computer
Science (STACS), volume 5 of LIPIcs, pages 858-596, Nancy, France, March 2010.

[C15] I. Sau, M. Shalom, and S. Zaks.
Traffic Grooming in Star Networks via Matching Techniques.
In Proc. of the 17th International Colloquium on Structural Information and Com-
munication Complexity (SIROCCO), volume 6058 of LNCS, pages 41-56, Sirince,
Turkey, June 2010.

[C16] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos.
Faster Parameterized Algorithms for Minor Containment.
In Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT), volume 6139 of LNCS, pages 322-333, Bergen, Norway, June 2010.

[C17] G. B. Mertzios, I. Sau, M. Shalom, and S. Zaks.
Placing Regenerators in Optical Networks to Satisfy Multiple Sets of Requests.
In Proc. of the 37th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 6199 of LNCS, pages 333-344, Bordeaux, France, July
2010.
Best paper award of Track C.

[C18] J. Rué, I. Sau, and D.M. Thilikos.
Dynamic Programming for Graphs on Surfaces.



Curriculum vitae 27

In Proc. of the 37th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 6198 of LNCS, pages 372-383, Bordeaux, France, July
2010.

[C19] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos.
Fast Minor Testing in Planar Graphs.
In Proc. of the 18th Annual European Symposium on Algorithms (ESA), volume
6346 of LNCS, pages 97-109, Liverpool, U.K., September 2010.

[C20] D. Peleg, I. Sau, and M. Shalom.
On approximating the d-girth of a graph.
In Proc. of the 37th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM), volume 6453 of LNCS, pages 467-481,
Novy Smokovec, Slovakia, January 2011.

[C21] G. Joret, C. Paul, I. Sau, S. Saurabh, and S. Thomassé.
Hitting and Harvesting Pumpkins.
In Proc. of the 19th Annual European Symposium on Algorithms (ESA), volume
6942 of LNCS, pages 394-407, Saarbrücken, Germany, September 2011.

[C22] J. Rué, I. Sau, and D. M. Thilikos.
Dynamic Programming for H-minor-free Graphs (Extended Abstract).
In Proc. of the 18th International Conference on Computing and Combinatorics
(COCOON), volume 7434 of LNCS, pages 86-97, Sydney, Australia, August 2012.

[C23] N. Bousquet, D. Gonçalves, G. B. Mertzios, C. Paul, I. Sau, and S.
Thomassé.
Parameterized Domination in Circle Graphs.
In Proc. of the 38th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 7551 of LNCS, pages 308-319, Jerusalem, Israel, June
2012.

[C24] V. Garnero, I. Sau, and D. M. Thilikos.
A linear kernel for planar red-blue dominating set.
In Proc. of the 12th Cologne Twente Workshop on Graphs and Combinatorial Op-
timization (CTW), pages 117-120, Enschede, The Netherlands, May 2013.

[C25] E. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sik-
dar.
Linear kernels and single-exponential algorithms via protrusion decompositions.
In Proc. of the 40th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 7965 of LNCS, pages 613-624, Riga, Latvia, July
2013.

[C26] V. Garnero, C. Paul, I. Sau, and D. M. Thilikos.
Explicit linear kernels via dynamic programming.
In Proc. of the 31st Symposium on Theoretical Aspects of Computer Science
(STACS), volume 25 of LIPIcs, pages 312-324, Lyon, France, March 2014.



28 Curriculum vitae

[C27] D. Chatzidimitriou, J.-F. Raymond, I. Sau, and D. M. Thilikos.
Covering and packing pumpkin models.
In Proc. of the 9th International Colloquium on Graph Theory and Combinatorics
(ICGT), Grenoble, France, June-July 2014.

[C28] J.-F. Raymond, I. Sau, and D. M. Thilikos.
An edge variant of the Erdős-Pósa property.
In Proc. of the 9th International Colloquium on Graph Theory and Combinatorics
(ICGT), Grenoble, France, June-July 2014.

[C29] H. Perret du Cray and I. Sau.
Improved FPT algorithms for weighted independent set in bull-free graphs.
In Proc. of the 9th International Symposium on Parameterized and Exact Compu-
tation (IPEC), volume 8894 of LNCS, pages 282-293, Grenoble, Warsaw, Poland,
September 2014.

[C30] J. Baste and I. Sau.
The role of planarity in connectivity problems parameterized by treewidth.
In Proc. of the 9th International Symposium on Parameterized and Exact Com-
putation (IPEC), volume 8894 of LNCS, pages 63-74, Grenoble, Warsaw, Poland,
September 2014.

[C31] L. P. Montejano and I. Sau.
On the complexity of computing the k-restricted edge-connectivity of a graph.
In Proc. of the 41st International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 9224 of LNCS, pages 219-233, Munich, Germany, June
2015.

[C32] N. Cohen, D. Gonçalves, E. Kim, C. Paul, I. Sau, D. M. Thilikos, and M.
Weller.
A Polynomial-time Algorithm for Outerplanar Diameter Improvement.
In Proc. of the 10th International Computer Science Symposium in Russia (CSR),
volume 9139 of LNCS, pages 123-142, Listvyanka, Russia, July 2015.

[C33] S. Oum, E. Kim, C. Paul, I. Sau, and D. M. Thilikos.
An FPT 2-Approximation for Tree-Cut Decomposition. In Proc. of the 13th Work-
shop on Approximation and Online Algorithms (WAOA), volume 9499 of LNCS,
pages 35-46, Patras, Greece, September 2015.

[C34] D. Chatzidimitriou, J.-F. Raymond, I. Sau, and D. M. Thilikos.
An O(log OPT)-approximation for Covering/Packing minor models of θr.
In Proc. of the 13th Workshop on Approximation and Online Algorithms (WAOA),
volume 9499 of LNCS, pages 122-132, Patras, Greece, September 2015.

[C35] E. Kim, C. Paul, I. Sau, and D. M. Thilikos.
Parameterized Algorithms for Min-Max Multiway Cut and List Digraph Homomor-
phism.
In Proc. of the 10th International Symposium on Parameterized and Exact Com-
putation (IPEC), volume 43 of LIPIcs, pages, 78-89, Patras, Greece, September
2015.



Curriculum vitae 29

[C36] J. Baste, C. Paul, I. Sau, and C. Scornavacca.
Efficient FPT algorithms for (strict) compatibility of unrooted phylogenetic trees.
In Proc. of the 11th International Conference on Algorithmic Aspects of Information
and Management (AAIM), volume 9778 of LNCS, pages 53-64, Bergamo, Italy,
July 2016.

[C37] D. Gözüpek, S. Özkan, C. Paul, I. Sau, and M. Shalom.
Parameterized complexity of the MINCCA problem on graphs of bounded decom-
posability.
In Proc. of the 42nd International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 9941 of LNCS, pages 195-206, Istanbul, Turkey, June
2016.

[C38] S. R. Alves, K. K. Dabrowski, L. Faria, S. Klein, I. Sau, and U. S. Souza.
On the (parameterized) complexity of recognizing well-covered (r, `)-graphs.
In Proc. of the 10th International Conference on Combinatorial Optimization and
Applications (COCOA), volume 10043 of LNCS, pages 423-437, Hong Kong, China,
December 2016.

[C39] J. Baste, M. Noy, and I. Sau.
On the number of labeled graphs of bounded treewidth.
In Proc. of the 43rd International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 10520 of LNCS, pages 88-99, Eindhoven, The Nether-
lands, June 2017.

[C40] J. Baste, D. Rautenbach, and I. Sau.
Uniquely restricted matchings and edge colorings.
In Proc. of the 43rd International Workshop on Graph-Theoretic Concepts in
Computer Science (WG), volume 10520 of LNCS, pages 100-112, Eindhoven, The
Netherlands, June 2017.

[C41] N. Cohen, F. Havet, D. Mazauric, I. Sau, and R. Watrigant.
Complexity Dichotomies for the Minimum F-Overlay Problem.
To appear in Proc. of the 28th International Workshop on Combinatorial Algorithms
(IWOCA), LNCS, Newcastle, Australia, July 2017.

[C42] J. Araújo, J. Baste, and I. Sau.
Ruling out FPT algorithms for Weighted Coloring on forests.
In Proc. of the IX Latin and American Algorithms, Graphs and Optimization Sympo-
sium (LAGOS), volume 62 of ENDM, pages 195-200, Marseille, France, September
2017.

[C43] L. Faria, S. Klein, I. Sau, U. S. Souza, and R. Sucupira.
Maximum Cuts in Edge-colored Graphs.
In Proc. of the IX Latin and American Algorithms, Graphs and Optimization Sym-
posium (LAGOS), volume 62 of ENDM, pages 87-92, Marseille, France, September
2017.



30 Curriculum vitae

[C44] M. Bougeret and I. Sau.
How much does a treedepth modulator help to obtain polynomial kernels beyond
sparse graphs?
In Proc. of the 12th International Symposium on Parameterized and Exact Compu-
tation (IPEC), volume 89 of LIPIcs, pages 10:1–10:13, Vienna, Austria, September
2017.

[C45] J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D. M. Thilikos.
Parameterized complexity of finding a spanning tree with minimum reload cost di-
ameter.
In Proc. of the 12th International Symposium on Parameterized and Exact Compu-
tation (IPEC), volume 89 of LIPIcs, pages 3:1–3:12, Vienna, Austria, September
2017.

[C46] J. Baste, I. Sau and D. M. Thilikos.
Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth.
In Proc. of the 12th International Symposium on Parameterized and Exact Compu-
tation (IPEC), volume 89 of LIPIcs, pages 4:1–4:12, Vienna, Austria, September
2017.

[C47] J. Araújo, V. A. Campos, A. K. Maia, I. Sau, and A. Silva.
On the complexity of finding internally vertex-disjoint long directed paths.
To appear in Proc. of the 13th Latin American Theoretical INformatics Symposium
(LATIN), LNCS, Buenos Aires, Argentina, April 2018.

Book chapters

[B1] T. Cinkler, D. Coudert, M. Flammini, G. Monaco, L. Moscardelli, X.
Muñoz, I. Sau, M. Shalom, and S. Zaks. Graphs and Algorithms in Com-
munication Networks - Studies in Broadband, Optical, Wireless and Ad Hoc Net-
works. Chapter : Traffic Grooming: Combinatorial Results and Practical Resolu-
tions. EATCS Texts in Theoretical Computer Science, Springer. December
2009.

[B2] I. Sau and J. Žerovnik. Graphs and Algorithms in Communication Networks -
Studies in Broadband, Optical, Wireless and Ad Hoc Networks. Chapter : Permu-
tation Routing and (`, k)-routing on Plane Grids. EATCS Texts in Theoretical
Computer Science, Springer. December 2009.

National conferences

[N1] O. Amini, S. Pérennes, and I. Sau. Hardness of Approximating the Traffic
Grooming. In Proc. of 9es Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications (AlgoTel), Ile d’Oléron, France, May 2007.



Curriculum vitae 31

[N2] J. Araújo, C. Linhares-Sales, and I. Sau. Weighted Coloring on P4-sparse
Graphs. In Proc. of 11es Journées Doctorales en Informatique et Réseaux (JDIR),
Sophia Antipolis, France, March 2010.

[N3] L. Faria, S. Klein, I. Sau, U. S. Souza, and R. Sucupira. Finding cuts in
edge-colored graphs. In XXXVI Congresso da Sociedade Brasileira de Computação -
Encontro de Teoria da Computação (CSBC-ETC), Porto Alegre, Brazil, July 2016,
and XLVIII Simpósio Brasileiro de Pesquisa Operacional (SBPO), Vitória, Brazil,
September 2016.

Submitted to journal

[S1] V. Garnero and I. Sau.
A linear kernel for planar total dominating set.
Submitted to Discrete Mathematics & Theoretical Computer Science.

[S2] V. Garnero, C. Paul, I. Sau, and D. M. Thilikos.
Explicit Linear Kernels for Packing Problems.
Submitted to Algorithmica.

[S3] J. Baste, D. Rautenbach, and I. Sau.
Upper Bounds on the Uniquely Restricted Chromatic Index.
Submitted to Journal of Graph Theory.

[S4] J. Baste, D. Rautenbach, and I. Sau.
Approximating Maximum Uniquely Restricted Matchings in Bipartite Graphs.
Submitted to Discrete Applied Mathematics.

[S5] S. R. Alves, K. K. Dabrowski, L. Faria, S. Klein, I. Sau, and U. S. Souza.
On the (parameterized) complexity of recognizing well-covered (r, `)-graphs.
Submitted to Theoretical Computer Science.

[S6] J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D. M. Thilikos.
Parameterized complexity of finding a spanning tree with minimum reload cost di-
ameter.
Submitted to Journal of Computer and System Sciences.

[S7] M. Bougeret and I. Sau.
How much does a treedepth modulator help to obtain polynomial kernels beyond
sparse graphs?
Submitted to Algorithmica.

[S8] J.-F. Raymond, P. Aboulker, S. Fiorini, T. Huynh, G. Joret, and Ignasi
Sau.
A tight Erdős-Pósa function for wheel minors.
Submitted to SIAM Journal on Discrete Mathematics.



32 Curriculum vitae

[S9] J. Araújo, V. A. Campos, A. K. Maia, I. Sau, and A. Silva.
On the complexity of finding internally vertex-disjoint long directed paths.
Submitted to Journal of Computer and System Sciences.

[S10] N. Cohen, F. Havet, D. Mazauric, I. Sau, and R. Watrigant.
Complexity Dichotomies for the Minimum F-Overlay Problem.
Submitted to Journal of Discrete Algorithms.

2.3 Supervised students

03/2012-08/2012 Valentin Garnero.
Internship M2, ENS–Université de Nice Sophia-Antipolis.
Topic: Polynomial kernels for variants of domination problems on planar
graphs.
Percentage of supervision: 100%.
Joint publications: [S1].

02/2013-07/2013 Julien Baste.
Internship M2, ENS Cachan.
Topic: The role of planarity in connectivity problems parameterized by
treewidth.
Percentage of supervision: 100%.
Joint publications: [J24, C30].

02/2014-07/2014 Henri Perret du Cray.
Internship M2, Université de Montpellier.
Topic: FPT algorithms and kernels on graphs without induced subgraphs.
Percentage of supervision: 100%.
Joint publications: [J40, C29].
Current position: Ph.D student at LIMOS laboratory, Clermont-Ferrand,
France.

10/2012-07/2016 Valentin Garnero.
Ph.D, co-supervised with Christophe Paul.
Topic: (Méta)-noyaux constructifs et linéaires dans les graphes peu denses.
Percentage of supervision: 60%.
Joint publications: [J25, J31, C24, C26, S2].
Current position: preparing the CAPES in Mathematics, to teach in a French
high school.

09/2014-09/2017 Julien Baste.
Ph.D, co-supervised with Dimitrios M. Thilikos.
Topic: Treewidth: algorithmic, combinatorial and practical aspects.
Percentage of supervision: 70%.
Joint publications: [J30, J32, J36, C26, C29, C40, C42, C45, C46, S3, S4,
S5, S6, S8].



Curriculum vitae 33

Current position: postdoc (ATER) at Université Pierre et Marie Curie, Paris,
France.

2.4 Awards, grants, scholarships, and projects

2000 Got accepted to a special plan for high performance students of Universitat
Politècnica de Catalunya (10 students were selected all over Spain), to study
in parallel the degrees of Mathematics and Telecommunications Engineering.

2000–2001 First year of university funded by the Spanish government for having the highest
grades in my secondary school.

2-7/2005 Research Support Scholarship at MA413 of UPC (Barcelona, Catalunya).
Grant of Ministerio de Ciencia e Innovación of Spain.
Topic: Graph Theory and Optical Networks, under the direction of Xavier Muñoz.

2005–2006 Recipient of an Erasmus European grant to study in Nice, France.

2006–2009 Recipient of a French Ph.D grant BDI (joint of CNRS and région PACA).

2006–2009 Recipient of French grant RECHERCHE 06 to promote student’s mobility.

2006–2008 Recipient of 3 grants of European Project COST 293 to perform Short Term
Scientific Missions in Slovenia (September 2006) and Israel (June 2007 and May
2008).

6/2009 Recipient of the Best Student Paper Award of WG’09 for publication [C12].

11/2009 Recipient of a postdoctoral grant in the Computer Science Department of the
Technion (Haifa, Israel).

7/2010 Recipient of the Best Paper Award of Track C of ICALP’10 for publication
[C17].

2012-2015 Recipient of the Prime d’Excellence Scientifique (PES) of the CNRS.

2015-2016 Coordinator of an awarded bilateral research project funded by CNRS and
TUBITAK between France and Turkey, entitled “Reload Cost Concept in Graph
Theory: A Combinatorial Analysis”. Grant 114E731. Funded 2.000e per year
to cover travel expenses.

2016 Recipient of 10.000e from the Université de Montpellier (Soutien à la Recherche
2016 ) for the personal project “Parameterized Algorithms for Structured grAphs
(PASTA)”.

2016-2017 Awarded a Visiting Professor position at Department of Mathematics of Univer-
sidade Federal do Ceará (Fortaleza, Brazil) for the period 8/2016-8/2017.

13MA4: Departament de Matemàtica Aplicada 4 de la UPC



34 Curriculum vitae

2017 Recipient of 1.250e from the “Exploration Japon 2017 ” program to carry out a
research visit in Tokyo, Japan.

Participation in French ANR projects

2009-2013 ANR AGAPE: Algorithmes de GrAphes Paramétrés et Exacts.
Project number : ANR-09-BLAN-0159.
Budget : 600.000e.

2016-2020 ANR GATO: Graphs, Algorithms and TOpology.
Project number : ANR-16-CE40-0009-01.
Budget : 355.000e.

2017-2021 ANR DE-MO-GRAPH: Décomposition de Modèles Graphiques.
Project number : ANR-16-CE40-0028.
Budget : 360.098e.

2018-2022 ANR ESIGMA: Efficiency and Structure In Graph Mining Applications.
Project number : To be assigned soon.
Budget : 408.191,4e.

2.5 Teaching activity

2011/2012 Algorithmes élégants.
Module de l’École Doctorale I2S, Université de Montpellier 2 - 12h.

2012/2013 Complexité et algorithmes paramétrés.
Cours de M2 Informatique, Université de Montpellier 2 - 10h.

2013/2014 Algorithmes élégants.
Module de l’École Doctorale I2S, Université de Montpellier 2 - 11h.

2015/2016 Graphes, algorithmique et complexité.
Cours de M2 Informatique, Université de Montpellier - 9h.

2016/2017 Complexidade parametrizada.
Curso de pós-graduação, Departamento de Matemática, Universidade Federal do
Ceará, Fortaleza, Brazil - 96h.

During my Ph.D (2006-2009) I have been Moniteur (corresponding to Junior Assistant
Professor) at University of Nice-Sophia Antipolis.

2006/2007 Programmation Répartie en Java (Distributed Programming in Java).
IUT UNSA, Bachelor in Computer Science, 2nd year - 64h.

2007/2008 Programmation concurrente en JAVA (Concurrent programming in
JAVA).
IUT UNSA, Bachelor in Computer Science, 2nd year - 21h.
Algorithmique et complexité (Algorithms and complexity).



Curriculum vitae 35

IUT UNSA, Bachelor in Computer Science, 3rd year - 49h.
Mathématiques discrètes et optimisation (Discrete maths and opti-
mization).
IUT UNSA, Bachelor in Computer Science, 3rd year - 21h.

2008/2009 Bases algorithmiques (Algorithmic principles).
IUT UNSA, Bachelor in Computer Science, 3rd year - 37h.

2.6 Committees and administrative duties

Committees of conferences and workshops

• Organizing Committee of AdHocNow’08, 7th International Conference on
AD-HOC Networks, Sophia Antipolis, France, September 2008 (www-
sop.inria.fr/mascotte/adhocnow).

• Organizing Committee of JGA’08, Journées Graphes et Al-
gorithmes, Sophia Antipolis, France, November 2008 (www-
sop.inria.fr/mascotte/seminaires/JGA08).

• General co-Chair of IMAGINE’09, 3rd International workshop on Mobility, Al-
gorithms, Graph theory In dynamic NEtworks, Piran, Slovenia, May 2009.

• Organizing Committee of WG’10, 36th International Workshop on Graph
Theoretic Concepts in Computer Science, Zarós, Greece, June 2010
(wg2010.thilikos.info).

• Program Committee of SIROCCO’12 (sites.google.com/site/sirocco2012iceland).

• Program Committee of AlgoTel’13 (http://algotel2013.sciencesconf.org).

• Program Committee of AlgoTel’14 (http://algotel2014.sciencesconf.org).

• Program Committee of JMDA’16 (http://llati.upc.edu/JMDA16).

• Program Committee of WG’18.

Organization of workshops and seminars

• Organizer of the 1st JCALM (Journées Combinatoire et Algorithmes du Littoral
Méditerranéen) in Barcelona, June 2011 (www.lirmm.fr/∼sau/JCALM.html).

• Co-organizer of Journées AGAPE on Parameterized Complexity and Exact Algo-
rithms, Montpellier, France, February 2012 (www.lirmm.fr/∼sau/AGAPE12.html).

• Organizer of the 2nd JCALM (Journées Combinatoire et Algo-
rithmes du Littoral Méditerranéen) in Barcelona, October 2013
(www.lirmm.fr/∼sau/JCALM2013Bcn.html).

• Co-organizer of 7th GROW, Aussois, France October 2015,
(http://grow2015.sciencesconf.org).



36 Curriculum vitae

• Co-organizer of 45th WG, Vall de Núria, Catalonia, June 2019.

Participation in Ph.D defenses

• Reviewer of the Ph.D of Miguel H. Camelo, UdG, Girona, Catalunya, October 2014.

• Jury member of the Ph.D defense of Valentin Garnero, Université de Montpellier,
Montpellier, France, July 2016.

• Reviewer and jury member of the Ph.D of Rubens Sucupira, UFRJ, Rio de Janeiro,
Brazil, January 2017.

• Reviewer and jury member of the Ph.D of Thiago Marcilon, UFC, Fortaleza, Brazil,
February 2017.

• Jury member of the Ph.D defense of Julien Baste, Université de Montpellier, Mont-
pellier, France, September 2017.

Refereeing of international research projets

• Funding scheme PRELUDIUM, National Science Centre of Poland, March 2016.

• Vidi grant, Netherlands Organisation for Scientific Research (NWO), December
2016.

Other administrative responsibilities

• Responsible of the weekly research seminar of our group AlGCo since April 2013 until
July 2016 (www2.lirmm.fr/algco/GT).

• Member of the“Commission of Section 27 (MIPS)”of Université de Montpellier since
June 2017.

2.7 Research visits

9/2006 Department of Theoretical Computer Science of IMFM, Ljubljana, Slove-
nia.
Visiting Janez Žerovnik (1 month).

6/2007 Computer Science Department of Technion, Haifa, Israel.
Visiting Shmuel Zaks and Mordechai Shalom (1 month).

12/2007 Department of Theoretical Computer Science of IMFM, Ljubljana, Slove-
nia.
Visiting Janez Žerovnik (2 weeks).

2-3/2008 Departamento de Computaçao da Universidade Federal do Ceará (UFC),
Fortaleza, Brazil.
Visiting Cláudia Linhares-Sales (6 weeks).



Curriculum vitae 37

6/2008 Computer Science Department of Technion, Haifa, Israel.
Visiting Shmuel Zaks and Mordechai Shalom (1 month).

11/2008 Department of Mathematics of NKU, Athens, Greece.
Visiting Dimitrios M. Thilikos (2 weeks).

12/2008 Department of Theoretical Computer Science of IMFM, Ljubljana, Slove-
nia.
Visiting Janez Žerovnik (2 weeks).

5/2009 Algorithms Research Group of University of Bergen, Norway.
Visiting Isolde Adler, Frederic Dorn, and Fedor Fomin (1 week).

5/2010 School of Computer Science of McGill University, Montréal, Canada.
Visiting Bruce Reed (1 month).

11/2010 Department of Mathematics of NKU, Athens, Greece.
Visiting Dimitrios M. Thilikos (1 week).

12/2010 Department of Computer Science of Charles University, Prague, Czech
Republic.
Visiting Daniel Král’ (2 weeks).

1/2011 Faculty of Mathematics and Computer Science of Weizmann Institute of
Science, Rehovot, Israel.
Visiting David Peleg (2 weeks).

3/2012 Département d’Informatique of Université Libre de Bruxelles, Brussels,
Belgium.
Visiting Gwenaël Joret and Samuel Fiorini (1 week).

4/2012 Instituto de Ciencias Matemáticas, Madrid, Spain.
Visiting Juanjo Rué (1 week).

9/2012 Department of Mathematics of University of Pilsen, Czech Republic.
Visiting Daniel Král’ and Thomas Kaiser (1 week).

10/2012 Algorithms Research Group of University of Bergen, Norway.
Visiting Pinar Heggernes and Pim van ’t Hof (1 week).

12/2014 Departamento de Ciência da Computaçao da Universidade Federal do Rio
de Janeiro (UFRJ), Brazil.
Visiting Sulamita Klein and Luerbio Faria (4 weeks).

2/2015 Departamento de Computaçao da Universidade Federal do Ceará (UFC),
Fortaleza, Brazil.
Visiting Júlio Araújo and Karol Maia (4 weeks).

5/2015 Departament de Matemàtica Aplicada II of Universitat Politècnica de
Catalunya (UPC), Barcelona, Catalunya.
Visiting Marc Noy (1 week).



38 Curriculum vitae

6/2015 Computer Engineering Department of Gebze Technical University, Istan-
bul, Turkey.
Visiting Didem Gözüpek, Sibel Ökzan, and Mordechai Shalom (1 week).

1/2016 Departamento de Ciência da Computaçao da Universidade Federal do Rio
de Janeiro (UFRJ), Brazil.
Visiting Sulamita Klein, Luerbio Faria, and Uéverton Souza (3 weeks).

6/2016 COATI team, INRIA Sophia Antipolis, France.
Visiting Frédéric Havet and Dorian Mazauric (1 week).

6/2016 Computer Engineering Department of Gebze Technical University, Istan-
bul, Turkey.
Visiting Didem Gözüpek and Mordechai Shalom (1 week).

2016-2017 Departamento de Matemática da Universidade Federal do Ceará (UFC),
Fortaleza, Brazil.
Position of Visiting Professor (1 year).

1/2017 Departamento de Ciência da Computaçao da Universidade Federal do Rio
de Janeiro (UFRJ), Brazil.
Visiting Sulamita Klein, Luerbio Faria, and Uéverton Souza (1 week).

11/2017 Université Pierre et Marie Curie, Paris, France.
Visiting Julien Baste (1 week).

12/2017 University of Electro-Communications, Tokyo, Japan.
Visiting Rémy Belmonte (2 weeks).

2.8 Research talks

6/06 Traffic grooming in optical networks.
Seminar of Graph Theory, Combinatorics and Applications of UPC, Barcelona,
Catalunya.

6/2006 Traffic grooming in bidirectional WDM ring networks.
Presentation of a paper in ICTON, Nottingham, UK.

4/2007 Optimal permutation routing on mesh networks.
Presentation of a paper in INOC, Spa, Belgium.

5/2007 Hardness of approximating the traffic grooming problem.
Presentation of a paper in AlgoTel, Ile d’Oleron, France.

4/08 Maximum Degree-Bounded Connected Subgraph: Hardness and Approx-
imation.
Seminar in MASCOTTE project, Sophia-Antipolis, France.



Curriculum vitae 39

6/2008 Maximum degree-bounded connected subgraph: hardness and approxi-
mation.
Seminar in the Computer Science Department of Technion, Haifa, Israel.

7/2008 Traffic grooming in unidirectional WDM rings with bounded-degree re-
quest graph.
Presentation of a paper in WG, Durham University, U.K.

9/2008 Degree-constrained subgraph problems: hardness and approximation.
Presentation of a paper in ALGO/WAOA, Universität Karlsruhe, Germany.

11/2008 Degree-constrained subgraph problems: hardness and approximation.
Seminar in the Department of Mathematics of NKU, Athens, Greece.

12/2008 Degree-constrained subgraph problems: hardness and approximation.
Seminar in the Department of Mathematics of IMFM, Ljubljana, Slovenia.

3/2009 Subexponential parameterized algorithms for bounded-degree connected
subgraph problems on planar graphs.
Presentation of a paper in DIMAP AGT, University of Warwick, U.K.

5/2009 Designing hypergraph layouts for GMPLS routing strategies.
Presentation of a paper in SIROCCO, Piran, Slovenia.

6/2009 On self-duality of branchwidth in graphs of bounded genus.
Presentation of a paper in CTW, Paris, France.

6/2009 Graph partitioning and traffic grooming with bounded degree request
graph.
Presentation of a paper in WG, Montpellier, France.

7/09 Edge-partitioning regular graphs.
Seminar in MASCOTTE project, Sophia-Antipolis, France.

10/2009 Optimization in graphs under degree constraints. Application to telecommuni-

cation networks.
Ph.D defense, Sophia Antipolis, France.

10/2009 Optimization in graphs under degree constraints. Application to telecommuni-

cation networks.
Seminar of Graph Theory, Combinatorics and Applications of UPC, Barcelona,
Catalunya.

3/2010 Edge-partitioning regular graphs, with applications to traffic grooming.
Combinatorics Seminar of the Mathematics Department of the Technion, Haifa, Is-
rael.

6/2010 Dynamic programming for graphs on surfaces.
In the Research Seminar in Discrete and Computational Geometry, Ben Gurion
University of the Negev, Be’er Sheva, Israel.



40 Curriculum vitae

10/2010 Dynamic programming for graphs on surfaces.
In the 2nd Workshop on Graph Decompositions, CIRM, Marseille, France.

11/2010 Dynamic programming for graphs on surfaces.
Seminar in the Department of Mathematics of NKU, Athens, Greece.

1/2011 On approximating the d-girth of a graph.
Presentation of a paper in SOFSEM, Novy Smokovec, Slovakia.

2/2011 Single-exponential parameterized algorithms: good and bad news.
Lecture in Journées AGAPE, Montpellier, France.

3/2011 Dynamic programming in sparse graphs.
Seminar of Graph Theory, Combinatorics and Applications of UPC, Barcelona,
Catalunya.

3/2011 Traffic grooming in bidirectional WDM ring networks.
Talk in the celebration of Jean-Claude Bermond’s EADS 2010 prize, Montpellier,
France.

9/2011 Hitting and harvesting pumpkins.
Presentation of a paper in ESA, Saarbrücken, Germany.

9/2011 Parameterized domination in circle graphs.
Talk in GROW workshop, Daejeon, South Korea.

3/2012 Dynamic programming in sparse graphs.
Seminar in Université Libre de Bruxelles (ULB), Brussels, Belgium.

10/2012 Parameterized domination in circle graphs.
Seminar in the Algorithms Research Group, University of Bergen, Norway.

1/2013 Optimal Erdös-Pósa property for pumpkins.
Talk in Congreso de la Real Sociedad Matemática Española, Santiago de Compostela,
Spain.

1/2013 Linear kernels on graphs excluding topological minors.
Talk in the ANR AGAPE meeting, Université d’Orléans, France.

2/2013 Linear kernels and single-exponential algorithms via protrusion decom-
positions.
Seminar of Graph Theory, Combinatorics and Applications of UPC, Barcelona,
Catalunya.

6/2013 Optimal Erdös-Pósa property for pumpkins.
Talk in the Joint Mathematical Conference of Catalan, Slovenian, Austrian, Slovak
and Czech Mathematical Societies (CSASC), Koper, Slovenia.

10/2013 Bidimensionality theory.
Tutorial in the JCALM workshop, Barcelona, Catalunya.



Curriculum vitae 41

6/2014 Programmation dynamique dans les graphes peu denses.
Talk in the “Journée scientifique du LIRMM” , Montarnaud, France.

10/2014 Linear kernels and single-exponential algorithms via protrusion decom-
positions.
Seminar in Université Libre de Bruxelles (ULB), Brussels, Belgium.

11/2014 On the Erdös-Pósa property for minors of graphs.
Talk in Barcelona Mathematical Days, Institut d’Estudis Catalans, Barcelona,
Catalunya.

12/2014 Linear kernels and single-exponential algorithms via protrusion decom-
positions.
Talk in Seminário de Grafos e Algoritmos, UFRJ, Rio de Janeiro, Brazil.

1/2015 FPT algorithm for a generalized cut problem and some applications.
Séminaire AlGCo, Montpellier, France.

1/2015 FPT algorithm for a generalized cut problem and some applications.
Talk in Rencontres Internationales sur les méthodes de décomposition de graphes,
CIRM, Marseille, France.

1/2015 FPT algorithm for a generalized cut problem and some applications.
Seminário ParGO, Universidade Federal do Ceará, Fortaleza, Brazil.

5/2015 The List Allocation problem and some of its applications in parameter-
ized algorithms.
Seminar of Graph Theory, Combinatorics and Applications of UPC, Barcelona,
Catalunya.

6/2015 On the complexity of computing the k-restricted edge-connectivity of a
graph.
Séminaire AlGCo, Montpellier, France.

6/2015 On the complexity of computing the k-restricted edge-connectivity of a
graph.
Presentation of a paper in WG, Munich, Germany.

3/2016 Noyaux (presque) linéaires dans les graphes d’expansion bornée et
“nowhere dense”.
Talk in the JCALM workshop, Montpellier, France.

5/2016 The number of graphs of bounded treewidth.
Séminaire COATI, Sophia Antipolis, France.

9/2016 The number of graphs of bounded treewidth.
Seminário ParGO, Fortaleza, Brazil.

6/2017 Finding subdivisions of spindles on digraphs.
Seminário ParGO, Fortaleza, Brazil.



42 Curriculum vitae

9/2017 Ruling out FPT algorithms for Weighted Coloring on forests.
Presentation of a paper in LAGOS, Marseille, France.

10/2017 Finding subdivisions of spindles on digraphs.
Séminaire AlGCo, Montpellier, France.



Curriculum vitae 43

2.9 Journal and conference refereeing

This is the number of articles that I have reviewed for the following journals and confer-
ences (if no number is shown, it corresponds to just one article):

• Journals: Algorithmica (x3), Information and Computation, ACM Transactions on
Algorithms (x2), Discrete Applied Mathematics (x13), Theoretical Computer Science
(x7), Journal of Discrete Algorithms (x2), European Journal of Operational Re-
search, Journal of Graph Algorithms and Applications, Networks, European Journal
of Combinatorics (x2), Discrete Mathematics, SIAM Journal on Discrete Mathemat-
ics (x3), Journal of Combinatorial Optimization (x2), Discussiones Mathematicae
Graph Theory, Journal of Combinatorial Theory B, Information Processing Letters,
Journal of Computer and System Sciences.

• Conferences: AlgoTel’08, WG’09, STACS’10, CIAC’10, WG’10 (x3), IWOCA’10,
ISAAC’10, IPEC’10, WG’11, IWOCA’11, FCT’11, ESA’11, DISC’11, SODA’12,
SWAT’12, MFCS’12, IPEC’12, CIAC’13, ICALP’13 (x2), AlgoTel’13 (x6), WG’13,
EuroComb’13, MFCS’13, ESA’13, FCT’13, IPEC’13 (x2), STACS’14, IPCO’14,
CSR’14 (x2), ICALP’14, WG’14, MFCS’14 (x2), STACS’15, CIAC’15, WG’15, Al-
goTel’15, ESA’15, IPEC’15, LATIN’16, SWAT’16, WG’16, JMDA’16 (x3), ESA’16,
IWOCA’16, IPEC’16, SODA’17, ICALP’17, WG’17 (x2), ESA’17 (x2), IPEC’17,
SODA’18, STACS’18.





Chapter 3

Preliminaries

We provide here some basic preliminaries and fix the notation to be used throughout this
manuscript. We focus on the most important definitions here, and defer some of them to
the corresponding chapter where they are locally used. This part is intended to be looked
up when necessary, rather than to be read sequentially.

We assume that the reader is familiar with the classes P and NP, as well as with the
asymptotic notation (like O, o, Ω, or Θ). For additional background material concerning
computational complexity, the reader is referred to the books of Garey and Johnson [154]
and Varizani [239].

In Section 3.1 we state some preliminaries about graphs, in Section 3.2 we briefly introduce
the field of parameterized complexity, and in Section 3.3 we define for completeness some
classical graph problems to which we will refer in the sequel.

Contents

3.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Graph minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.4 (Counting) Monadic Second Order Logic . . . . . . . . . . . . . . . . 49

3.2 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Some classical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Graphs

In this section we state some basic preliminaries about graphs. Namely, we set in Sec-
tion 3.1.1 the notation that we use for the basic notions, we define in Section 3.1.2 graph
minors, contractions, and topological minors, and we introduce in Section 3.1.3 tree-
decompositions and treewidth. Finally, even if it is a topic that goes beyond graphs,
we briefly present in Section 3.1.4 (Counting) Monadic Second Order Logic.

3.1.1 Basic notation

We use standard graph-theoretical terminology, and we assume that the reader is familiar
with the basic concepts of graph theory. For more details, see for instance the book of

45



46 Preliminaries

Diestel [106]. All the graphs considered in Chapters 5-6-7-8 are undirected, and contain
no loops nor multiple edges; such graphs are called simple.

Given a simple undirected graph G = (V,E), and edge between the vertices u and v is
denoted by {u, v}, and then u and v are said to be adjacent . An edge is incident to its
two endpoints. The degree of a vertex v in G is the number of vertices incident to v in G.
Namely, dG(v) = |{u ∈ V (G) | {u, v} ∈ E(G)}|. The maximum degree (resp. minimum
degree) of a graph G is the maximum (resp. minimum) degree over all its vertices, and it
is denoted by ∆(G) (resp. δ(G)).

For a graph G = (V,E) and a subset V ′ ⊆ V , we denote the induced subgraph on V ′

by G[V ′] = (V ′, E′), where E′ = {{u, v} ∈ E | u, v ∈ V ′}. For X ⊆ V (G), we define
G−X := G[V (G) \X]. The distance between two vertices u and v in a graph G, denoted
by dG(x, y), is the length of a shortest path in G between u and v, or ∞ if x, y lie in
different connected components of G. The diameter of a graph is the maximum distance
over all pairs of vertices.

By the neighbors of a subgraph H ⊆ G, denoted by NG(H), we mean the set of vertices
in V (G) \ V (H) that have at least one neighbor in H. We employ the same notation
analogously to denote neighbors of a subset of vertices NG(S) for S ⊆ V (G). If X is a
subset of vertices disjoint from S, then NG

X (S) is the set NG(S) ∩X. The same notation
naturally extends to a subgraph H ⊆ G, that is, NG

X (H). If S1, S2 are subsets of vertices
of a graph, we denote by NG

S1
(S2) the set of vertices in S1 that have a neighbor in S2. The

distance between a vertex v and a set of vertices S is defined as dG(v, S) = minu∈S d(v, u),
where dG(v, u) denotes the usual distance.

For v ∈ V , we denote by NG(v) the neighborhood of v, namely NG(v) = {u ∈ V : {u, v} ∈
E}. The closed neighborhood NG[v] of v is NG(v)∪{v}. In the same way we define NG[S]
for S ⊆ V as NG[S] =

⋃
v∈S NG[v], and N(S) = N [S] \ S. More generally, for an integer

r > 0, the rth neighborhood of a vertex NG
r (v) := {w ∈ G | dG(v, w) 6 r} is the set of

vertices within distance at most r to v. in particular we have that NG
0 (v) = {v} and

NG
1 (v) = NG[v].

A graph on n vertices is called complete if it contains an edge between each pair of vertices,
and is denoted by Kn. The complete graph on three vertices is known as the triangle.
The path on n vertices v0, . . . , vn−1 with the n−1 edges {v0, v1}, {v1, v2}, . . . , {vn−2, vn−1}
is denoted by Pn. The length is a path is its number of edges. The cycle on n vertices
obtained from Pn by adding the edge {vn−1, v0} is denoted by Cn. A graph G is k-partite if
V (G) can be partitioned into k classes V0, . . . , Vk−1 such that there are only edges between
classes Vi and Vj with i 6= j. The 2-partite (resp. 3-partite) graphs are known as bipartite
(resp. tripartite).

A graph is planar if it can be drawn in the plane without edge crossings. A graph is an
apex graph if it contains a vertex whose removal results in a planar graph.

In all the notations defined above, we may drop the the subscripts or superscripts referring
to the graph when it is clear from the context.



Preliminaries 47

3.1.2 Graph minors

Let G = (V,E) be a simple undirected graph and let e = {x, y} ∈ E. We define EG(v) =
{{v, u} | u ∈ NG(v)}. We denote by G\e the graph G′ where G′ = (V,E − {e}) and we
say that G′ occurs from G after an edge removal. We also denote by G/e the graph G′

where

G′ = (V − {x, y} ∪ {vx,y}, E − EG(x)− EG(y) ∪ {{vxy, z} | z ∈ NG(x, y)}),

where vxy /∈ V is a new vertex, not in G. In this case we say that G′ occurs from G after
an edge contraction.

If H occurs from a subgraph of G after a sequence of edge contractions, we say that H is
a minor of G, and we denote it by H �mG.

If H occurs from G itself after a sequence of edge contractions, we say that H is a con-
traction of G, and we denote it by H �cG. Note that H �cG implies that H �mG, but
not vice-versa.

If H occurs from a subgraph of G after a sequence of edge contractions, such that each
contracted edge has at least one endpoint with degree at most two, we say that H is a
topological minor of G, and be denote it by H �tm G. Note that H �tm G implies that
H �mG, but not vice-versa. Note also that H �tmG and H �cG do not imply each other
in general. To see this, note that, for example, P3 �tmK3 but P3 �cK3 and that, if H
and G are the graphs depicted in Figure 3.1, then H �cG but H �tmG.

H G

Figure 3.1: Graphs H and G such that H �cG but H �tmG.

A graph G is H-minor-free (resp. H-contraction-free, H-topological-minor-free) if H �mG
(resp. H �c G, H �tm G). If F is a collection of graphs, a graph G is F-minor-free if
H �mG for every H ∈ F . The same notation applies to the contraction and topological
minor relations. For instance, by Kuratowski’s Theorem [106, 191], planar graphs are
exactly {K5,K3,3-minor-free graphs.

Graph minors have been the central topic of the so-called graph minor theory. This
deep theory, mainly developed by Robertson and Seymour in a long series of papers,
describes the structure of graphs with excluded minors. It culminates in the Graph Minors
Theorem [227], which states that every class of graphs closed under taking minors can be
characterized by a finite set of excluded minors; this fact was previously known as Wagner’s
conjecture [106, 240]. Equivalently, it says that graphs are well-quasi ordered (WQO) by
the minor relation, meaning that in every infinite sequence of finite graphs there are two
of them such that one is a minor of the other. The theory also has significant algorithmic
consequences. Robertson and Seymour [226] proved that every class of graphs that is



48 Preliminaries

closed under taking minors (this means that if a graph G is inside the class, so is every
minor of G) can be recognized in cubic time. Kawarabayashi et al. [179] improved this
algorithm to a quadratic one.

3.1.3 Treewidth

One of the most crucial ingredients in graph minor theory is, undoubtedly, the notion of
treewidth. Loosely speaking, treewidth is a graph invariant that quantifies the resemblance
of a graph to the structure of a forest, in the sense that the more a graph “differs” from a
forest, the higher its treewidth.

The concept of treewidth was originally introduced by Bertelé and Brioschi [52], under
a different name. It was later rediscovered by Halin [168], again under a different name.
Some years later, it was rediscovered by Robertson and Seymour [225], who coined the cur-
rent name. They used treewidth with combinatorial purposes, in order to prove Wagner’s
conjecture [106,240], but it turned out to have a number of algorithmic and practical ap-
plications, as discussed later. Probably the most famous result certifying the algorithmic
importance of treewidth is Courcelle’s theorem [90], which states that every decision prob-
lem expressible in Monadic Second Order Logic (cf. Section 3.1.4 for the formal definition)
can be solved in linear time on graphs of bounded treewidth.

In order to define treewidth, we first need to define tree-decompositions.

A tree-decomposition of a graph G = (V,E) is a pair (T,X ), where T = (I, F ) is a tree,
and X = {Bi}, i ∈ I is a family of subsets of V (G), called bags and indexed by the nodes
of T , such that

1. each vertex v ∈ V appears in at least one bag, i.e.,
⋃
i∈I Bi = V ;

2. for each edge e = {x, y} ∈ E, there is an i ∈ I such that x, y ∈ Bi; and

3. for each v ∈ V the set of nodes indexed by {i | i ∈ I, v ∈ Bi} forms a subtree of T .

The width of a tree-decomposition is defined as maxi∈I{|Bi| − 1}. The treewidth of G,
denoted by tw(G), is the minimum width of a tree-decomposition of G. It is easy to see
that the graphs of treewidth one are exectly the forests. We refer to the book of Kloks [184]
and the survey of Bodlaender [57] for an introductory overview on treewidth and its use
in algorithmic graph theory.

The vertices of the tree T are usually referred to as nodes. A rooted tree-decomposition is a
tree-decomposition (T,X = {Bx | x ∈ V (T )}) in which a distinguished node r ∈ V (T ) has
been selected as the root. The bag Br is called the root-bag. Note that the root defines a
child/parent relation between every pair of adjacent nodes in T , and ancestors/descendants
in the usual way. A node without children is called a leaf.

From an algorithmic point of view, tree-decompositions are particularly relevant for per-
forming dynamic programming in a bottom-up manner from the leaves to the root of the
tree. In this context, given a bag B of a tree-decomposition with a rooted tree T , we denote
by TB the subtree rooted at the node corresponding to bag B, and by GB := G[

⋃
x∈TB Wx]

the subgraph of G induced by the vertices appearing in the bags corresponding to the nodes
of TB. If a bag B is associated with a node x of T , we may interchangeably use GB or Gx.



Preliminaries 49

A tree-decomposition (T,X ) rooted at a distinguished node tr is nice if the following
conditions are fulfilled:

• Btr = ∅ and this is the only empty bag,

• each node has at most two children,

• for each leaf t ∈ V (T ), |Bt| = 1,

• if t ∈ V (T ) has exactly one child t′, then either

◦ Bt = Bt′ ∪ {v} for some v 6∈ Bt′ and t is called an introduce-vertex node, or

◦ Bt = Bt′ \ {v} for some v ∈ Bt′ and t is called a forget-vertex node, or

◦ Bt = Bt′ , t is associated with an edge {x, y} ∈ E(G) with x, y ∈ Bt, and t is
called an introduce-edge node. We add the constraint that each edge of G labels
exactly one node of T .

• and if t ∈ V (T ) has exactly two children t′ and t′′, then Bt = Bt′ = Bt′′ . Then t is
called a join node.

Note that we follow the definition of nice tree-decomposition given in [96], which slightly
differs from the usual one [184]. Given a tree-decomposition, then we can build a nice
tree-decomposition of G with the same width in polynomial time [96, 184]. As we will
see in the next chapters, nice tree-decompositions are particularly useful for performing
dynamic programming.

A tree-decomposition (T,X ) in which T is a path is called a path-decomposition. The
width of a path decomposition (T,X ) is the width of (T,X ) as a tree-decomposition. The
pathwidth is defined exactly as above by restricting to the path-decompositions, and is
denoted by pw. A path decomposition (T,X ), with T a path of length n, is usually denoted
by (B0, B1, . . . , Bn). By definition, it is clear that any graph G satisfies tw(G) 6 pw(G).

3.1.4 (Counting) Monadic Second Order Logic

Monadic Second Order Logic (MSO) is an extension of First Order Logic that allows
quantification over sets of objects. We identify graphs with relational structures over a
vocabulary τgraph, consisting of the unary relation symbols Vert and Edge and the binary
relation symbol Inc. A graph G = (V,E) is then represented by a τgraph-structure G with
universe U(G) = V ∪ E such that:

• VertG = V and EdgeG = E represent the vertex set and the edge set, respectively,
and

• IncG = { (v, e) | v ∈ V, e ∈ E and v is incident to e } represents the incidence rela-
tion.

A Monadic Second Order formula contains two types of variables: individual variables to
be used for elements of the universe, usually denoted by lowercase letters x, y, z, . . . and
set variables to be used for subsets of the universe, usually denoted by uppercase letters



50 Preliminaries

X,Y, Z, . . .. Atomic formulas on τgraph are: x = y, x ∈ X, x ∈ Vert, x ∈ Edge, and
Inc(x, y) for all individual variables x, y and set variables X. MSO formulas on τgraph
are built from the atomic formulas using Boolean connectives ¬,∧,∨, and quantification
∃x,∀x,∀X,∀Y for individual variables x and set variables X. MSO formulas are
interpreted in τgraph-structures in the natural way, e.g., Inc(x, y) being true iff in G the
vertex v represented by x is incident to the edge e represented by y.

In a Counting Monadic Second Order (CMSO) formula, we have additional atomic formu-
las cardn,p(X) on set variables X, which are true if the set U represented by the variable
X has size n (mod p). We refer to [91, 131] for a more detailed presentation on (C)MSO
logic. In a p-min-CMSO graph problem (respectively, p-max-CMSO or p-eq-CMSO) Π,
one has to decide the existence of a set S of at most k vertices/edges (respectively, at least
k or exactly k) in an input graph G such that the CMSO expressible predicate PΠ(G,S)
is satisfied.

3.2 Parameterized complexity

Parameterized complexity deals with algorithms for decision problems whose instances
consist of a pair (x, k), where k is a secondary measurement of the input known as the
parameter. A major goal in parameterized complexity is to investigate whether a problem
with parameter k admits an algorithm with running time f(k) · |x|O(1), where f is a
computable function depending only on the parameter and |x| represents the input size.
Parameterized problems that admit such algorithms are called fixed-parameter tractable
and the class of all such problems is denoted by FPT.

This area originated in the 90’s after the seminal work of Downey and Fellows (cf. for
instance the foundational articles [113,114]), and it has become nowadays one of the most
active fields in theoretical computer science. This fact is testified by the fours books
that have been already published on this subject [94, 115, 131, 214], or by the number of
accepted articles on this topic in some of the most competitive conferences in the field
such as STOC, FOCS, SODA, ICALP, ESA, or STACS.

In this section we do not pretend to provide a complete and formal introduction to the field
of parameterized complexity, but to briefly introduce some of the most relevant notions,
with particular emphasis on the concepts that will be used in the next chapters.

During the last decades, parameterized complexity theory has brought forth several algo-
rithmic meta-theorems that imply that a wide range of problems are in FPT (see [188]
for a survey). For instance, as mentioned in Section 3.1.3, Courcelle’s theorem [90] states
that every decision problem expressible in Monadic Second Order Logic can be solved in
linear time when parameterized by the treewidth of the input graph. At the price of gen-
erality, such algorithmic meta-theorems may suffer from the fact that the function f(k) is
huge [144,189] or non-explicit [90,226]. Therefore, it has become a central task in parame-
terized complexity to provide FPT algorithms such that the behavior of the function f(k)
is reasonable; in other words, a function f(k) that could lead to a practical algorithm.



Preliminaries 51

Towards this goal, we say that an FPT parameterized problem is solvable in single-
exponential time if there exists an algorithm solving it in time 2O(k) · nO(1). For instance,
recent results have shown that broad families of problems admit (deterministic or ran-
domized) single-exponential algorithms parameterized by treewidth [96,111,J21]. On the
other hand, single-exponential algorithms are unlikely to exist for certain parameterized
problems [96,199]. Parameterizing by the size of the desired solution, in the case of Ver-
tex Cover the existence of a single-exponential algorithm has been known for a long
time, but it took a while to witness the first (deterministic) single-exponential algorithm
for Feedback Vertex Set [100,165].

In order to define parameters that are closed under taking minors, let us give a more
formal definition of a parameter. Namely, a parameter p is any function mapping graphs
to non-negative integers. Examples of parameters are the size of a minimum vertex cover
or the size of a maximum clique. The parameterized problem associated with a parameter
p asks, for some fixed k, whether p(G) > k for a given graph G. We say that a parameter
p is minor closed if whenever H is a minor of G, p(H) 6 p(G). Examples of minor closed
parameters are the size of a longest path or the size of a minimum feedback vertex set.
A powerful algorithmic consequence of the Graph Minors Theorem [227] is that every
minor closed parameterized problem is in FPT, i.e., it admits an algorithm running in
time f(k) ·nO(1)). The drawback of this result is that the function f(k) and the constants
hidden in the big-Oh notation can be huge, and therefore these general FPT algorithms
can be of limited practical value.

A fundamental concept in parameterized complexity is that of kernelization. A kernel-
ization algorithm, or just kernel, for a parameterized problem Π takes an instance (x, k)
of the problem and, in time polynomial in |x| + k, outputs an instance (x′, k′) such that
|x′|, k′ 6 g(k) for some function g, and (x, k) ∈ Π if and only if (x′, k′) ∈ Π. The function g
is called the size of the kernel and may be viewed as a measure of the “compressibility” of
a problem using polynomial-time preprocessing rules. A kernel is called polynomial (resp.
linear) if the function g(k) is a polynomial (resp. linear) function in k. It is nowadays a
well-known result in the area that a decidable problem is in FPT if and only if it has a
kernelization algorithm. However, the kernel that one obtains in this way is typically of
size at least exponential in the parameter. A natural problem in this context is to find
polynomial or linear kernels for problems that are in FPT.

A breakthrough result of Bodlaender et al. [61] gave the first framework for proving that
certain parameterized problems do not admit polynomial kernels, by establishing so-called
composition algorithms. Together with a result of Fortnow and Santhanam [143] this allows
to exclude polynomial kernels under the assumption that NP * coNP/poly, otherwise
implying a collapse of the polynomial hierarchy to its third level [244]. A very successful
notion for proving such results is that of cross-composition, introduced by Bodlaender et
al. [64].

One of the main interests of parameterized complexity is that it can be proved that, under
some reasonable complexity assumptions, not all NP-hard problems are FPT, and the
distinction between those that are and those that are not provides a refined classification
of “hard” problems, which is not possible in the classical polynomial/NP-hard dichotomy
of computational problems.



52 Preliminaries

More precisely, within parameterized problems, the class W[1] may be seen as the param-
eterized equivalent to the class NP of classical optimization problems. Without entering
into details (see [94, 115, 131, 214] for the formal definitions), a parameterized problem
being W[1]-hard can be seen as a strong evidence that this problem is not FPT. The
canonical example of W[1]-hard problem is Independent Set parameterized by the size
of the solution.

The class W[2] of parameterized problems is a class that contains W[1], and such that
the problems that are W[2]-hard are even more unlikely to be FPT than those that are
W[1]-hard (again, see [94,115,131,214] for the formal definitions). The canonical example
of W[2]-hard problem is Dominating Set parameterized by the size of the solution.

For i ∈ [1, 2], to transfer W[i]-hardness from one problem to another, one uses a param-
eterized reduction, which given an input I = (x, k) of the source problem, computes in
time f(k) · |I|c, for some computable function f and a constant c, an equivalent instance
I ′ = (x′, k′) of the target problem, such that k′ is bounded by a function depending only
on k.

Hence, an equivalent definition of W[1]-hard (resp. W[2]-hard) problem is any problem
that admits a parameterized reduction from Independent Set (resp. Dominating Set)
parameterized by the size of the solution. The theory of parameterized complexity is based
on the assumption that FPT 6= W[1], which is stronger than P 6= NP. Hence, assuming
that FPT 6= W[1], proving the W[1]-hardness of a parameterized problem rules out the
existence of an FPT algorithm to solve it.

Even if a parameterized problem is W[1]-hard or W[2]-hard, it may still be solvable in
polynomial time for fixed values of the parameter: such problems are said to belong to
the complexity class XP. Formally, a parameterized problem whose instances consist of a
pair (x, k) is in XP if it can be solved by an algorithm with running time f(k) · |x|g(k),
where f, g are computable functions depending only on the parameter and |x| represents
the input size. For example, Independent Set and Dominating Set parameterized by
the solution size are easily seen to belong to XP.

There are even harder parameterized problems: they may be NP-hard for fixed values
of the parameter, like Vertex Coloring parameterized by the number of colors. Such
problems are called para-NP-hard. Note that, unless P = NP, a para-NP-hard problem
cannot be in XP, hence it cannot be FPT either.

Logically, if stronger complexity assumptions are assumed, stronger hardness results might
be proved. In this direction, it is worth mentioning the famous Exponential Time Hy-
pothesis (ETH) of Impagliazzo et al. [170], stating that there exists δ > 0 such that the
3-Sat problem with formulas on n variables does not allow an algorithm running in time
2δn · nO(1). It is well-known [94] that the ETH implies that FPT 6= W[1], which in turn
implies that P 6= NP. For instance, a typical result that one can prove assuming the ETH
(cf. [131, Chapter 16]) is that Vertex Cover parameterized by the size of the solution
cannot be solved in time 2o(k) · nO(1).



Preliminaries 53

3.3 Some classical problems

For the sake of completeness, we provide here the definition of some classical (non-
parameterized) problems mentioned in this manuscript, all being NP-hard except Maxi-
mum Matching that is in P. For a complete list of classical NP-hard optimization prob-
lems, we refer the reader to [154].

Maximum Matching
Input: A graph G = (V,E).
Output: A subset E′ ⊆ E of the maximum size such that no two edges in E′ share a

common endpoint.

Maximum Clique
Input: A graph G = (V,E).
Output: A subset S ⊆ V of the maximum size such that there is an edge in E between

any two vertices in S.

Maximum Independent Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of the maximum size such that there is no edge in E between

any two vertices in S.

Minimum Vertex Coloring
Input: A graph G = (V,E).
Output: A function f : V → {1, 2, . . . , c} such that f(u) 6= f(v) for each

edge {u, v} ∈ E and such that c is minimized.

Minimum Edge Coloring
Input: A graph G = (V,E).
Output: A function f : E → {1, 2, . . . , c} such that f(e) 6= f(e′) whenever e and e′

share an endpoint and such that c is minimized.

Minimum Vertex Cover
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that for every edge e = {u, v} ∈ E,

either u ∈ S or v ∈ S.

Minimum Feedback Vertex Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \ S] has no cycles.



54 Preliminaries

Minimum Odd Cycle Transversal
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \ S] is bipartite.

Minimum Treewidth-t Vertex Deletion
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \S] has treewidth at most t.

Minimum Dominating Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that for every vertex u ∈ V \ S

there is a vertex v ∈ S such that {u, v} ∈ E.

Minimum Connected Dominating Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that for every vertex u ∈ V \ S

there is a v ∈ S such that {u, v} ∈ E, and such that G[S] is connected.

Minimum Acyclic Dominating Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that for every vertex u ∈ V \ S

there is a v ∈ S such that {u, v} ∈ E, and such that G[S] is a forest.

Minimum Independent Dominating Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that for every vertex u ∈ V \ S

there is a v ∈ S such that {u, v} ∈ E, and G[S] is an independent set.

Minimum Total Dominating Set
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that for every vertex u ∈ V

there is a vertex v ∈ S such that {u, v} ∈ E.

Minimum Edge Dominating Set
Input: A graph G = (V,E).
Output: A subset F ⊆ E of minimum size such that for every edge {u, v} ∈ E \ F

there is an edge {w, z} ∈ F such that {u, v} ∩ {w, z} 6= ∅.



Preliminaries 55

Longest Path
Input: A graph G = (V,E).
Output: A path in G with the maximum number of edges.

Hamiltonian Path
Input: A graph G = (V,E).
Question: Does G contain a path of length |V |?

Hamiltonian Cycle
Input: A graph G = (V,E).
Question: Does G contain a cycle of length |V |?

Cycle Packing
Input: A graph G = (V,E).
Output: A collection of vertex-disjoint cycles in G with maximum number of cycles.

Maximum Induced Matching
Input: A graph G = (V,E).
Output: A collection of edges in G of maximum cardinality such that the

subgraph induced by their endvertices is 1-regular.

Minimum Chordal Vertex Deletion
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \ S] is chordal.

Minimum Split Vertex Deletion
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \ S] is a split graph.

Minimum Interval Vertex Deletion
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \ S] is an interval graph.

Minimum Proper Interval Vertex Deletion
Input: A graph G = (V,E).
Output: A subset S ⊆ V of minimum size such that G[V \ S] is a proper

interval graph.

3-Sat
Input: A formula φ in conjunctive normal form, in which each clause has 3 variables.
Question: Is there a 0/1 assignment of the variables that satisfies every clause of φ?





Chapter 4

Summary of my contributions

This chapter is devoted to provide a summary of (most of) the research contributions that I
have made after my Ph.D. We present these contributions divided into four categories: FPT
algorithms in Section 4.1, kernelization in Section 4.2, combinatorial results in Section 4.3,
and results for problems arising from applications in Section 4.4.

For each article, we provide a succinct description of the results (like an abstract with
some extra explanations, figures, or contextualization), and in some cases links to other
contributions. Within each category, the results are presented chronologically, from older
to newer research, and not by publication date. Sometimes, several articles are grouped
within the same item.

In order to keep the exposition as concise as possible, not all the definitions of the notions
mentioned in this chapter are provided in the manuscript. We refer the reader to the
corresponding articles for all the details.

Contents

4.1 FPT algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Combinatorial results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Problems arising from applications . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 FPT algorithms

These are some of the contributions that I have made to the area of FPT algorithms during
the last years. A number of these contributions are devoted to the existence (or not) of
single-exponential algorithms for several problems or families of problems, on both general
and particular graph classes. Some of the articles summarized below also contain“classical”
complexity results, such as NP-hardness results, and polynomial-time algorithms.

1. Dynamic programming for topologically constrained graphs.

In [J21] we provide a framework for the design and analysis of dynamic programming
algorithms for surface-embedded graphs on n vertices and branchwidth1 at most k.

1Informally, branchwidth is a graph invariant (very similar to treewidth) that measures the topological
complexity of a graph, in the sense that the higher the branchwidth of a graph is, the more it differs from
a tree.

57



58 Summary of my contributions

Our technique applies to general families of problems where standard dynamic pro-
gramming runs in 2O(k·log k) · n steps. Intuitively, such a running time appears when
the natural approach is to enumerate, in the tables of the dynamic programming
algorithm, all possible packings (that is, collections of pairwise disjoint sets) of the
considered separator in the tree-like decomposition. For instance, this is the case
when solving the Longest Path or the Connected Vertex Cover problems;
such problems are commonly called connectivity problems.

Our approach combines tools from topological graph theory and analytic combi-
natorics. In particular, we introduce a new type of branch decomposition called
surface cut decomposition, generalizing sphere cut decompositions of planar graphs
introduced by Seymour and Thomas [229], which has nice combinatorial proper-
ties. Namely, the number of partial solutions that can be arranged on a surface cut
decomposition can be upper-bounded by the number of non-crossing partitions on
surfaces with boundary, which we enumerate in a separate article [J20]. It follows
that partial solutions can be represented by a single-exponential (in the branchwidth
k) number of configurations. This proves that, when applied on surface cut decom-
positions, dynamic programming runs in 2O(k) · n steps. That way, we considerably
extend the class of problems that can be solved in running times with a single-
exponential dependence on branchwidth and unify/improve most previous results in
this direction.

In a subsequent work [C33], we extend the above framework to the more general
class of H-minor-free graphs. The main contribution here is to introduce a new
type of branch decomposition for H-minor-free graphs, called an H-minor-free cut
decomposition, and to show that they can be constructed in Oh(n3) steps, where the
hidden constant depends exclusively on H. This decomposition generalizes the one
for graphs of bounded genus discussed above [J21].

We show that the separators of such decompositions have connected packings whose
behavior can be described in terms of a combinatorial object called `-triangulation,
defined as follows. Let Dk be a disc with k vertices on its border, labeled coun-
terclockwise as 1, 2, . . . , k. By an `-triangulation of Dk we mean a maximal set of
diagonals with no pairwise crossing-set of size `+1. In other words, the graph whose
vertices are the diagonals of the `-triangulation and there is an edge between two
diagonals if and only if they cross in an internal vertex, does not contain K`+1 as a
subgraph. This concept generalizes the classical notion of triangulation of a disc, as
1-triangulations correspond to triangulations.

Using the notion of `-triangulation, our main result is that when applied on H-
minor-free cut decompositions, dynamic programming runs in 2Oh(k) · nO(1) steps.
This broadens substantially the class of problems that can be solved deterministically
in single-exponential time for H-minor-free graphs.

It should be mentioned that, some time after the above results appeared, several ar-
ticles appeared providing single-exponential algorithms for many connectivity prob-
lems on general graphs [60, 96, 138], hence improving over the results we presented
in [C33,J21].



Summary of my contributions 59

2. Fast minor testing on general and planar graphs.

The H-Minor containment problem asks whether a graph G contains some fixed
graph H as a minor, that is, whether H can be obtained by some subgraph of G af-
ter contracting edges. The derivation of a polynomial-time algorithm for H-Minor
containment is one of the most important and technical parts of the Graph Minors
theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic
application of this theory. H-Minor containment for graphs of bounded branch-
width is a basic ingredient of this algorithm. A first solution of this problem, based
on the ideas introduced by Robertson and Seymour, was given by Hicks [169], pro-
viding an algorithm that in time O(3k

2 · (h+ k − 1)! ·m) decides if a graph G with
m edges and branchwidth k, contains a fixed graph H on h vertices as a minor.

In [J1] we improve the dependence on k of Hicks’ result by showing that checking if
H is a minor of G can be done in time O(2(2k+1)·log k · h2k · 22h2 ·m). We set up an
approach based on a combinatorial object called rooted packing, which captures the
properties of the potential models of subgraphs of H that we seek in our dynamic
programming algorithm. This formulation with rooted packings allows us to speed
up the algorithm when G is embedded in a fixed surface, obtaining the first single-
exponential algorithm for minor containment testing. Namely, it runs in time 2O(k) ·
h2k · 2O(h) · n, with n = |V (G)|. Finally, we show that slight modifications of our
algorithm permit to solve some related problems within the same time bounds, like
induced minor or contraction containment.

In another article [J2], we focus on the planar case to provide an improved algorithm.
Namely, we give an algorithm that, given a planar n-vertex graph G and an h-
vertex graph H, either finds in time O(2O(h) · n + n2 · log n) a model of H in G,
or correctly concludes that G does not contain H as a minor. Our algorithm is the
first single-exponential algorithm for this problem and improves all previous minor
testing algorithms in planar graphs. In addition, we can enumerate and count the
number of models within the same time bounds.

Our technique is based on a novel approach called partially embedded dynamic pro-
gramming, which differs substantially from the one we use in [J1]. More precisely,
our technique is inspired by the technique of embedded dynamic programming intro-
duced by Dorn [110] for solving Planar Subgraph Isomorphism for a pattern of
size h and an input graph of size n in time 2O(h) · n. There, one controls the partial
solutions by the ways the separators of G can be routed through the pattern. The
difference (and difficulty) concerning Planar H-Minor Containment is that we
look for a model M of size O(n) out of 2O(n) possible non-isomorphic models of H
in G. In partially embedded dynamic programming, we look for potential models
of H in G with a “magnifying glass” only at a given separator S of G. That is, we
consider a collection A of graphs A arising from ‘decontracting’ a part of H, namely
the part interacting with S. In this way, each graph A behaves like a subgraph of G
inside the intersection with S, and outside that intersection A behaves like a minor
of G; this is why we call our dynamic programming technique “partially embedded”.



60 Summary of my contributions

3. Hitting and harvesting pumpkins.

The c-pumpkin is the graph with two vertices linked by c > 1 parallel edges. A
5-pumpkin is shown in Figure 4.1.

Figure 4.1: A 5-pumpkin.

A c-pumpkin-model in a graph G is a pair {A,B} of disjoint subsets of vertices of
G, each inducing a connected subgraph of G, such that there are at least c edges in
G between A and B. In [J14] we focus on hitting and packing c-pumpkin-models
in a given graph in the realm of approximation algorithms and parameterized algo-
rithms. We give an FPT algorithm running in time 2O(k)nO(1) deciding, for any fixed
c > 1, whether all c-pumpkin-models can be hit by at most k vertices. This gen-
eralizes known single-exponential FPT algorithms for Vertex Cover and Feed-
back Vertex Set, which correspond to the cases c = 1, 2 respectively. Finally,
we present an O(log n)-approximation algorithm for both the problems of hitting
all c-pumpkin-models with a smallest number of vertices, and packing a maximum
number of vertex-disjoint c-pumpkin-models.

This article, beside being important by its own at the moment it was published,
played an important role in forthcoming fundamental results in the area of single-
exponential algorithms for the very general Planar-F-Deletion problem [137,
J15]; see Chapter 5.

4. Single-exponential algorithms via protrusion decompositions.

In many cases, the key ingredient in order to solve a hard graph problem is to find an
appropriate decomposition of the input graph, which allows to take advantage of the
structure given by the graph class and/or the problem under study. In [J15] we follow
this paradigm and present a novel linear-time algorithm to compute a decomposition
for graphs G that have a set X ⊆ V (G), called t-treewidth-modulator, such that the
treewidth of G − X is at most some constant t − 1. This decomposition is called
a protrusion decomposition. We then exploit this decomposition in two different
ways: to analyze the size of kernels (as discussed later) and to obtain efficient FPT
algorithms. Let us focus on this second application here.

Let F be a fixed finite family of graphs containing at least one planar graph. Given an
n-vertex graph G and a non-negative integer k, Planar-F-Deletion asks whether
G has a set X ⊆ V (G) such that |X| 6 k and G−X is H-minor-free for every H ∈ F .
This problem encompasses a number of well-studied parameterized problems such as
Vertex Cover, Feedback Vertex Set, and Treewidth-t Vertex Deletion.

As an application of our decomposition algorithm, we present the first single-
exponential algorithm to solve Planar-F-Deletion. Namely, our algorithm runs
in time 2O(k) · n2, which is asymptotically optimal with respect to k. So far, single-



Summary of my contributions 61

exponential algorithms were only known for special cases of the family F .

Full details of this contribution are provided in Chapter 5.

5. Parameterized domination on circle graphs.

A circle graph is the intersection graph of a set of chords in a circle. See Figure. 4.2
for an example of a circle graph G together with a circle representation of it.

1

2

3

4

5

6

7 8

1

8

2

3

7

5

6

4

G

Figure 4.2: A circle graph G on 8 vertices together with a circle representation of it.

Keil [181] proved that Dominating Set, Connected Dominating Set, and To-
tal Dominating Set are NP-complete on circle graphs. To the best of our knowl-
edge, nothing was known about the parameterized complexity of these problems
on circle graphs. In [J7] we prove the following results, which contribute in this
direction:

• Dominating Set, Independent Dominating Set, Connected Dominat-
ing Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-
hard on circle graphs, parameterized by the size of the solution.

• Whereas both Connected Dominating Set and Acyclic Dominating Set
are W[1]-hard on circle graphs, it turns out that Connected Acyclic Dom-
inating Set is polynomial-time solvable on circle graphs.

• If T is a given tree, deciding whether a circle graph G has a dominating set
inducing a graph isomorphic to T is NP-complete when T is in the input, and
FPT when parameterized by t = |V (T )|. We prove that the FPT algorithm runs

in subexponential time, namely 2
O(t· log log t

log t
) · nO(1), where n = |V (G)|.

6. The role of planarity in connectivity problems parameterized by
treewidth.

For some years it was believed that for “connectivity” problems such as Hamilto-
nian Cycle, algorithms running in time 2O(tw) · nO(1) –called single-exponential, as
mentioned in the introduction– existed only on planar [112] and other topologically
constrained graph classes [111, C33, J21], where tw stands for the treewidth of the
n-vertex input graph. This was recently disproved by Cygan et al. [96], Bodlaender
et al. [60], and Fomin et al. [138], who provided single-exponential algorithms on



62 Summary of my contributions

general graphs for most connectivity problems that were known to be solvable in
single-exponential time on topologically constrained graphs. In [J6] we further in-
vestigate the role of planarity in connectivity problems parameterized by treewidth,
and convey that several problems can indeed be distinguished according to their
behavior on planar graphs.

Known results from the literature [112, 199] imply that there exist problems, like
Cycle Packing, that cannot be solved in time 2o(tw log tw) · nO(1) on general graphs
but that can be solved in time 2O(tw) · nO(1) when restricted to planar graphs. Our
main contribution is to show that there exist natural problems that can be solved in
time 2O(tw log tw)·nO(1) on general graphs but that cannot be solved in time 2o(tw log tw)·
nO(1) even when restricted to planar graphs. The existence of such problems was
not known prior to our work.

Furthermore, we prove that Planar Cycle Packing and Planar Disjoint
Paths cannot be solved in time 2o(tw) · nO(1). The mentioned negative results hold
unless the Exponential Time Hypothesis (ETH) fails. We feel that our results con-
stitute a first step in a subject that can be further exploited.

7. Improved FPT algorithms for weighted independent set on bull-free
graphs.

Recently, Thomassé et al. [235] gave an FPT algorithm for Weighted Independent
Set on bull-free graphs parameterized by the weight of the solution, running in time
2O(k5) · n9. The bull graph is depicted in Figure 4.3.

Figure 4.3: The bull.

In [C32] we improve this running time to 2O(k2) ·n7. As a byproduct, we also improve
the previous Turing-kernel for this problem from O(k5) to O(k2). Our approach
consists in locally improving the algorithm provided by Thomassé et al. [235], by
carefully analyzing some of the steps and using further structural properties of bull-
free graphs given by Chudnovsky [86,87].

Furthermore, for the subclass of bull-free graphs without holes2 of length at most

2p − 1 for p > 3, we speed up the running time to 2O(k·k
1

p−1 ) · n7. As p grows,
this running time is asymptotically tight in terms of k, since we prove that for each
integer p > 3, Weighted Independent Set cannot be solved in time 2o(k) · nO(1)

in the class of {bull, C4, . . . , C2p−1}-free graphs unless the ETH fails.

2A hole in a graph is an induced cycle of length at least 4.



Summary of my contributions 63

8. A polynomial-time algorithm for outerplanar diameter improvement.

The Outerplanar Diameter Improvement problem asks, given a graph G and
an integer D, whether it is possible to add edges to G in a way that the resulting
graph is outerplanar3 and has diameter at most D. We provide in [J9] a dynamic
programming algorithm that solves this problem in polynomial time. This algorithm
heavily exploits the structure of outerplanar graphs, and runs in time O(n3) for
connected input graphs on n vertices, and in time O(n7) or O(n9) for disconnected
input graphs, depending on whether D is odd or even, respectively. We believe that
our approach might be interesting for generalizations or variations of Outerplanar
Diameter Improvement, such as the one where we demand that the completed
graph has fixed outerplanarity or is series-parallel.

The Outerplanar Diameter Improvement problem is interesting because, in
particular, it demonstrates several structural analogues to the celebrated and chal-
lenging Planar Diameter Improvement problem, where the resulting graph
should, instead, be planar. The complexity status of this latter problem is open.

It is worth mentioning that, while this result is not an FPT algorithm, but a
polynomial-time one, it fits in this section since the complexity of Planar Di-
ameter Improvement is a relevant open problem in parameterized complexity.

9. An FPT 2-approximation for tree-cut decomposition.

The tree-cutwidth of a graph is a graph parameter defined by Wollan [242] with the
help of tree-cut decompositions. In certain cases, tree-cutwidth appears to be more
adequate than treewidth as an invariant that, when bounded, can accelerate the res-
olution of intractable problems. We skip the formal definition of tree-cutwidth, since
it is somehow technical, but in Figure 4.4 we show the containment relations among
graphs classes of bounded treewidth, of bounded tree-cutwidth, and of bounded
treewidth and bounded degree.

bounded ∆ and tcw

bounded tcw

bounded tw

c© Eunjung Kim

Figure 4.4: Relations among classes of bounded treewidth (tw) and tree-cut width (tcw).

While designing algorithms for problems with bounded tree-cutwidth, it is important
to have a parametrically tractable way to compute the exact value of this parameter
or, at least, some constant approximation of it. In [C31] we give a parameterized 2-
approximation algorithm for the computation of tree-cutwidth; for an input n-vertex
graph G and an integer w, our algorithm either confirms that the tree-cutwidth of
G is more than w or returns a tree-cut decomposition of G certifying that its tree-
cutwidth is at most 2w, in time 2O(w2 logw) · n2. Prior to this work, no constructive

3A graph is outerplanar if it admits a planar embedding such that all vertices lie on the outerface.



64 Summary of my contributions

parameterized algorithms, even approximated ones, existed for computing the tree-
cutwidth of a graph. As a consequence of the Graph Minors series by Robertson and
Seymour, only the existence of a decision algorithm was known.

10. Parameterized algorithms for min-max multiway cut and list digraph ho-
momorphism.

In [J16] we design FPT algorithms for two parameterized problems:

• The first is List Digraph Homomorphism: given two digraphs G and H and
a list of allowed vertices of H for every vertex of G, the question is whether
there exists a homomorphism from G to H respecting the list constraints.

• The second problem is a variant of Multiway Cut, namely Min-Max Multi-
way Cut: given a graph G, a non-negative integer `, and a set T of r terminals,
the question is whether we can partition the vertices of G into r parts such that
(a) each part contains one terminal and (b) there are at most ` edges with only
one endpoint in this part. We parameterize List Digraph Homomorphism
by the number w of edges of G that are mapped to non-loop edges of H and
we give a time 2O(`·log h+`2·log `) ·n4 · log n algorithm, where h is the order of the
host graph H. We also prove that Min-Max Multiway Cut can be solved in
time 2O((`r)2 log `r) · n4 · log n.

Our approach introduces a general problem, called List Allocation, whose expres-
sive power permits the design of parameterized reductions of both aforementioned
problems to it. Then our results are based on an FPT algorithm for the List Al-
location problem that is designed using a suitable adaptation of the randomized
contractions technique introduced by Chitnis et al. [85].

11. An O(log OPT)-approximation for covering/packing minor models of θr.

Given two graphs G and H, we define v-coverH(G) (resp. e-coverH(G)) as the min-
imum number of vertices (resp. edges) whose removal from G produces a graph
without any minor isomorphic to H. Also v-packH(G) (resp. e-packH(G)) is the
maximum number of vertex- (resp. edge-) disjoint subgraphs of G that contain a
minor isomorphic to H. We denote by θr the r-pumpkin, that is, the graph with
two vertices and r parallel edges between them; see Figure 4.1.

When H = θr, the parameters v-coverH , e-coverH , v-packH , and e-packH are NP-
hard to compute (for sufficiently large values of r). Drawing upon our combinatorial
results in [J8], we give in [C29] an algorithmic proof that if v-packθr(G) 6 k, then v-
coverθr(G) = O(k log k), and similarly for e-packθr and e-coverθr . In other words, the
class of graphs containing θr as a minor has the vertex/edge Erdős-Pósa property,
for every positive integer r.

Using the algorithmic machinery of our proofs, we introduce a unified approach
for the design of an O(log OPT)-approximation algorithm for v-packθr , v-coverθr , e-
packθr , and e-coverθr that runs in O(n · log n ·m) steps. Also, we derive several new
Erdős-Pósa-type results from the techniques that we introduce.



Summary of my contributions 65

12. Parameterized complexity dichotomy for (r, `)-Vertex Deletion.

For two integers r, ` > 0, a graph G = (V,E) is an (r, `)-graph if V can be partitioned
into r independent sets and ` cliques. In the parameterized (r, `)-Vertex Deletion
problem, given a graph G and an integer k, one has to decide whether at most k
vertices can be removed from G to obtain an (r, `)-graph. This problem is NP-hard
if r+ ` > 1 [73] and encompasses several relevant problems such as Vertex Cover
and Odd Cycle Transversal.

The parameterized complexity of (r, `)-Vertex Deletion was known for all values
of (r, `) except for (2, 1), (1, 2), and (2, 2). In [J4] we prove, using the technique
of iterative compression, that each of these three cases is FPT and, furthermore,
solvable in single-exponential time, which is asymptotically optimal in terms of k.

A summary of the parameterized complexity of (r, `)-Vertex Deletion is shown
in Table 4.1, where for each value of (r, `), the name of the problem (if any), the
function f(k) of the corresponding FPT algorithm, and the appropriate references
are given. We denote by VC and OCT the complementary problems of Vertex
Cover (VC) and Odd Cycle Transversal (OCT), respectively. We denote by
Split D. the Split Vertex Deletion problem.

The results of [J4] correspond to the gray boxes, ‘p-NP-c’ stands for ‘para-NP-
complete’, and ‘P’ means that the corresponding problem is polynomial-time solv-
able.

3 p-NP-c p-NP-c p-NP-c p-NP-c

[73] [73] [73] [73]

OCT
2 2.31k 3.31k 3.31k p-NP-c

[201] [73]

VC Split D.
1 1.27k 2k 3.31k p-NP-c

[84] [155] [73]

VC OCT
0 P 1.27k 2.31k p-NP-c

trivial [84] [201] [73]

�����`
r 0 1 2 3

Table 4.1: Summary of known results for the (r, `)-Vertex Deletion problem. The
results of [J4] correspond to the gray cells.



66 Summary of my contributions

We also consider in [J4] the version of (r, `)-Vertex Deletion where the set S of
at most k vertices to be removed has to further satisfy that G[S] is an independent
set. We call this problem Independent (r, `)-Vertex Deletion. Note that, in
contrast to (r, `)-Vertex Deletion, the cases (r, `) and (`, r) may not be symmetric
anymore. This problem has received little attention in the literature and, excluding
the most simple cases, to the best of our knowledge only the case (2, 0) has been
studied by Marx et al. [204], who proved it to be FPT. Similarly to (r, `)-Vertex
Deletion, the problem is para-NP-complete if max{r, `} > 3. As an additional
motivation for studying this problem, note that solving Independent (r, `)-Vertex
Deletion on an input (G, k) corresponds exactly to deciding whether G is an (r +
1, `)-graph where one of the independent sets has size at most k.

We manage to provide a complete characterization of the parameterized complexity
of Independent (r, `)-Vertex Deletion. The complexity landscape turns out to
be richer than the one for (r, `)-Vertex Deletion, and one should rather speak
about a trichotomy: the problem is polynomial-time solvable if r 6 1 and ` 6 2,
NP-hard and FPT if r = 2 and ` 6 2, and para-NP-complete otherwise. In particular,
as discussed at the end of the previous paragraph, it follows from our results that
for ` ∈ {0, 1, 2}, the recognition of the class of (3, `)-graphs such that one of the
independent sets has size at most k is in FPT with parameter k. A summary of
the complexity of Independent (r, `)-Vertex Deletion is shown in Table 4.2,
where our results correspond to the gray boxes. We would like to note that some of
the polynomial cases, such as the case (1, 0), are not difficult to prove and may be
already known, although we are not aware of it.

3 p-NP-c p-NP-c p-NP-c p-NP-c

[73] [73] [73] [73]

2 P P 22O(k2)
p-NP-c

[73]

1 P P 22O(k2)
p-NP-c

[73]

IVC IOCT

0 P P 22O(k2)
p-NP-c

trivial [204] [73]

�����`
r 0 1 2 3

Table 4.2: Summary of known results for Independent (r, `)-Vertex Deletion. The
results of [J4] correspond to the gray cells.



Summary of my contributions 67

13. On the complexity of computing the k-restricted edge-connectivity of a
graph.

The k-restricted edge-connectivity of a graph G, denoted by λk(G), is defined as the
minimum size of an edge set whose removal leaves exactly two connected compo-
nents each containing at least k vertices. This graph invariant, which can be seen as
a generalization of a minimum edge-cut, has been extensively studied from a com-
binatorial point of view. However, very little was known about the complexity of
computing λk(G).

Recently, in the parameterized complexity community the notion of good edge sep-
aration of a graph has been defined and used extensively to design parameterized
algorithms [85, 95, 180, 220, J16], which happens to be essentially the same as the
k-restricted edge-connectivity.

Motivated by the relevance of this invariant from both combinatorial and algorith-
mic points of view, and motivated by our work in [J16] using good edge separations,
we initiate in [J18] a systematic study of its computational complexity, with spe-
cial emphasis on its parameterized complexity for several choices of the parameters.
We provide a number of NP-hardness and W[1]-hardness results, as well as FPT
algorithms.

The problems we consider and the results we obtain in [J18] are summarized in
Table 4.3. A connected graph G is called λk-connected if λk(G) exists.

Problem Classical Parameterized complexity with parameter
complexity k + ` k ` k + ∆

Is G NPc, even ? FPT ? FPT
λk-connected ? if ∆ 6 5

NPh, even if G FPT W[1]-hard FPT FPT
λk(G) 6 ` ? is λk-connected No poly kernels

Table 4.3: Summary of our results, where ∆ denotes the maximum degree of the input
graph G, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard). The symbol ‘?’
denotes that the problem is not defined for that parameter.

14. On the (parameterized) complexity of recognizing well-covered (r, `)-
graphs.

An (r, `)-partition of a graph G is a partition of its vertex set into r independent sets
and ` cliques. As mentioned before, a graph is (r, `) if it admits an (r, `)-partition.
A graph is well-covered if every maximal independent set is also maximum. A graph
is (r, `)-well-covered if it is both (r, `) and well-covered.

In [C22] we consider two different decision problems. In the (r, `)-Well-Covered
Graph problem ((r, `)wcg for short), we are given a graph G, and the question
is whether G is an (r, `)-well-covered graph. In the Well-Covered (r, `)-Graph
problem (wc(r, `)g for short), we are given an (r, `)-graph G together with an (r, `)-
partition of V (G) into r independent sets and ` cliques, and the question is whether



68 Summary of my contributions

G is well-covered. We classify most of these problems into P, coNP-complete, NP-
complete, NP-hard, or coNP-hard.

In addition, we consider the parameterized complexity of these problems for several
choices of parameters, such as the size α of a maximum independent set of the input
graph, its neighborhood diversity, or the number ` of cliques in an (r, `)-partition.
In particular, we show that the parameterized problem of deciding whether a gen-
eral graph is well-covered parameterized by α can be FPT-reduced to the wc(0, `)g
problem parameterized by `, and we prove that this latter problem is in XP but does
not admit polynomial kernels unless NP ⊆ coNP/poly.

15. Maximum cuts in edge-colored graphs.

The input of the Maximum Colored Cut problem consists of a graph G = (V,E)
with an edge-coloring c : E → {1, 2, 3, . . . , p} and a positive integer k > 0, and
the question is whether G has a nontrivial edge cut using at least k colors. The
Colorful Cut problem has the same input but asks for a nontrivial edge cut
using all colors.

Unlike what happens for the classical Maximum Cut problem, we prove in [C34]
that both problems are NP-complete even on complete, planar, or bounded treewidth
graphs. Furthermore, we prove that Colorful Cut is NP-complete even when each
color class induces a clique of size at most 3, but is trivially solvable when each color
induces a K2. On the positive side, we prove that Maximum Colored Cut is FPT
parameterized by either k or p, and that it admits a cubic kernel in both cases.

16. Optimal algorithms for hitting (topological) minors on graphs of bounded
treewidth.

For a fixed collection of graphs F , the F-M-Deletion problem consists in, given a
graph G and an integer k, decide whether there exists S ⊆ V (G) with |S| 6 k such
that G \ S does not contain any of the graphs in F as a minor. This problem has a
huge expressive power, as it generalizes, for example, Vertex Cover, Feedback
Vertex Set, or Vertex Planarization.

We are interested in the parameterized complexity of F-M-Deletion when the
parameter is the treewidth of G, denoted by tw. Our objective in [C27] is to de-
termine, for a fixed F , the smallest function fF such that F-M-Deletion can be
solved in time fF (tw) ·nO(1) on n-vertex graphs. We also consider the version of the
problem where the graphs in F are forbidden as topological minors, which we call
F-TM-Deletion. For the sake of readability, we use the notation F-Deletion in
statements that apply to both F-M-Deletion and F-TM-Deletion.

We present a number of upper and lower bounds for F-Deletion parameterized by
treewidth, several of them being tight. Namely, we prove the following results4:

(a) For every F , F-Deletion can be solved in time O∗
(

22O(tw·log tw)
)

.

(b) For every connected5 F containing at least one planar graph (resp. subcubic

4We use the notation O∗(·) that suppresses polynomial factors depending on the size of the input graph.
5A connected collection F is a collection containing only connected graphs.



Summary of my contributions 69

planar graph), F-M-Deletion (resp. F-TM-Deletion) can be solved in
time O∗

(
2O(tw·log tw)

)
. This is proved using and enhancing the machinery of

boundaried graphs and small sets of representatives introduced by Bodlaender
et al. [63].

(c) For any connected F , F-Deletion cannot be solved in time O∗(2o(tw)).

(d) When F = {Ki}, the clique on i vertices, {Ki}-Deletion cannot be solved in
time O∗(2o(tw·log tw)) for i > 4. Note that {Ki}-Deletion can be solved in time
O∗(2O(tw)) for i 6 3 [96], and that the case i = 4 is tight by item (b) above (as
K4 is planar).

(e) When F = {Ci}, the cycle on i vertices, {Ci}-Deletion can be solved in time
O∗(2O(tw)) for i 6 4, and cannot be solved in time O∗(2o(tw·log tw)) for i > 5.
Note that, by items (b) and (c) above, this settles completely the complexity
of {Ci}-Deletion for every i > 3. The single-exponential algorithm for {C4}-
Deletion uses the rank-based approach introduced by Bodlaender et al. [60].

(f) When F = {Pi}, the path on i vertices, {Pi}-Deletion can be solved in time
O∗(2O(tw)) for i 6 4, and cannot be solved in time O∗(2o(tw·log tw)) for i > 6.
Note that, by items (b) and (c) above, this settles completely the complexity
of {Pi}-Deletion for every i > 2, except for i = 5, where there is still a gap.

The lower bounds presented above hold unless the ETH fails, and the superexponen-
tial ones are inspired by a reduction of Marcin Pilipczuk [218].

17. Ruling out FPT algorithms for Weighted Coloring on forests.

Given a graph G, a proper k-coloring of G is a partition c = (Si)i∈[1,k] of V (G)
into k stable sets S1, . . . , Sk. Given a weight function w : V (G) → R+, the weight
of a color Si is defined as w(i) = maxv∈Si w(v) and the weight of a coloring c as
w(c) =

∑k
i=1w(i). Guan and Zhu [164] defined the weighted chromatic number of a

pair (G,w), denoted by σ(G,w), as the minimum weight of a proper coloring of G.
For a positive integer r, they also defined σ(G,w; r) as the minimum of w(c) among
all proper r-colorings c of G. The complexity of determining σ(G,w) when G is a
tree was open for almost 20 years, until Araújo et al. [44] recently proved that the
problem cannot be solved in time no(logn) on n-vertex trees unless the ETH fails.

Our objective in [C23] is to provide hardness results for computing σ(G,w) and
σ(G,w; r) when G is a tree or a forest, relying on complexity assumptions weaker
than the ETH. Namely, we study the problem from the viewpoint of parameterized
complexity, and we assume the weaker hypothesis FPT 6= W[1]. Building on the
techniques of Araújo et al. [44], we prove that when G is a forest, computing σ(G,w)
is W[1]-hard parameterized by the size of a largest connected component of G, and
that computing σ(G,w; r) is W[2]-hard parameterized by r. Our results rule out the
existence of FPT algorithms for computing these invariants on trees or forests for
many natural choices of the parameter.



70 Summary of my contributions

18. On the complexity of finding internally vertex-disjoint long directed
paths.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v)
of F by a directed (u, v)-path. In [S36] we are interested in the (parameterized) com-
plexity of several problems consisting in deciding whether a given digraph contains
as a subdigraph a subdivision of a spindle, defined as follows. For k positive integers
`1, . . . , `k, an (`1, . . . , `k)-spindle is the digraph containing k paths P1, . . . , Pk from a
vertex u to a vertex v, such that |E(Pi)| = `i for 1 6 i 6 k and V (Pi)∩V (Pj) = {u, v}
for 1 6 i 6= j 6 k. If `i = ` for 1 6 i 6 k, an (`1, . . . , `k)-spindle is also called a
(k × `)-spindle. See Figure 4.5 for an example.

u v

Figure 4.5: A (4, 3, 2)-spindle. This digraph contains a subdivision of a (3 × 2)-spindle,
but not of a (3× 3)-spindle.

The problems we consider generalize both the Maximum Flow and Longest Path
problems. In particular, we obtain the following complexity dichotomy: for a fixed
` > 1, finding the largest k such that an input digraph G contains a subdivision of
a (k × `)-spindle is polynomial-time solvable if ` 6 3, and NP-hard otherwise.

We place special emphasis on finding spindles with exactly two paths, which have
recently attracted some interest in the literature [51, 88, 183]. We present FPT
algorithms that are asymptotically optimal under the ETH. These algorithms are
based on the technique of representative families in matroids introduced by Fomin
et al. [138], and use also the color-coding technique of Alon et al. [42] as a subrou-
tine. Finally, we study the case where the input graph is acyclic, and present several
algorithmic and hardness results.

4.2 Kernelization

These are the some of the contributions that I have made in the last years to the field of
kernelization. A significant part of my research has been devoted to find linear kernels for
families of problems that are as general as possible, specially on sparse graph classes.

1. Linear kernels via protrusion decompositions.

As mentioned above when dealing with FPT algorithms, we presented in [J15] an
algorithm to compute a so-called protrusion decomposition of graphs satisfying cer-
tain conditions. We showed that any parameterized graph problem (with parameter
k) that has finite integer index and such that positive instances have a treewidth-
modulator of size O(k) admits a linear kernel on the class of H-topological-minor-



Summary of my contributions 71

free graphs, for any fixed graph H. This result partially extended previous relevant
meta-theorems on the existence of linear kernels on graphs of bounded genus [63] and
H-minor-free graphs [140], and it is the currently most general result the existence
of linear kernels on sparse graphs.

Full details of this contribution are provided in Chapter 5.

2. Explicit linear kernels for domination problems on planar graphs.

By the celebrated meta-theorem of Bodlaender et al. [63], it follows that there exists
a linear kernel for a vast family of problems on graphs of bounded genus. Never-
theless, it is not clear how such a kernel can be effectively constructed, and how
to obtain explicit reduction rules with reasonably small constants. Thus, it makes
sense to provide constructive linear kernels on planar graphs with explicit constants
for particular problems, even if their existence is already known. In this direction,
we have obtained the following results:

• A total dominating set of a graph G = (V,E) is a subset D ⊆ V such that every
vertex in V is adjacent to some vertex in D. Finding a total dominating set
of minimum size is NP-hard on planar graphs and W [2]-complete on general
graphs when parameterized by the solution size. Following the approach of
Alber et al. [41] using region decompositions, we provided in [S38] an explicit
linear kernel for Total Dominating Set on planar graphs, of size at most
410k.

• In the Red-Blue Dominating Set problem, we are given a bipartite graph
G = (VB ∪ VR, E) and an integer k, and asked whether G has a subset D ⊆ VB
of at most k “blue” vertices such that each “red” vertex from VR is adjacent to
a vertex in D. Following again the approach of Alber et al. [41], we provided
in [J12] the first explicit linear kernel for this problem on planar graphs, of size
at most 43k.

The two results presented above complement several known constructive linear ker-
nels on planar graphs for other domination problems such as Dominating Set,
Edge Dominating Set, Efficient Dominating Set, or Connected Domi-
nating Set.

3. Explicit linear kernels via dynamic programming.

Following the same research line discussed in the previous item, it has been already
mentioned that in the last decade several algorithmic meta-theorems have appeared
(Bodlaender et al. [63], Fomin et al. [140], Kim et al. [J15]) guaranteeing the existence
of linear kernels on sparse graphs for problems satisfying some generic conditions.
The drawback of such general results is that it is usually not clear how to derive from
them constructive kernels with reasonably low explicit constants. To fill this gap,
we present in [J11] a framework to obtain explicit linear kernels for some families of
problems whose solutions can be certified by a subset of vertices.

More precisely, we make a step toward a fully constructive meta-kernelization theory
on sparse graphs. Our approach is based on a more explicit protrusion replacement



72 Summary of my contributions

machinery that, instead of expressibility in CMSO logic, uses dynamic programming,
which allows us to find an explicit upper bound on the size of the derived kernels.

Loosely speaking, the framework that we present can be summarized as follows.
First of all, we propose a general definition of a problem encoding for the tables of
dynamic programming when solving parameterized problems on graphs of bounded
treewidth. Under this setting, we provide general conditions on whether such an
encoding can yield a protrusion replacer. While our framework can also be seen as
a possible formalization of dynamic programming, our purpose is to use it for con-
structing protrusion replacement algorithms and linear kernels whose size is explicitly
determined.

In order to obtain an explicit linear kernel for a problem Π, the main ingredient is to
prove that when solving Π on graphs of bounded treewidth via dynamic program-
ming, we can use tables such that the maximum difference between all the values
that need to be stored is bounded by a function of the treewidth. For this, we prove
that when the input graph excludes a fixed graph H as a (topological) minor, this
condition is sufficient for constructing an explicit protrusion replacer algorithm, i.e.,
a polynomial-time algorithm that replaces a large protrusion with an equivalent one
whose size can be bounded by an explicit constant. Such a protrusion replacer can
then be used, for instance, whenever it is possible to compute a linear protrusion
decomposition of the input graph (that is, an algorithm that partitions the graph
into a part of size linear in O(k) and a set of O(k) protrusions). As there is a wealth
of results for constructing such decompositions [63, 137, 140, J15], we can use them
as a starting point and, by applying dynamic programming, obtain an explicit linear
kernel for Π.

We demonstrate the usefulness of our techniques by providing the first explicit linear
kernels for r-Dominating Set and r-Scattered Set on apex-minor-free graphs,
and for Planar-F-Deletion on graphs excluding a fixed (topological) minor in
the case where all the graphs in F are connected.

Full details of this contribution are provided in Chapter 6.

In a subsequent work [S37], we enhance our framework to deal with packing problems,
that is, problems whose solutions can be certified by collections of subgraphs of the
input graph satisfying certain properties. F-Packing is a typical example: for a
family F of connected graphs that we assume to contain at least one planar graph,
the task is to decide whether a graph G contains k vertex-disjoint subgraphs such
that each of them contains a graph in F as a minor. We provide in [S37] explicit
linear kernels on sparse graphs for the following two orthogonal generalizations of
F-Packing: for an integer ` > 1, one aims at finding either minor-models that are
pairwise at distance at least ` in G (`-F-Packing), or such that each vertex in G
belongs to at most ` minors-models (F-Packing with `-Membership). Finally,
we also provide linear kernels for the versions of these problems where one wants to
pack subgraphs instead of minors.



Summary of my contributions 73

4. Improved kernels for Signed Max Cut parameterized above lower bound
on (r, `)-graphs.

A graph G is signed if each edge is assigned “+” or “−”. A signed graph is balanced
if there is a bipartition of its vertex set such that an edge has sign “−” if and only
if its endpoints are in different parts. The Edwards-Erdős bound states that every
graph with n vertices and m edges has a balanced subgraph with at least m

2 + n−1
4

edges [118,119]. In the Signed Max Cut Above Tight Lower Bound (Signed
Max Cut ATLB) problem, given a signed graph G and a parameter k, the question
is whether G has a balanced subgraph with at least m

2 + n−1
4 + k

4 edges. This problem
generalizes Max Cut Above Tight Lower Bound, for which a kernel with O(k5)
vertices was given by Crowston et al. [93]. Crowston et al. [92] improved this result
by providing a kernel with O(k3) vertices for the more general Signed Max Cut
ATLB problem.

In [J10] we are interested in improving the size of the kernels for Signed Max Cut
ATLB on restricted graph classes for which the problem remains hard. For two
integers r, ` > 0, a graph G is an (r, `)-graph if V (G) can be partitioned into r
independent sets and ` cliques. Building on the techniques of Crowston et al. [92],
for any r, ` > 0 we provide a kernel with O((r+ `)k2) vertices on (r, `)-graphs, and a
simple linear kernel on subclasses of split graphs for which we prove that the problem
is still NP-hard.

5. How much does a treedepth modulator help to obtain polynomial kernels
beyond sparse graphs?

In the last years, kernelization with structural parameters has been an active area
of research within the field of parameterized complexity. As a relevant example,
Gajarskỳ et al. [147] proved that every graph problem satisfying a property called
finite integer index (cf. Chapter 5 for the formal definition) admits a linear kernel on
graphs of bounded expansion and an almost linear kernel on nowhere dense graphs,
parameterized by the size of a c-treedepth modulator, which is a vertex set whose
removal results in a graph of treedepth6 at most c, where c > 1 is a fixed integer. The
authors left as further research to investigate this parameter on general graphs, and
in particular to find problems that, while admitting polynomial kernels on sparse
graphs, behave differently on general graphs.

In [C28] we answer this question by finding two natural such problems: we prove that
Vertex Cover admits a polynomial kernel on general graphs for any integer c > 1,
and that Dominating Set does not for any integer c > 2 even on degenerate graphs,
unless NP ⊆ coNP/poly. For the positive result, we build on the techniques of Jansen
and Bodlaender [171], and for the negative result we use a polynomial parameter
transformation for c > 3 and an or-cross-composition for c = 2. As existing results
imply that Dominating Set admits a polynomial kernel on degenerate graphs for
c = 1, our result provides a dichotomy about the existence of polynomial kernels for
Dominating Set on degenerate graphs with this parameter.

6Treedepth is a graph invariant that plays a crucial structural role on graphs of bounded expansion and
nowhere dense graphs; see [212] for the definition.



74 Summary of my contributions

4.3 Combinatorial results

We will now discuss some of the combinatorial results that I have obtained during the last
years. I am particularly interested in the so-called Erdős-Pósa property. Before stating
the results, we first say a few words about this property.

Typically, an Erdős-Pósa property reveals relations between covering and packing invari-
ants in combinatorial structures. The origin of the study of such properties comes from
the Erdős-Pósa theorem [120], stating that there is a function f : IN → IN such that for
every k ∈ IN and for every graph G, either G contains k vertex-disjoint cycles, or there is
a set X of f(k) vertices in G meeting all cycles of G. In particular, Erdős-Pósa proved
this result for f(k) = O(k · log k).

An interesting line of research aims at extending Erdős-Pósa theorem for packings and
coverings of more general graph structures. In this direction, we say that a graph class
G satisfies the Erdős-Pósa property if there exists a function fG : IN → IN such that, for
every graph G and every positive integer k, either G contains k mutually vertex-disjoint
subgraphs, each isomorphic to a graph in G, or it contains a set S of fG(k) vertices meeting
every subgraph of G that is isomorphic to a graph in G. When this property holds for a
class G, we call the function fG the gap of the Erdős-Pósa property for the class G. In this
sense, the classic Erdős-Pósa Theorem says that the class containing all cycles satisfies the
Erdős-Pósa property with gap O(k · log k).

1. Asymptotic enumeration of non-crossing partitions on surfaces.

As a key combinatorial ingredient for the algorithmic framework that we presented
in [J21], we generalize in [J20] the notion of non-crossing partition on a disc to gen-
eral surfaces with boundary. For this, we consider a surface Σ and introduce the
number CΣ(n) of non-crossing partitions of a set of n points laying on the boundary
of Σ. Our main result is an asymptotic estimate for CΣ(n). The proofs use bijective
techniques arising from map enumeration, joint with the symbolic method and sin-
gularity analysis on generating functions (see [129] for an introduction to analytic
combinatorics). An outcome of our results is that the exponential growth of CΣ(n)
is the same as the one of the n-th Catalan number, i.e., does not change when we
move from the case where Σ is a disc to general surfaces with boundary.

2. An edge variant of the Erdős-Pósa property.

Recall that for every r ∈ IN, we denote by θr the r-pumpkin, that is, the multigraph
with two vertices and r parallel edges; see Figure 4.1 for an illustration. Given a
graph G, we say that a subgraph H of G is a model of θr in G if H contains θr as
a contraction. We prove in [J19] that the following edge variant of the Erdős-Pósa
property holds for every r > 2: if G is a graph and k is a positive integer, then either
G contains a packing of k mutually edge-disjoint models of θr, or it contains a set S
of fr(k) edges such that G \ S has no θr-model, for both fr(k) = O(k2r3polylogkr)
and fr(k) = O(k4r2polylogkr).



Summary of my contributions 75

3. Minors in graphs of large Θr-girth.

Still dealing with the r-pumpkin, let the θr-girth of a graph G be the minimum
number of edges of a subgraph of G that can be contracted to θr. This notion
generalizes the usual concept of girth which corresponds to the case r = 2. Kühn
and Osthus [190] showed that graphs of sufficiently large minimum degree contain
clique-minors whose order is an exponential function of their girth.

In [J8] we extend this result for the case of θr-girth and we show that the minimum
degree can be replaced by some connectivity measurement. As an application of our
results, we prove that, for every fixed r, graphs excluding as a minor the disjoint
union of k θr’s have treewidth O(k · log k). This results has algorithmic applications
to the Erdős-Pósa property for r-pumpkins, which we exploit in [C29].

4. On the number of labeled graphs of bounded treewidth.

Given an integer k > 0, a k-tree is a graph that can be constructed starting from
a (k + 1)-clique and iteratively adding a vertex connected to k vertices that form
a clique. They are natural extensions of trees, which correspond to 1-trees. A
formula for the number of labeled k-trees on n vertices was first found by Beineke
and Pippert [50], and alternative proofs were given by Moon [209] and Foata [132].
Namely, the number of n-vertex labeled k-trees is equal to

(
n

k

)
(kn− k2 + 1)n−k−2.

Surprisingly, almost nothing was known about the number of labeled partial k-trees.

Towards this end, let Tn,k be the number of labeled graphs on n vertices and
treewidth at most k (equivalently, the number of labeled partial k-trees). We show
in [C25] that

(
c · k 2kn

log k

)n
2−

k(k+3)
2 k−2k−2 6 Tn,k 6

(
k 2kn

)n
2−

k(k+1)
2 k−k,

for k > 1 and some explicit absolute constant c > 0. Disregarding lower-order terms,
the gap between the lower and upper bound is of order (log k)n. The upper bound
is a direct consequence of the well-known formula for the number of labeled k-trees,
while the lower bound is obtained from an explicit construction. It follows from
this construction that both bounds also apply to graphs of pathwidth and proper-
pathwidth at most k.

Full details of this contribution are provided in Chapter 7.



76 Summary of my contributions

5. Uniquely restricted matchings and edge colorings.

A matching in a graph is uniquely restricted if no other matching covers exactly the
same set of vertices. This notion was defined by Golumbic et al. [157] and studied
in a number of articles. Our contribution in [C26] is twofold.

On the one hand, we provide approximation algorithms for computing a uniquely
restricted matching of maximum size in some bipartite graphs. In particular,
we achieve a ratio of 5/9 for subcubic bipartite graphs, improving over a 1/2-
approximation algorithm proposed by Mishra [206].

On the other hand, we study the uniquely restricted chromatic index of a graph,
defined as the minimum number of uniquely restricted matchings into which its edge
set can be partitioned. We provide tight upper bounds in terms of the maximum
degree and characterize all extremal graphs. Our constructive proofs yield efficient
algorithms to determine the corresponding edge colorings.

6. A tight Erdős-Pósa function for wheel minors.

Let H be a fixed graph. An H-model M in a graph G is a collection {Sx ⊆ G : x ∈
V (H)} of vertex-disjoint connected subgraphs of G such that Sx and Sy are linked
by an edge in G for every edge {x, y} ∈ E(H).

Robertson and Seymour [223] proved that the Erdős-Pósa property holds for H-
models if and only if H is planar. Their original bounding function was exponential.
However, this has been significantly improved by recent breakthrough results of
Chekuri and Chuzhoy [80], implying that there exist integers a, b, c > 0 such that
for every planar graph H on h vertices, the Erdős-Pósa property holds for H-models
with bounding function f(k) = ahb · k logc(k + 1). It follows from their proof that
c 6 36.

This upper bound is remarkably close to being best possible: If H is planar with at
least one cycle, then there is an Ω(k log k) lower bound on bounding functions [120].
Closing this gap for different instantiations of H is an area of research that has
attracted some interest in the last years.

Let Wt denote the wheel on t + 1 vertices, that is, the graph consisting of a cycle
of length t and a vertex adjacent to all the vertices in the cycle. We prove in [S35]
that for every integer t > 3 there is a constant c = c(t) such that for every integer
k > 1 and every graph G, either G has k vertex-disjoint subgraphs each containing
Wt as minor, or there is a subset X of at most ck log k vertices such that G−X has
no Wt minor. By the above discussion, this is best possible, up to the value of c.

Since the existence of aO(k log k) bounding function for H-models is preserved under
taking minors of H (see [S35] for a proof), our result generalizes several other results
in the literature [120,127,C29].

Finally, we conjecture that the result remains true more generally if we replace Wt

with any fixed planar graph H.



Summary of my contributions 77

4.4 Problems arising from applications

During the last years I have also been interested in several problems motivated by practical
applications, such as communications networks or bioinformatics. It is worth saying that,
while the problems discussed below are indeed motivated by real practical applications, I
do not claim that my algorithmic results are “easily” implementable in a computer. These
results should be rather thought of as a theoretical analysis of these problems, in order to
better understand its bottlenecks, and which aspects or their instances make them easier
or harder.

1. Placing regenerators in optical networks to satisfy multiple sets of re-
quests.

The placement of regenerators in optical networks has become an active area of
research during the last years. Given a set of lightpaths in a network G and a
positive integer d, regenerators must be placed in such a way that in any lightpath
there are no more than d hops without meeting a regenerator. We consider in [J17]
a cost function given by the total number of regenerators placed at the nodes, which
we believe to be a more accurate estimation of the real cost of the network than the
number of locations considered by Flammini et al. [130].

Furthermore, in our model we assume that we are given a finite set of p possible
traffic patterns (each given by a set of lightpaths), and our objective is to place the
minimum number of regenerators at the nodes so that each of the traffic patterns is
satisfied. While this problem can be easily solved when d = 1 or p = 1, we prove
that for any fixed d, p > 2 it does not admit a PTAS, even if G has maximum degree
at most 3 and the lightpaths have length O(d).

We complement this hardness result with a constant-factor approximation algorithm
with ratio log(d · p). We then study the case where G is a path, proving that the
problem is polynomial-time solvable for two particular families of instances.

Finally, we generalize our model in two natural directions, which allows us to capture
the model of Flammini et al. [130] as a particular case, and we settle some questions
that were left open therein.

2. On the parameterized complexity of the Edge Monitoring problem.

Another application concerns the edge monitoring concept in sensor networks. For-
mally, in a graph G = (V,E), a vertex v ∈ V monitors an edge {u, u′} ∈ E if
{v, u} ∈ E and {v, u′} ∈ E. Given an n-vertex graph G = (V,E), in which each
edge is contained in at least one triangle, and an integer k, the Edge Monitoring
problem consists in finding a set S ⊆ V of size at most k such that each edge of
the graph is monitored by at least one element of S. This problem is known to be
NP-hard, even on unit disk graphs [109].

We prove in [J3] that Edge Monitoring is also W[2]-hard when parameterized by
k. Using bidimensionality theory [103], we provide an FPT algorithm running in

time 2
O(
√
k·log(max

e∈E
ω(e))) ·n for the weighted version of Edge Monitoring when the



78 Summary of my contributions

input graph is restricted to be apex-minor-free. In particular, this algorithm applies
to planar graphs, and where we additionally impose each edge e to be monitored at
least ω(e) times, and the solution to be contained in a set of selected vertices.

3. Efficient FPT algorithms for (strict) compatibility of unrooted phyloge-
netic trees.

In phylogenetics, a central problem is to infer the evolutionary relationships between
a set of species X; these relationships are often depicted via a phylogenetic tree (that
is, a tree having its leaves labeled bijectively by elements of X and without degree-2
nodes) called the “species tree”. One common approach for reconstructing a species
tree consists in first constructing several phylogenetic trees from primary data (e.g.
DNA sequences originating from some species in X), and then constructing a single
phylogenetic tree maximizing the “concordance” with the input trees. The obtained
tree is our estimation of the species tree and, when the input trees are defined on
overlapping, but not identical, sets of labels, is called “supertree”.

In [J5], we focus on two problems that are central when combining phylogenetic
trees into a supertree: the compatibility and the strict compatibility problems for
unrooted phylogenetic trees. These problems are strongly related, respectively, to
the notions of “containing as a minor” and “containing as a topological minor” in
the graph community. Both problems are known to be fixed-parameter tractable in
the number of input trees k, by using their expressibility in Monadic Second Order
Logic and a reduction to graphs of bounded treewidth [90].

Motivated by the fact that the dependency on k of these algorithms is prohibitively
large, we give the first explicit dynamic programming algorithms for solving these
problems, both running in time 2O(k2) · n, where n is the total size of the input.

4. Parameterized complexity of reload cost problems.

Numerous network optimization problems can be modeled by edge-colored graphs.
Wirth and Steffan introduced in [241] the concept of reload cost, which refers to the
cost that arises in an edge-colored graph while traversing a vertex via two consecutive
edges of different colors. The value of the reload cost depends on the colors of the
traversed edges. Although the reload cost concept has many important applications
in telecommunication networks, transportation networks, and energy distribution
networks, it has surprisingly received attention only recently. Namely, recent works
in the literature focused on numerous problems related to the reload cost concept:
the minimum reload cost cycle cover problem [150], the problems of finding a path,
trail or walk with minimum total reload cost between two given vertices [158], the
problem of finding a spanning tree that minimizes the sum of reload costs of all paths
between all pairs of vertices [151], various path, tour, and flow problems related to
reload costs [43], the minimum changeover cost arborescence problem [149,160,162],
and problems related to finding a proper edge coloring of the graph so that the total
reload cost is minimized [161].



Summary of my contributions 79

We have recently studied the following two reload cost problems:

• The Minimum Changeover Cost Arborescence (MinCCA) problem con-
sists in finding an arborescence with a given root vertex such that the total
changeover cost of the internal vertices is minimized. It has been recently
proved by Gözüpek et al. [160] that the MinCCA problem when parameter-
ized by the treewidth and the maximum degree of the input graph is FPT.
In [J13] we present the following hardness results for MinCCA:

◦ the problem is W[1]-hard when parameterized by the vertex cover number
of the input graph, even on graphs of degeneracy at most 3. In particular,
it is W[1]-hard parameterized by the treewidth of the input graph, which
answers the main open problem in the work of Gözüpek et al. [160];

◦ it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the
input multigraph; and

◦ it remains NP-hard on planar graphs even when restricted to instances with
at most 6 colors and 0/1 symmetric costs, or when restricted to instances
with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric
costs.

• In [C24], we study the minimum diameter spanning tree problem under the
reload cost model (Diameter-Tree for short), which is the problem introduced
by Wirth and Steffan in their foundational article [241]. In this problem, given
an undirected edge-colored graph G, reload costs on a path arise at a node
where the path uses consecutive edges of different colors. The objective is to
find a spanning tree of G of minimum diameter with respect to the reload
costs. We initiate a systematic study of the parameterized complexity of the
Diameter-Tree problem by considering the following parameters: the cost of
a solution, and the treewidth and the maximum degree ∆ of the input graph.
We prove that Diameter-Tree is para-NP-hard for any combination of two of
these three parameters, and that it is FPT parameterized by the three of them.
We also prove that the problem can be solved in polynomial time on cactus
graphs. This result is somehow surprising since we prove Diameter-Tree to
be NP-hard on graphs of treewidth two, which is best possible as the problem
can be trivially solved on forests.

When the reload costs satisfy the triangle inequality, Wirth and Steffan [241]
proved that the problem can be solved in polynomial time on graphs with ∆ = 3,
and Galbiati [148] proved that it is NP-hard if ∆ = 4. Our results show, in
particular, that without the requirement of the triangle inequality, the problem
is NP-hard if ∆ = 3, which is also best possible. Finally, in the case where the
reload costs are polynomially bounded by the size of the input graph, we prove
that Diameter-Tree is in XP and W[1]-hard parameterized by the treewidth
plus ∆.

Full details of this contribution are provided in Chapter 8.



80 Summary of my contributions

5. Complexity dichotomies for the Minimum F-Overlay problem.

For a (possibly infinite) fixed family of graphs F , we say that a graph G overlays F
on a hypergraph H if V (H) is equal to V (G) and the subgraph of G induced by every
hyperedge of H contains some member of F as a spanning subgraph. While it is
easy to see that the complete graph on |V (H)| vertices overlays F on a hypergraph
H whenever the problem admits a solution, the Minimum F-Overlay problem
asks for such a graph with the minimum number of edges. This problem allows to
generalize some natural problems which may arise in practice. For instance, if the
family F contains all connected graphs, then Minimum F-Overlay corresponds to
the Minimum Connectivity Inference problem (also known as Subset Inter-
connection Design problem) introduced for the low-resolution reconstruction of
macro-molecular assembly in structural biology, or for the design of networks.

Our main contribution in [C30] is a strong dichotomy result regarding the polynomial
vs. NP-hard status with respect to the considered family F . Roughly speaking, we
show that the easy cases one can think of (e.g. when edgeless graphs of the right
sizes are in F , or if F contains only cliques) are the only families giving rise to a
polynomial problem: all others are NP-complete.

We then investigate the parameterized complexity of the problem and give similar
sufficient conditions on F that give rise to W[1]-hard, W[2]-hard or FPT problems
when the parameter is the size of the solution. This yields an FPT/W[1]-hard di-
chotomy for a relaxed problem, where every hyperedge of H must contain some
member of F as a (non necessarily spanning) subgraph.



Chapter 5

Linear kernels and
single-exponential algorithms via

protrusion decompositions

In this chapter we present a linear-time algorithm to compute a decomposition scheme for
graphs G that have a set X ⊆ V (G), called a treewidth-modulator, such that the treewidth
of G−X is bounded by a constant. Our decomposition, called a protrusion decomposition,
is the cornerstone in obtaining the following two main results.

Our first result is that any parameterized graph problem (with parameter k) that has
finite integer index and such that Yes-instances have a treewidth-modulator of size O(k)
admits a linear kernel on the class of H-topological-minor-free graphs, for any fixed graph
H. This result partially extends previous meta-theorems on the existence of linear kernels
on graphs of bounded genus and H-minor-free graphs.

Let F be a fixed finite family of graphs containing at least one planar graph. Given an
n-vertex graph G and a non-negative integer k, Planar-F-Deletion asks whether G has
a set X ⊆ V (G) such that |X| 6 k and G −X is H-minor-free for every H ∈ F . As our
second application, we present the first single-exponential algorithm to solve Planar-F-
Deletion. Namely, our algorithm runs in time 2O(k) ·n2, which is asymptotically optimal
with respect to k. So far, single-exponential algorithms were only known for special cases
of the family F .

Keywords: parameterized complexity; algorithmic meta-theorems; sparse graphs; graph
minors; hitting minors.

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Protrusions, t-boundaried graphs, and finite integer index . . . . . . . . . . 87
5.3 Constructing protrusion decompositions . . . . . . . . . . . . . . . . . . . . 92
5.4 Linear kernels on graphs excluding a topological minor . . . . . . . . . . . 96

5.4.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 Problems affected by our result . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 A comparison with earlier results . . . . . . . . . . . . . . . . . . . . 104
5.4.4 The limits of our approach . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.5 An illustrative example: Edge Dominating Set . . . . . . . . . . . 106

5.5 Single-exponential algorithm for Planar-F-Deletion . . . . . . . . . . . 108
5.5.1 Analysis of the bag marking algorithm . . . . . . . . . . . . . . . . . 110
5.5.2 Branching step and linear protrusion decomposition . . . . . . . . . 111

81



82 Linear kernels and single-exponential algorithms via protrusion decompositions

5.5.3 Solving Planar-F-Deletion with a linear protrusion decomposition112
5.5.4 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Some deferred results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.6.1 Edge modification problems are not minor-closed . . . . . . . . . . . 117
5.6.2 Disconnected planar obstructions . . . . . . . . . . . . . . . . . . . . 117
5.6.3 Disconnected Planar-F-Deletion has not finite integer index . . . 118
5.6.4 MSO formula for topological minor containment . . . . . . . . . . . 119

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Introduction

This chapter contributes to the two main areas of parameterized complexity mentioned
in Section 3.2, namely, kernels and fixed-parameter tractable (FPT) algorithms. In many
cases, the key ingredient in order to solve a hard graph problem is to find an appropriate
decomposition of the input graph, which allows to take advantage of the structure given
by the graph class and/or the problem under study. We follow this paradigm and present
a novel linear-time algorithm to compute a decomposition with nice properties for graphs
G that have a set X ⊆ V (G), called t-treewidth-modulator, such that the treewidth of
G−X is at most some constant t−1. We then exploit this decomposition in two different
ways: to analyze the size of kernels and to obtain efficient FPT algorithms. We would like
to note that similar decompositions have already been (explicitly or implicitly) used for
obtaining polynomial kernels [41,63,135,140,166].

Linear kernels. During the last decade, a plethora of results emerged on linear ker-
nels for graph problems restricted to sparse graph classes. A celebrated result is the
linear kernel for Dominating Set on planar graphs by Alber et al. [41]. This paper
prompted an explosion of research papers on linear kernels on planar graphs, including
Dominating Set [41,82], Feedback Vertex Set [67], Cycle Packing [68], Induced
Matching [176,210], Full-Degree Spanning Tree [167], and Connected Dominat-
ing Set [200]. Guo and Niedermeier [166] designed a general framework and showed that
problems that satisfy a certain “distance property” have linear kernels on planar graphs.
This result was subsumed by that of Bodlaender et al. [63] who provided a meta-theorem
for problems to have a linear kernel on graphs of bounded genus, a strictly larger class
than planar graphs. Later Fomin et al. [140] extended these results for bidimensional
problems to an even larger graph class, namely, H-minor-free and apex-minor-free graphs.
(In all these works, the problems are parameterized by the solution size. See also [147,152]
for some recent meta-kernelization results considering structural parameters.) A common
feature of these meta-theorems on sparse graphs is a decomposition scheme of the input
graph that, loosely speaking, allows to deal with each part of the decomposition indepen-
dently. For instance, the approach of [166], which is much inspired from [41], is to consider
a so-called region decomposition of the input planar graph. The key point is that in an
appropriately reduced Yes-instance, there are O(k) regions and each one has constant
size, yielding the desired linear kernel. This idea was generalized in [63] to graphs on
surfaces, where the role of regions is played by protrusions, which are graphs with small



Linear kernels and single-exponential algorithms via protrusion decompositions 83

treewidth and small boundary (see Section 5.2 for details). The resulting decomposition
is called protrusion decomposition. A crucial point is that while the reduction rules of [41]
are problem-dependent, those of [63] are automated, relying on a property called finite
integer index (FII), which was introduced by Bodlaender and de Fluiter [70]. Loosely
speaking (see Section 5.2), having FII guarantees that “large” protrusions of a graph can
be replaced by “small” gadget graphs preserving equivalence of instances. This operation
is usually called the protrusion replacement rule. FII is also of central importance to the
approach of [140] on H-minor-free graphs. In fact, the idea of protrusion replacement
(using a different terminology) can be traced back to the early 90’s in the work of Arnborg
et al. [46], and afterwards Bodlaender and de Fluiter [70] generalized the results in [46] to
optimization problems. See also [39,125,126] for related work on this area.

Following the spirit of the aforementioned results, we present a novel algorithm to compute
protrusion decompositions that allows us to obtain linear kernels on a larger class of sparse
graphs, namely H-topological-minor-free graphs. Our algorithm takes as input a graph G
and a t-treewidth-modulator X ⊆ V (G), and outputs a set of vertices Y0 containing X
such that every connected component of G−Y0 is a protrusion (see Section 5.3 for details).

When G is the input graph of a parameterized graph problem Π with parameter k, we
call a protrusion decomposition of G linear if both |Y0| and the number of protrusions of
G − Y0 are O(k). If Π is such that Yes-instances have a t-treewidth-modulator of size
O(k) for some constant t (such problems are called treewidth-bounding, see Section 5.4),
and G excludes some fixed graph H as a topological minor, we prove that the protrusion
decomposition given by our algorithm is linear. If in addition Π has FII, then each pro-
trusion can be replaced with a gadget of constant size, obtaining an equivalent instance of
size O(k). Our first main result summarizes the above discussion.

Theorem 5.1 Fix a graph H. Let Π be a parameterized graph problem on the class of H-
topological-minor-free graphs that is treewidth-bounding and has finite integer index. Then
Π admits a linear kernel.

Consequences of Theorem 5.1. It turns out that a host of problems including
Treewidth-t Vertex Deletion, Chordal Vertex Deletion, Interval Vertex
Deletion, Edge Dominating Set, to name a few, satisfy the conditions of our theo-
rem. Since for any fixed graph H, the class of H-topological-minor-free graphs strictly
contains the class of H-minor-free graphs, our result is in fact an extension of the results of
Fomin et al. [140]. As we discuss in Section 5.7, there is evidence that our result may reach
the limit of sparse graph classes for which there exist meta-theorems about the existence
of linear (or even uniform polynomial) kernels.

We also exemplify how our algorithm to obtain a linear protrusion decomposition can be
applied to obtain explicit linear kernels, that is, kernels without using a generic protrusion
replacement. This is shown by exhibiting a simple explicit linear kernel for the Edge
Dominating Set problem on H-topological-minor-free graphs. So far, all known linear
kernels for Edge Dominating Set on H-minor-free graphs [140] and H-topological-
minor-free graphs (given by Theorem 5.1) relied on generic protrusion replacement.



84 Linear kernels and single-exponential algorithms via protrusion decompositions

Single-exponential algorithms. In order to prove Theorem 5.1, similarly to [63, 140,
166] our protrusion decomposition algorithm is only used to analyze the size of the resulting
instance after having applied the protrusion reduction rule. In the second part of the
chapter we show that our decomposition scheme can also be used to obtain efficient FPT
algorithms. Before stating our second main result, let us motivate the problem that we
study.

During the last decades, parameterized complexity theory has brought forth several algo-
rithmic meta-theorems that imply that a wide range of problems are in FPT (see [188]
for a survey). For instance, as mentioned in Chapter 3, Courcelle’s theorem [90] states
that every decision problem expressible in Monadic Second Order Logic can be solved in
linear time when parameterized by the treewidth of the input graph. At the price of gen-
erality, such algorithmic meta-theorems may suffer from the fact that the function f(k) is
huge [144,189] or non-explicit [90,226]. Therefore, it has become a central task in parame-
terized complexity to provide FPT algorithms such that the behavior of the function f(k)
is reasonable; in other words, a function f(k) that could lead to a practical algorithm.

Towards this goal, recall that we say that an FPT parameterized problem is solvable in
single-exponential time if there exists an algorithm solving it in time 2O(k) · nO(1). For
instance, recent results have shown that broad families of problems admit (deterministic
or randomized) single-exponential algorithms parameterized by treewidth [96, 111, J21].
On the other hand, single-exponential algorithms are unlikely to exist for certain param-
eterized problems [96, 199]. Parameterizing by the size of the desired solution, in the
case of Vertex Cover the existence of a single-exponential algorithm has been known
for a long time, but it took a while to witness the first (deterministic) single-exponential
algorithm for Feedback Vertex Set, or equivalently Treewidth-One Vertex Dele-
tion [100,165].

Both Vertex Cover and Feedback Vertex Set can be seen as graph modification
problems in order to attain a hereditary property, that is, a property closed under tak-
ing induced subgraphs. It is well-known that deciding whether at most k vertices can
be deleted from a given graph in order to attain any non-trivial hereditary property is
NP-complete [194]. The particular case where the property can be characterized by a
finite set of forbidden induced subgraphs can be solved in single-exponential time when
parameterizing by the number of modifications, even in the more general case where also
edge deletions or additions are allowed [75]. If the family of forbidden induced subgraphs
is infinite, no meta-theorem is known and not every problem is even FPT [195]. A natural
question arises: can we carve out a larger class of hereditary properties for which the
corresponding graph modification problem can be solved in single-exponential time?

A line of research emerged pursuing this question, which is much inspired by the Feed-
back Vertex Set problem. Interestingly, when the infinite family of forbidden induced
subgraphs can also be captured by a finite set F of forbidden minors (namely, when the
problem is closed under taking minors [227]), the F-Deletion problem (namely, the
problem of removing at most k vertices from an input graph to obtain a graph which is
H-minor-free for every H ∈ F) is in non-uniform1 FPT by the seminal meta-theorem of

1A non-uniform FPT algorithm for a parameterized problem is a collection of algorithms, one for each
value of the parameter k.



Linear kernels and single-exponential algorithms via protrusion decompositions 85

Robertson and Seymour [226]2.

Let F be a finite family of graphs containing at least one planar graph. The parameterized
problem that we consider in the second part of this chapter is Planar-F-Deletion, which
is defined as follows:

Planar-F-Deletion
Input: A graph G and a non-negative integer k.
Parameter: The integer k.
Question: Does G have a set X ⊆ V (G) such that |X| 6 k and G−X is

H-minor-free for every H ∈ F?

Note that Vertex Cover and Feedback Vertex Set correspond to the special cases
of F = {K2} and F = {K3}, respectively. A recent work by Joret et al. [J14] handled the
case F = {θc} and achieved a single-exponential algorithm for Planar-θc-Deletion for
any value of c > 1, where θc is the (multi)graph consisting of two vertices and c parallel
edges between them. (Note that the cases c = 1 and c = 2 correspond to Vertex Cover
and Feedback Vertex Set, respectively.) Kim et al. [182] obtained a single-exponential
algorithm for F = {K4}, also known as Treewidth-Two Vertex Deletion. Related
works of Philip et al. [217] and Cygan et al. [97] resolve the case F = {K3, T2}, or
equivalently Pathwidth-One Vertex Deletion, in single-exponential time.

The Planar-F-Deletion problem was first stated by Fellows and Langston [124], who
proposed a non-uniform (and non-constructive) f(k) · n2-time algorithm for some func-
tion f(k), as well as a f(k) ·n3-time algorithm for the general F-Deletion problem, both
relying on the meta-theorem of Robertson and Seymour [226]. Explicit bounds on the func-
tion f(k) for Planar-F-Deletion can be obtained via dynamic programming. Indeed, as
the Yes-instances of Planar-F-Deletion have treewidth O(k), using standard dynamic
programming techniques on graphs of bounded treewidth (see for instance [56,J1]), it can

be seen that Planar-F-Deletion can be solved in time f(k) · n2 with f(k) = 22O(k log k)
.

In an unpublished paper [136], Fomin et al. proposed a 2O(k log k) · n2-time algorithm
for Planar-F-Deletion, which is, up to our knowledge, the best known result. More
recently, Fomin et al. [137] provided a 2O(k) · n log2 n-time algorithm for the Planar-
Connected-F-Deletion problem, which is the special case of Planar-F-Deletion
when every graph in the family F is connected. In this chapter, we get rid of the connec-
tivity assumption, and we prove that the general Planar-F-Deletion problem can be
solved in single-exponential time. Namely, our second main result is the following.

Theorem 5.2 The parameterized Planar-F-Deletion problem can be solved in time
2O(k) · n2.

This result unifies, generalizes, and simplifies a number of results given in [83,100,137,165,
182,J14]. Let us make a few considerations about the fact that the family F may contain

2It is worth noting that, in contrast to the removal of vertices, the problems corresponding to the opera-
tions of removing or contracting edges are not minor-closed (we provide a proof of this fact in Section 5.6.1),
and therefore the result of Robertson and Seymour [226] cannot be applied to these modification problems.



86 Linear kernels and single-exponential algorithms via protrusion decompositions

disconnected graphs or not. Besides the fact that removing the connectivity constraint is
an important theoretical step towards the general F-Deletion problem, it turns out that
many natural such families F do contain disconnected graphs. For instance, the disjoint
union of g copies of K5 (or K3,3) is a minimal forbidden minor, or an obstruction, for the
graphs of genus g− 1 [47] (see also [208]). In particular, the (disconnected) graph made of
two copies of K5 is in the obstruction set of the graphs that can be embedded in the torus.
In Section 5.6.2 we show that many natural obstruction sets also contain disconnected
planar graphs.

It should also be noted that the function 2O(k) in Theorem 5.2 is best possible, assuming
the Exponential Time Hypothesis (ETH); see Section 3.2 for the definition. Namely, it is
known that unless the ETH fails, Vertex Cover cannot be solved in time 2o(k)·nO(1) [131,
Chapter 16]. It is noteworthy that when F does not contain any planar graph, up to our
knowledge no single case is known to admit a single-exponential algorithm. For instance,
we point out that Planar Vertex Deletion, which amounts to F = {K5,K3,3}, is
not known to admit a single-exponential parameterized algorithm after having been the
focus of several articles [172,177,205]. The currently best known algorithm is by Jansen et
al. [172] and runs in time 2O(k log k) ·n. Moreover, Pilipczuk [218] recently proved that the
existence of an algorithm that follows the approach of [172] and solves Planar Vertex
Deletion in time 2o(k log k) · nO(1) would contradict the ETH.

Technical ingredients in the proof of Theorem 5.2. As mentioned above, when
employing protrusion replacement, often the problem needs to have FII. Many problems
enjoy this property, for example Treewidth-t Vertex Deletion or (Connected)
Dominating Set, among others. Having FII makes the problem amenable to this pow-
erful reduction rule, and essentially this was the basic ingredient of previous works such
as [137, 182, J14]. In particular, when every graph in F is connected, the Planar-F-
Deletion problem has FII [63], and the single-exponential time algorithm of [137] heavily
depends on this feature. However, if one aims at Planar-F-Deletion without any con-
nectivity restriction on the family F , the requirement for FII seems to be a fundamental
hurdle, as if F may contain disconnected graphs, then Planar-F-Deletion does not
have FII for some choices of F .3 We observe that the unpublished 2O(k log k) · n2-time
algorithm of [136] applies to the general Planar-F-Deletion problem (that is, F may
contain some disconnected graph). The reason is that instead of relying on FII, they rather
use tools from annotated kernelization [63].

To circumvent the situation of not having FII, our algorithm does not use any reduction
rule, but instead relies on a series of branching steps. First of all, we apply the iterative
compression technique (introduced by Reed et al. [221]) in order to reduce the Planar-
F-Deletion problem to its disjoint version. In the Disjoint Planar-F-Deletion
problem, given a graph G and an initial solution X of size k, the task is to decide whether
G contains an alternative solution X̃ disjoint from X of size at most k − 1. In our case,
the assumption that F contains some planar graph is fundamental, as then G − X has
bounded treewidth [223]. Central to our single-exponential algorithm is our linear-time

3As we were not able to find a reference with a proof of this fact, for completeness we provide it in
Section 5.6.3.



Linear kernels and single-exponential algorithms via protrusion decompositions 87

algorithm to compute a protrusion decomposition, in this case with the initial solution X
as treewidth-modulator. A first step to this end is to use the aforementioned algorithm
(the one used for the analysis of linear kernel) and compute a superset Y0 of X such that
each component of G− Y0, together with its neighborhood in Y0, forms a protrusion. But
for the resulting protrusion decomposition to be linear, it turns out that we first need
to guess the intersection of the alternative solution with the set Y0. Once we have the
desired linear protrusion decomposition, instead of applying protrusion replacement, we
simply identify a set of O(k) vertices among which the alternative solution has to live,
if it exists. In the whole process described above, there are three branching steps: the
first one is inherent to the iterative compression paradigm, the second one is required to
compute a linear protrusion-decomposition, and finally the last one enables us to guess
the set of vertices containing the solution. It can be proved that each branching step
is compatible with single-exponential time, which yields the desired result. Finally, it is
worth mentioning that our algorithm is fully constructive (cf. Section 5.5.3 for details).

Organization of the chapter. In Section 5.2 we state the main definitions of the
protrusion machinery developed in [63, 140] that we need for our purposes. We then
exhibit our protrusion decomposition algorithm in Section 5.3. As our first application of
our decomposition result, we prove Theorem 5.1 in Section 5.4. In Section 5.5 we prove
Theorem 5.2. Finally, in Section 5.7 we conclude with some closing remarks.

5.2 Protrusions, t-boundaried graphs, and finite integer in-
dex

In this section we provide some definitions that will be used in this chapter; some of them
will also be used in Chapter 6. For convenience, we assume in this chapter that V (G) is
a totally ordered set. Since we will mainly be concerned with sparse graphs we let |G|
denote the number of vertices in the graph G. We denote by ω(G) the size of the largest
complete subgraph of G and by #ω(G) the number of complete subgraphs (not necessarily
maximal ones).

We proceed to restate the main definitions of the protrusion machinery developed in [63,
140]. Given a graph G = (V,E) and a set W ⊆ V , we define ∂G(W ) as the set of vertices
in W that have a neighbor in V \ W . For a set W ⊆ V the neighborhood of W is
NG(W ) = ∂G(V \W ). Superscripts and subscripts are omitted when it is clear which
graph is being referred to.

Definition 5.1 (t-protrusion [63]) Given a graph G, a set W ⊆ V (G) is a t-protrusion
of G if |∂G(W )| 6 t and tw(G[W ]) 6 t− 1.4 If W is a t-protrusion, the vertex set W ′ =
W \ ∂G(W ) is the restricted protrusion of W . We call ∂G(W ) the boundary and |W |
the size of the t-protrusion W of G. Given a restricted t-protrusion W ′, we denote its
extended protrusion by W ′+ = W ′ ∪N(W ′).

Note that if W ′ is the restricted protrusion of W , then W ′+ = W . A rough outline of a
protrusion is depicted in Figure 5.1.

4 In [63], tw(G[W ]) 6 t, but we want the size of the bags to be at most t.



88 Linear kernels and single-exponential algorithms via protrusion decompositions

c© Felix Reidl

Figure 5.1: Basic anatomy of a protrusion.

A t-boundaried graph is a graph G = (V,E) with a set bd(G) (called the boundary5 or
the terminals of G) of t distinguished vertices labeled 1 through t. Let Gt denote the class
of t-boundaried graphs, with graphs from G. If W ⊆ V is an r-protrusion in G, then
we let GW be the r-boundaried graph G[W ] with boundary ∂G(W ), where the vertices
of ∂G(W ) are assigned labels 1 through r according to their order in G.

Definition 5.2 (Gluing and ungluing) For t-boundaried graphs G1 and G2, we
let G1 ⊕ G2 denote the graph obtained by taking the disjoint union of G1 and G2 and
identifying each vertex in bd(G1) with the vertex in bd(G2) with the same label. This
operation is called gluing.

Let G1 ⊆ G with a boundary B of size t. The operation of ungluing G1 from G creates
the t-boundaried graph G 	B G1 := G − (V (G1) \ B) with boundary B. The vertices of
bd(G	B G1) are assigned labels 1 through t according to their order in the graph G.

Note that the gluing operation entails taking the union of edges both of whose endpoints
are in the boundary with the deletion of multiple edges to keep the graph simple. The
ungluing operation preserves the boundary (both the vertices and the edges).

Definition 5.3 (Replacement) Let G = (V,E) be a graph with a t-protrusion W ;
let GW denote the graph G[W ] with boundary bd(GW ) = ∂G(W ); and finally, let G1 be a
t-boundaried graph. Then replacing GW by G1 corresponds to the operation (G	GW )⊕G1.

Definition 5.4 (Protrusion decomposition) An (α, t)-protrusion decomposition of a
graph G is a partition P = Y0 ] Y1 ] · · · ] Y` of V (G) such that:

1. for every 1 6 i 6 `, N(Yi) ⊆ Y0;

2. max{`, |Y0|} 6 α;

3. for every 1 6 i 6 `, Yi ∪NY0(Yi) is a t-protrusion of G.

The set Y0 is called the separating part of P.

5Usually denoted by ∂(G), but this collides with our usage of ∂.



Linear kernels and single-exponential algorithms via protrusion decompositions 89

Hereafter, the value of t will be fixed to some constant. When G is the input of a param-
eterized graph problem with parameter k, we say that an (α, t)-protrusion decomposition
of G is linear (resp. quadratic) whenever α = O(k) (resp. α = O(k2)).

We now restate the definition of one of the most important notions used in this chapter.

Definition 5.5 (Finite integer index (FII) [70]) Let ΠG be a parameterized graph
problem restricted to a class G and let G1, G2 be two t-boundaried graphs in Gt. We
say that G1 ≡Π,t G2 if there exists a constant ∆Π,t(G1, G2) (that depends on Π, t, and the
ordered pair (G1, G2)) such that for all t-boundaried graphs G3 and for all k:

1. G1 ⊕G3 ∈ G if and only if G2 ⊕G3 ∈ G;

2. (G1 ⊕G3, k) ∈ Π if and only if (G2 ⊕G3, k + ∆Π,t(G1, G2)) ∈ Π.

We say that the problem ΠG has finite integer index in the class G if for every integer t,
the equivalence relation ≡Π,t has finite index (that is, it has a finite number of equivalence
classes). In the case that (G1 ⊕ G, k) 6∈ Π or G1 ⊕ G 6∈ G for all G ∈ Gt, we set
∆Π,t(G1, G2) = 0. Note that ∆Π,t(G1, G2) = −∆Π,t(G2, G1).

We would like to note that the definition of finite integer index given in Definition 5.5
differs from the definition given in [63,70], where the first condition in the definition of the
equivalence relation ≡Π,t is not required. As in [140], we adopt the above definition for
notational simplicity, due to the following reason. Assume that the equivalence relation
defined only by the second condition in Definition 5.5 has finite index. Assume furthermore
that the membership in the graph class G can be expressed in MSO logic. Then by Myhill-
Nerode’s theorem6, it follows that the equivalence relation ≡Π,t has finite index as well
(see for instance [115,131,214]). As the membership in the class of graphs that can exclude
a fixed graph H as a topological minor can be expressed in MSO logic (see Section 5.6.4
for the precise formula), it will be simpler to already incorporate the first condition in
Definition 5.5.

If a parameterized problem has finite integer index then its instances can be reduced by
“replacing protrusions”. The technique of replacing protrusions hinges on the fact that each
protrusion of “large” size can be replaced by a “small” gadget from the same equivalence
class as the protrusion, which consequently behaves similarly with respect to the problem
at hand. If G1 is replaced by a gadget G2, then the parameter k in the problem changes
by ∆Π,t(G1, G2). What is not immediately clear is that given that a problem Π has finite
integer index, how does one show that there always exists a set of representatives for which
the parameter is guaranteed not to increase. The next lemma shows that this is indeed
the case. The ideas of the proof are implicit in [70].

Lemma 5.1 Let Π be a parameterized graph problem that has finite integer index in a
graph class G. Then for every fixed t, there exists a finite set Rt of t-boundaried graphs
such that for each t-boundaried graph G ∈ Gt there exists a t-boundaried graph G′ ∈ Rt
such that G ≡Π,t G

′ and ∆Π,t(G,G
′) > 0.

6A thorough historical study of the family of Myhill-Nerode’s theorems can be found in [238].



90 Linear kernels and single-exponential algorithms via protrusion decompositions

Proof : The set Rt consists of one element from each equivalence class of ≡Π,t. Since Π
has finite integer index, the set Rt is finite. Therefore we only have to show that there
exist representatives that satisfy the requirement in the statement of the lemma.

To this end, fix any equivalence class G′t ∈ Gt/≡Π,t. First consider the case where there
exists G1 ∈ G′t such that for all G ∈ Gt, either G1⊕G 6∈ G or for all k ∈ N0, (G1⊕G, k) 6∈ Π.
Since G′t is an equivalence class, this means that at least one of these two conditions holds
for every graph G ∈ G′t. Thus ∆Π,t(G1, G2) = 0 for all t-boundaried graphs G1, G2 ∈ G′t
and we can simply take a graph of smallest size from G′t as representative.

We can now assume that for the chosen G′t it holds that there exists a t-boundaried graph
G ∈ Gt such that for all G1 ∈ G′t we have that G1 ⊕ G ∈ G and, for some k ∈ N,
(G1 ⊕G, k) ∈ ΠG . Consider the following binary relation � over G′t: for all G1, G2 ∈ G′t,

G1 � G2 ⇔ ∆Π,t(G1, G2) > 0.

As ∆Π,t(G,G) = 0 for all G ∈ Gt, it immediately follows that the relation � is reflexive.
Furthermore, the relation is total as every graph is comparable to every other graph from
the same equivalence class.

We next show that the relation � is also transitive, making it a total quasi-order. Let
G1, G2, G3 ∈ G′t be such that G1 � G2 and G2 � G3. This is equivalent to saying
that c12 = ∆Π,t(G1, G2) > 0 and c23 = ∆Π,t(G2, G3) > 0. For every G ∈ Gt such that
G1 ⊕G ∈ G and (G1 ⊕G, k) ∈ Π for some k ∈ N, we have

(G1 ⊕G, k) ∈ Π ⇔ (G2 ⊕G, k + c12) ∈ Π

⇔ (G3 ⊕G, k + c12 + c23) ∈ Π.

By definition, ∆Π,t(G1, G3) = c12 + c23 > 0 and hence G1 � G3. We conclude that � is
transitive and therefore a total quasi-order.

We now show that the class G′t can be partitioned into layers that can be linearly ordered.
We will pick our representative for the class G′t from the first layer in this ordering. To do
this, we define the following equivalence relation over G′t. For all G1, G2 ∈ G′t, define

G1 ≡ G2 ⇔ G1 � G2 and G2 � G1

⇔ ∆Π,t(G1, G2) = 0.

Now, the equivalence classes G′t/≡ can be linearly ordered as follows. Fix a graph G ∈ Gt
such that for any G1 ∈ G′t we have that G1 ⊕G ∈ G and (G1 ⊕G, k) ∈ Π for some k ∈ N,
this graph must exist since we handled equivalence classes of Gt/≡Π,t which do not have
such a graph in the first part of the proof. Consider the function ΦG : G′t/≡ → N0 defined
via

ΦG([G′]) = min
{
k ∈ N | (G′ ⊕G, k) ∈ Π

}
.

Observe that ΦG([G2]) = ΦG([G1]) + ∆Π,t(G1, G2) for all G1, G2 ∈ G′t and, in particular,
that

ΦG([G1]) = ΦG([G2])⇔ G1 ≡ G2.

Thus ΦG induces a linear order on G′t/≡. Moreover, since ΦG(·) > 0, there exists a class
[G∗] in G′t/≡ that is a minimum element in the order induced by ΦG. For any t-boundaried



Linear kernels and single-exponential algorithms via protrusion decompositions 91

graph G ∈ [G∗], it then follows that for all G1 ∈ G′t, ∆Π,t(G,G1) > 0. The representative
of G′t in Rt is an arbitrary t-boundaried graph G′ ∈ [G∗] of smallest size. This proves the
lemma. 2

Definition 5.6 (Protrusion limit) For a parameterized graph problem Π that has finite
integer index in the class G, let Rt denote the set of representatives of the equivalence
classes of ≡Π,t satisfying the requirement stated in Lemma 5.1. The protrusion limit
of ΠG is defined as ρΠG (t) = maxG∈Rt |V (G)|. We drop the subscript when it is clear
which graph problem is being referred to. We also define ρ′(t) := ρ(2t).

The next two lemmas deal with finding protrusions in graphs. The first of these guarantees
that whenever there exists a “large enough” protrusion, there exists a protrusion that is
large but of size bounded by a constant (that depends on the problem and the boundary
size). As we shall see later, the fact that we deal with protrusions of constant size enables
us to efficiently test which representative to replace them by, assuming that we have the
set of representatives. For completeness, we provide the proof of the following lemma.

Lemma 5.2 (Bodlaender et al. [63]) Let Π be a parameterized graph problem with fi-
nite integer index in G and let t ∈ N be a constant. For a graph G ∈ G, if one is given
a t-protrusion X ⊆ V (G) such that ρ′ΠG (t) < |X|, then one can, in time O(|X|), find a
2t-protrusion W such that ρ′ΠG (t) < |W | 6 2 · ρ′ΠG (t).

Proof : Let (T,X ) be a nice tree-decomposition for G[X] of width t − 1. Root T at an
arbitrary node. Let u be the lowest node of T such that if W is the set of vertices in the
bags associated with the nodes in the subtree Tu rooted at u, then |W | > ρ′ΠG (t). Clearly
W is a 2t-protrusion with boundary Xu ∪ ∂G(X), where Xu ⊆ V (G) is the bag associated
with the node u of T . By the choice of u, it is clear that u cannot be a forget node. If u
is an introduce node with child v, then the number of vertices in the bags associated with
the nodes of Tv must be exactly ρ′ΠG (t). Since u introduces exactly one additional vertex
of G, we have |W | = ρ′ΠG (t) + 1. Finally consider the case when u is a join node with
children y, z. Then the bags associated with these nodes Xu, Xy, Xz are identical and since

∣∣ ⋃

j∈V (Ty)

Xj

∣∣ < ρ′ΠG (t) and
∣∣ ⋃

j∈V (Tz)

Xj

∣∣ < ρ′ΠG (t),

we have that W =
⋃
j∈V (Ty)Xj ∪

⋃
j∈V (Tz)Xj has size at most 2 · ρ′ΠG (t).

Computing a nice tree-decomposition (T,X ) of G[X] takes time 2O(t3) · |X| [58] and the
time required to compute a 2t-protrusion from T is O(|X|). Since t is a constant, the total
time taken is O(|X|). 2

For a fixed t, the protrusion W is of constant size but, in the reduction rule to be described,
would be replaced by a representative of smaller size, namely at most ρ′ΠG (t) = ρΠG (2t).
This means that each time the reduction rule is applied, the size of the graph strictly
decreases and, by Lemma 5.1, the parameter does not increase. The reduction rule can
therefore be applied at most n times, where n is the number of vertices in the input graph.



92 Linear kernels and single-exponential algorithms via protrusion decompositions

As we shall see later, each application of the reduction rule takes time polynomial in n,
assuming that we are given the set of representatives. Therefore, in polynomial time, we
would obtain an instance in which every t-protrusion has size at most ρΠG (2t). This trick
is described in [63] but is stated here for the sake of completeness.

The next lemma describes how to find a t-protrusion of maximum size.

Lemma 5.3 (Finding maximum sized protrusions) Let t be a constant. Given an
n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found
in time O(nt+1).

Proof : For a vertex set B ⊆ V (G) of size at most t, let CB,1, . . . , CB,p be the connected
components of G − B such that, for 1 6 i 6 p, tw(G[V (CB,i) ∪ B]) 6 t. The connected
components of G−B can be determined in O(n) time and one can test whether the graph
induced by V (CB,i) ∪B has treewidth at most t− 1 in time 2O(t3) · n [58]. Since we have
assumed that t is a fixed constant, deciding whether the treewidth is within t− 1 can be
done in linear time. By definition,

⋃p
i=1 V (CB,i) ∪ B is a t-protrusion with boundary B.

Conversely every t-protrusion W consists of a boundary ∂(W ) of size at most t such that
the restricted protrusion W ′ = W \ ∂(W ) is a collection of connected components C
of G − ∂(W ) satisfying the condition tw(G[V (C) ∪ ∂(W )]) 6 t − 1. Therefore to find a
t-protrusion of maximum size, one simply runs through all vertex sets B of size at most t
and for each set determines the maximum t-protrusion with boundary B. The largest
t-protrusion over all choices of the boundary B is a largest t-protrusion in the graph. All
of this takes time O(nt+1). 2

Finally, given a 2t-protrusion W with the desired size constraints, we show how to deter-
mine which representative of our equivalence class is equivalent to G[W ].

Lemma 5.4 Let Π be a parameterized graph problem that has finite integer index on G.
For a constant t ∈ N, suppose that the set Rt of representatives of the equivalence relation
≡Π,t is given. If W is a t-protrusion of size at most a fixed constant c, then one can decide
in constant time which G′ ∈ Rt satisfies G′ ≡Π,t G[W ].

Proof : Fix G′ ∈ Rt. We wish to test whether G′ ≡Π,t G[W ]. For each G̃ ∈ Rt, solve
the problem Π on the constant-sized instances G[W ]⊕ G̃ and G′ ⊕ G̃ and let s(G[W ], G̃)
and s(G′, G̃) denote the value of the parameter associated with the problem. Then by the
definition of finite integer index, we have G′ ≡Π,t G[W ] if and only if s(G[W ], G̃)−s(G′, G̃)
is the same for all G̃ ∈ Rt. To find out which graph in Rt is the correct representative of
G[W ], we run this test for each graph in Rt, of which there are a constant number. The
total time taken is, therefore, a constant. 2

5.3 Constructing protrusion decompositions

In this section we present our algorithm to compute protrusion decompositions. Our
approach is based on an algorithm which marks the bags of a tree-decomposition of an
input graph G that comes equipped with a subset X ⊆ V (G) such that the graph G−X



Linear kernels and single-exponential algorithms via protrusion decompositions 93

has bounded treewidth. Let henceforth t be an integer such that tw(G − X) 6 t − 1
and let r be an integer that is also given to the algorithm. This parameter r will depend
on the particular graph class to which G belongs and the precise problem one might
want to solve (see Sections 5.4 and 5.5 for more details). More precisely, given optimal
tree-decompositions of the connected components of G − X with at least r neighbors
in X, the bag marking algorithm greedily identifies a set M of bags in a bottom-up
manner. The set V (M) of vertices contained in marked bags together with X will form
the separating part Y0 of the protrusion decomposition. Bags will be marked in two
different steps, called “Large-subgraph” and “LCA” marking steps. The bags marked in
the Large-subgraph marking step will be mapped bijectively into a collection of pairwise
vertex-disjoint connected subgraphs of G−X, each of which has a large neighborhood in
X (namely, of size greater than r), implying in several particular cases a limited number
of marked bags (see Sections 5.4 and 5.5). In order to guarantee that the connected
components of G−(X∪V (M)) form protrusions with small boundary, in the LCA marking
step the setM is closed under taking LCA’s (least common ancestors; see Lemma 5.6. We
would like to note that this technique was also used in [63, 135]). The precise description
of the procedure can be found in Algorithm 1 below and a sketch of the decomposition is
depicted in Figure 5.2.

Input: A graph G, a subset X ⊆ V (G) such that tw(G−X) 6 t− 1,
and an integer r > 0.

Set M← ∅ as the set of marked bags;
Compute an optimal rooted tree-decomposition TC = (TC ,BC) of every connected
component C of G−X such that |NX(C)| > r;

Repeat the following loop for every rooted tree-decomposition TC ;
while TC contains an unprocessed bag do

Let B be an unprocessed bag at the farthest distance from the root of TC ;

[LCA marking step]
if B is the LCA of two bags of M then
M←M∪ {B} and remove the vertices of B from every bag of TC ;

end

[Large-subgraph marking step]
else if GB contains a connected component CB such that |NX(CB)| > r then
M←M∪ {B} and remove the vertices of B from every bag of TC ;

end

Bag B is now processed;

end

return Y0 = X ∪ V (M);

Algorithm 1: Bag marking algorithm.

Before we discuss properties of the setM of marked bags and the set Y0 = X ∪V (M), let
us establish the time complexity of the bag marking algorithm and describe how the Large-
subgraph marking step can be implemented using dynamic programming techniques. Since



94 Linear kernels and single-exponential algorithms via protrusion decompositions

c© Felix Reidl

Figure 5.2: A sketch of how the marking algorithm obtains a protrusion decomposition. X
denotes a treewidth-modulator. Edges among the individual vertex sets are not depicted.

the dynamic programming procedure is quite standard, we just sketch the main ideas.

Implementation and time complexity of Algorithm 1. First, an optimal tree-
decomposition of every connected component C of G−X such that |NX(C)| > r can be
computed in time linear in n = |V (G)| using the algorithm of Bodlaender for graphs of
bounded treewidth [58]. We root such tree-decomposition at an arbitrary bag. For the
sake of simplicity of the analysis, we can assume that the tree-decompositions are nice
(cf. Section 3.1.3), but it is not necessary for the algorithm.

Note that the LCA marking step can clearly be performed in linear time. Let us now briefly
discuss how we can detect, in the Large-subgraph marking step, if a graph GB contains a
connected component CB such that |NX(CB)| > r using dynamic programming. For each
bag B of the tree-decomposition, we have to keep track of which vertices of B belong to
the same connected component of GB.

Note that we only need to remember the connected components of the graph GB which
intersect B, as the other ones will never be connected to the rest of the graph. For each
such connected component CB intersecting B, we also store NX(CB), and note that by
definition of the algorithm, it follows that for non-marked bags B, |NX(CB)| < r. At a
“join” bag J with children B1 and B2, we merge the connected components of GB1 and
GB2 sharing at least one vertex (which is necessarily in J), and update their neighborhood
in X accordingly. If for some of these newly created connected components CJ of GJ ,
it holds that |NX(CJ)| > r, then the bag J needs to be marked. At a “forget” bag F
corresponding to a forgotten vertex v, we only have to forget the connected component C
of GF containing v if V (C) ∩ F = ∅. Finally, at an “introduce” bag I corresponding to a
new vertex v, we have to merge connected components of GI after the addition of vertex
v, and update the neighbors in X according to the neighbors of v in X.

Note that for each bag B, the time needed to update the information about the connected
components of GB depends polynomially on t and r. In order for the whole algorithm
to run in linear time, we can deal with the removal of marked vertices in the following
way. Instead of removing them from every bag of the tree-decomposition, we can just
label them as “marked” when marking a bag B, and just not take them into account when
processing further bags.



Linear kernels and single-exponential algorithms via protrusion decompositions 95

The next lemma follows from the above discussion.

Lemma 5.5 Algorithm 1 can be implemented to run in time O(n), where the hidden
constant depends only on t and r.

Basic properties of Algorithm 1. Denote by T the union of the set of optimal tree-
decompositions TC of every connected component C of G−X with at least r neighbors in
X.

Lemma 5.6 If T is a maximal connected subtree of T not containing any marked bag of
M, then T is adjacent to at most two marked bags of T .

Proof : As every tree-decomposition in T is rooted, so is any maximal subtree T of T
not containing any marked bag ofM. Assume thatM contains two distinct marked bags,
say B1 and B2, each adjacent to a leaf of T . As T is connected, observe that the LCA B of
B1 and B2 belongs to T . Since M is closed under taking LCA, T contains a marked bag
B, a contradiction. It follows that T is adjacent to at most two marked bags: a unique
one adjacent to a leaf, and possibly another one adjacent to its root. 2

As a consequence of the previous lemma we can now argue that every connected component
of G− Y0 has a small neighborhood in X and thus forms a restricted protrusion.

Lemma 5.7 Let Y0 be the set of vertices computed by Algorithm 1. Every connected
component C of G− Y0 satisfies |NX(C)| < r and |NY0(C)| < r + 2t.

Proof : Let C be a connected component of G − Y0. Observe that C is contained in
a connected component CX of G − X such that either |NX(CX)| < r or |NX(CX)| > r.
In the former case, as Algorithm 1 does not mark any vertex of CX , C = CX and so
|NY0(C)| < r + 2t trivially holds. So assume that |NX(CX)| > r. Then CX has been
chopped by Algorithm 1 and clearly C ⊆ CX \ V (M). More precisely, if TCX

is the
rooted tree-decomposition of CX , there exists a maximal connected subtree T of TCX

not
containing any marked bag such that C ⊆ V (T ) \ V (M). By construction of M, every
connected component of the subgraph induced by V (T ) \ V (M) has strictly less than r
neighbors in X (otherwise the root of T or one of its descendants would have been marked
at the Large-subgraph marking step). It follows that |NX(C)| < r. To conclude, observe
that Lemma 5.6 implies that the neighbors of C in V (M) are contained in at most two
marked bags of T . It follows that |NY0(C)| < r + 2t. 2

Given a graph G and a subset S ⊆ V (G), we define a cluster of G − S as a maximal
collection of connected components of G−S with the same neighborhood in S. Note that
the set of all clusters of G − S induces a partition of the set of connected components of
G− S, which can be easily found in linear time if G and S are given.

By Lemma 5.7 and using the fact that tw(G−X) 6 t−1, the following proposition follows.



96 Linear kernels and single-exponential algorithms via protrusion decompositions

Proposition 5.1 Let r, t be two positive integers, let G be a graph and X ⊆ V (G) such
that tw(G−X) 6 t− 1, let Y0 ⊆ V (G) be the output of Algorithm 1 with input (G,X, r),
and let Y1, . . . , Y` be the set of all clusters of G − Y0. Then P := Y0 ] Y1 ] · · · ] Y` is a
(max{`, |Y0|}, 2t+ r)-protrusion decomposition of G.

In other words, each cluster of G − Y0 is a restricted (2t + r)-protrusion. Note that
Proposition 5.1 neither bounds ` nor |Y0|. In the sequel, we will use Algorithm 1 and
Proposition 5.1 to give explicit bounds on ` and |Y0|, in order to achieve two different
results. In Section 5.4 we use Algorithm 1 and Proposition 5.1 to obtain linear kernels
for a large class of problems on sparse graphs. In Section 5.5 we use Algorithm 1 and
Proposition 5.1 to obtain a single-exponential algorithm for the parameterized Planar-
F-Deletion problem.

5.4 Linear kernels on graphs excluding a topological minor

We start this section by proving Theorem 5.1 in Section 5.4.1. We then state a num-
ber of concrete problems that satisfy the structural constraints imposed by this theorem
(Section 5.4.2), discuss these constraints in the context of previous work in this area (Sec-
tion 5.4.3), and trace graph classes to which our approach can be lifted (Section 5.4.4).
Finally (Section 5.4.5), we discuss how to use the machinery developed in proving Theo-
rem 5.1 to obtain a concrete kernel for the Edge Dominating Set problem.

5.4.1 Proof of Theorem 5.1

With the protrusion machinery outlined in Section 5.2 at hand, we can now describe the
protrusion reduction rule. Informally, we find a sufficiently large t-protrusion (for some yet
to be fixed constant t), replace it with a small representative, and change the parameter
accordingly. In the following, we will drop the subscript from the protrusion limit functions
ρΠ and ρ′Π.

Reduction Rule 1 (Protrusion reduction rule) Let ΠG denote a parameterized
graph problem restricted to some graph class G, let (G, k) ∈ ΠG be a Yes-instance of
ΠG, and let t ∈ N be a constant. Suppose that W ′ ⊆ V (G) is a t-protrusion of G such that
|W ′| > ρ′(t), obtained as described in Lemma 5.3. Let W ⊆ V (G) be a 2t-protrusion of G
such that ρ′(t) < |W | 6 2 · ρ′(t), obtained as described in Lemma 5.2. We let GW denote
the 2t-boundaried graph G[W ] with boundary bd(GW ) = ∂G(W ). Let further G1 ∈ R2t be
the representative of GW for the equivalence relation ≡Π,|∂G(W )| as defined in Lemma 5.1.

The protrusion reduction rule (for boundary size t) is the following:

Reduce (G, k) to (G′, k′) = (G	GW ⊕G1, k −∆Π,2t(G1, GW )).

By Lemma 5.1, the parameter in the new instance does not increase. We now show that
the protrusion reduction rule is safe.



Linear kernels and single-exponential algorithms via protrusion decompositions 97

Lemma 5.8 (Safety) Let G be a graph class and let ΠG be a parameterized graph problem
with finite integer index with respect to G. If (G′, k′) is the instance obtained from one
application of the protrusion reduction rule to the instance (G, k) of ΠG, then

1. G′ ∈ G;

2. (G′, k′) is a Yes-instance if and only if (G, k) is a Yes-instance; and

3. k′ 6 k.

Proof : Suppose that (G′, k′) is obtained from (G, k) by replacing a 2t-boundaried sub-
graph GW (induced by a 2t-protrusion W ) by a representative G1 ∈ R2t. Let G̃ be the 2t-
boundaried graphG−W ′, whereW ′ is the restricted protrusion ofW and bd(G̃) = ∂G(W ).
Since GW ≡Π,2t G1, we have by Definition 5.5,

1. G = G̃⊕GW ∈ G iff G̃⊕G1 ∈ G.

2. (G̃⊕GW , k) ∈ ΠG iff (G̃⊕G1, k −∆Π,2t(G1, GW )) ∈ ΠG .

Hence G′ = G̃ ⊕ G1 ∈ G. Lemma 5.1 ensures that ∆Π,2t(G1, GW ) > 0, and hence k′ =
k −∆Π,2t(G1, GW )) 6 k. 2

Remark 5.1 If (G, k) is reduced with respect to the protrusion reduction rule with bound-
ary size β, then for all t 6 β, every t-protrusion W of G has size at most ρ′(t).

In order to obtain linear kernels, we require the problem instances to have more structure.
In particular, we adapt the notion of quasi-compactness introduced in [63] to define what
we call treewidth-bounding.

Definition 5.7 (Treewidth-bounding) A parameterized graph problem ΠG is called
(s, t)-treewidth-bounding if there exists a function s : N → N and a constant t such that
for every (G, k) ∈ ΠG there exists X ⊆ V (G) such that:

1. |X| 6 s(k); and

2. tw(G−X) 6 t− 1.

We call a problem treewidth-bounding on a graph class G if the above property holds under
the restriction that G ∈ G. We call X a t-treewidth-modulator of G, s the treewidth-
modulator size and t the treewidth bound of the problem Π.

We assume in the following that the problem ΠG at hand is (s, t)-treewidth-bounding with
bound t and modulator size s(·), that is, a Yes-instance (G, k) ∈ ΠG has a modulator set
X ⊆ V (G) with |X| 6 s(k) and tw(G − X) 6 t − 1. Note that in general s, t depend
on ΠG and G. For many problems that are treewidth-bounding, such as Vertex Cover,
Feedback Vertex Set, Treewidth-t Vertex Deletion, the set X is actually the
solution set. However, in general, X could be any vertex set and does not have to be given
nor efficiently computable to obtain a kernel. The fact that it exists is all we need for our
proof to go through.

The rough idea of the proof of Theorem 5.1 is as follows. We assume that the given
instance (G, k) is reduced w.r.t. the protrusion reduction rule for some yet to be fixed



98 Linear kernels and single-exponential algorithms via protrusion decompositions

constant boundary size β. Consequently, every β-protrusion of G has size at most ρ′(β).
For a protrusion decomposition Y0 ] Y1 ] · · · ] Y` obtained from Algorithm 1 with a
carefully chosen threshold r (see Proposition 5.1), we can then show that |Y0| = O(k)
using properties of H-topological-minor-free graphs. The bound on the total size of the
clusters of G− Y0 follows from these properties and from the protrusion reduction rule.

We first prove a result (Theorem 5.3) that is slightly more general than Theorem 5.1 and
identifies all the key ingredients needed for our result. To do this, we use a sequence
of lemmas (5.9, 5.10, 5.11) which bounds the total size of the clusters of the protrusion
decomposition. To this end, we define the constriction operation, which essentially shrinks
paths into edges.

Definition 5.8 (Constriction) Let G be a graph and let P be a set of paths in G such
that for each P ∈ P it holds that:

1. the endpoints of P are not connected by an edge in G; and

2. for all P ′ ∈ P, with P ′ 6= P , P and P ′ share at most a single vertex which must also
be an endpoint of both paths.

We define the constriction of G under P, written G|P , as the graph H obtained by con-
necting the endpoints of each P ∈ P by an edge and then removing all inner vertices of
P .

We say that H is a d-constriction of G if there exists G′ ⊆ G and a set of paths P in
G′ such that d = maxP∈P |P | and H = G′|P . Given graph classes G,H and some integer
d > 2, we say that G d-constricts into H if for every G ∈ G, every possible d-constriction
H of G is contained in the class H. For the case that G = H we say that G is closed under
d-constrictions. We will call H the witness class, as the proof of Theorem 5.3 works by
taking an input graph G and constricting it into some witness graph H whose properties
will yield the desired bound on |G|. We let ω(G) denote the size of a largest clique in G
and #ω(G) the total number of cliques in G (not necessarily maximal ones).

Theorem 5.3 Let G,H be graph classes closed under taking subgraphs such that G d-
constricts into H for a fixed constant d ∈ N. Assume that H has the property that there
exist functions fE , f#ω : N → N and a constant ωH (depending only on H) such that for
each graph H ∈ H the following conditions hold:

|E(H)| 6 fE(|H|), #ω(H) 6 f#ω(|H|), and ω(H) < ωH.

Let Π be a parameterized graph problem that has finite integer index and is (s, t)-treewidth-
bounding, both on the graph class G. Define xk := s(k) + 2t · fE(s(k)). Then any reduced
instance (G, k) ∈ Π has a protrusion decomposition V (G) = Y0 ] Y1 ] · · · ] Y` such that:

1. |Y0| 6 xk;

2. |Yi| 6 ρ′(2t+ ωH) for 1 6 i 6 `; and

3. ` 6 f#ω(xk) + fE(xk) + xk + 1.



Linear kernels and single-exponential algorithms via protrusion decompositions 99

Hence Π restricted to G admits kernels of size at most

xk + (f#ω(xk) + fE(xk) + xk + 1)ρ′(2t+ ωH).

Even if it is not our main objective to optimize the running time of the kernelization
algorithm given by Theorem 5.3, we just note that it is dominated by the algorithm of
Lemma 5.3 for finding protrusions. We split the proof of Theorem 5.3 into several lemmas.
First, let us fix the way in which the decomposition Y0 ] Y1 ] · · · ] Y` is obtained: given
a reduced Yes-instance (G, k) ∈ Π, let X ⊆ V (G) be a treewidth-modulator of size at
most |X| 6 s(k) such that tw(G−X) 6 t− 1. For the analysis of the kernel size, we run
Algorithm 1 on the input (G,X, ωH).

Lemma 5.9 The protrusion decomposition Y0 ] Y1 ] · · · ] Y` obtained by running Algo-
rithm 1 on (G,X, ωH) has the following properties:

1. For each 1 6 i 6 `, we have |Yi| 6 ρ′(2t+ ωH);

2. For each connected subgraph CB found by Algorithm 1 in the “Large-subgraph marking
step”, |CB| 6 ρ′(2t+ ωH) + t.

Proof : The first claim follows directly from Lemma 5.7: for each 1 6 i 6 `, we have
|NY0(Yi)| 6 2t + ωH. As Yi ⊆ G − X, it follows that tw(G[Yi]) 6 t − 1 and therefore
Yi forms a restricted (2t + ωH)-protrusion in G. Since our instance is reduced, we have
|Yi| 6 ρ′(2t+ ωH).

Note that during a run of the algorithm, if a bag B currently being considered is not
marked, then each connected component CB of GB satisfies |NX(CB)| < ωH. Hence CB
along with its neighbors in X is a (2t+ ωH)-protrusion and since the instance is reduced
we have |CB| 6 ρ′(2t + ωH). Moreover the algorithm ensures that |NR(CB)| 6 2t, where
R = V (G) \X, and thus a component with a neighborhood larger than 2t + ωH must
have at least ωH neighbors in X. Now as every step of the algorithm adds at most t
more vertices to the components of GB, it follows that once a component with at least ωH
neighbors in X is found, it can contain at most ρ′(2t+ ωH) + t vertices. 2

Now, let us prove the claimed bound on |Y0| by making use of the assumed bounds ωH
and fE(·) imposed on graphs of the witness class H.

Lemma 5.10 The number of bags marked by Algorithm 1 to obtain Y0 ] Y1 ] · · · ] Y` is
at most 2fE(s(k)), and therefore |Y0| 6 xk = s(k) + 2fE(s(k)) · t.

Proof : For each bag marked in the “Large-subgraph marking step” of the algorithm, a
connected subgraph C of G−X with |NX(C)| > ωH is found. Suppose that the algorithm
finds p such connected subgraphs C1, . . . , Cp. Then the number of marked bags is at most
2p, since the LCA marking step can at most double the number of marked bags.

By the design of Algorithm 1, the connected subgraphs Ci are pairwise vertex-disjoint and
|Ci| 6 ρ′(2t+ωH) + t, for all 1 6 i 6 p, cf. Lemma 5.9. Define P to be a largest collection
of paths such that the following conditions hold. For each path P ∈ P:



100 Linear kernels and single-exponential algorithms via protrusion decompositions

• the endpoints of P are both in X;

• the inner vertices of P are all in a single subgraph Ci, for some 1 6 i 6 p; and

• for all P ′ ∈ P with P ′ 6= P , the endpoints of P and P ′ are not identical and their
inner vertices are in different subgraphs Ci and Cj .

First, we show that any largest collection P of paths satisfying the above conditions is
such that |P| = p, that is, such a collection has one path per subgraph in {C1, . . . , Cp}.
Assume that P is a largest collection of paths satisfying the conditions stated above and
consider the graph H = G|P [X] induced by the vertex set X in the graph G|P obtained
by constricting the paths in P. By assumption, H ∈ H as G d-constricts into H and H is
closed under taking subgraphs. The constant d is given by

d = max
P∈P
|P | 6 max

16i6p
|Ci| 6 ρ′(2t+ ωH) + t.

Suppose that |P| < p, i.e., there exists some Ci with 1 6 i 6 p such that no path of P
uses vertices of Ci. Consider the neighborhood Z = NG

X (Ci) of Ci in X. As we chose
the threshold of the marking algorithm to ensure that |Z| > ωH, it follows that Z cannot
induce a clique in H. But then there exist vertices u, v ∈ Z with uv 6∈ E(H) and we
could add a uv-path whose inner vertices are in Ci to P without conflicting with any of
the above constraints (including the bound on d), which contradicts our assumption that
P is of largest size. We therefore conclude that |P| = p.

Since there is a bijection from the collection of subgraphs {C1, . . . , Cp} and the paths of P,
we may bound p by the number of edges in H, which is at most fE(|H|). But |H| = |X| =
s(k) and we thus obtain the bound p 6 fE(s(k)) on the number of large-degree subgraphs
found by Algorithm 1. Therefore the number of marked bags is |M| 6 2fE(s(k)). As
every marked bag adds at most t vertices to Y0, we obtain the claimed bound

|Y0| = |X|+ t · |M| 6 s(k) + 2t · fE(s(k)) = xk. 2

We will now use this bound on the size of Y0 to bound the sizes of the clusters Y1]· · ·]Y`
of G − Y0. The important properties used are that the instance (G, k) is reduced, that
each Yi has a small neighborhood in Y0 and hence has small size, and that the witness
graph obtained from G via constrictions has a bounded number of cliques, given by the
function f#ω(·).

Lemma 5.11 The number of vertices in
⋃

16i6` Yi is bounded by (f#ω(|Y0|) + fE(|Y0|) +
|Y0|+ 1) · ρ′(2t+ ωH).

Proof : The clusters Y1, . . . , Y` contain connected components of G − Y0 and have the
property that for each 1 6 i 6 `, |NG

Y0
(Yi)| 6 2t+ωH. We proceed analogously to the proof

of Lemma 5.10. Let P be a maximum collection of paths P such that the endvertices of P
are in Y0 and all its inner vertices are in some cluster Yi. Moreover for all paths P1, P2 ∈ P,
with P1 6= P2, each path has a distinct set of endvertices and a distinct component for
their inner vertices. Note that some clusters might have no or only one neighbor in Y0,
those cannot be used by any of the paths in P.



Linear kernels and single-exponential algorithms via protrusion decompositions 101

Consider the graph H = G|P [Y0] induced by Y0 in the graph obtained from G by con-
stricting the paths in P. Note that for each cluster Yi whose vertices do not participate
in any path of P it holds that Zi = NG

Y0
(Yi) induces a clique in H as otherwise we could

augment P by another path. The neighborhoods of clusters not participating in any path
of P therefore can be upperbounded by the number of cliques in H. The neighborhoods
of clusters that do participate in paths of P in turn are upperbounded by |P|, which in
turns is at most |E(H)|.
Using the bounds f#ω, fE for H, we deduce that the collection of neighborhoods
{Z1, . . . , Z`}, where Zi = NG

Y0
(Yi) for 1 6 i 6 `, contains at most f#ω(|H|) + fE(|H|) +

|H| + 1 distinct sets where the sum |H| + 1 takes care of clusters that have zero to one
neighbor in Y0. Thus

` 6 f#ω(|H|) + fE(|H|) + |H|+ 1 = f#ω(|Y0|) + fE(|Y0|) + |Y0|+ 1,

where we used the fact that |H| = |Y0|. Since Y1, . . . , Y` are clusters w.r.t. Y0, we obtain
` restricted (2t+ ωH)-protrusions in G (adding the respective neighborhood in Y0 to each
cluster yields the corresponding (2t+ωH)-protrusion). Thus the sets Y1, . . . , Y` contain in
total at most

∣∣ ⋃

16i6`

Yi
∣∣ 6 (f#ω(|Y0|) + fE(|Y0|) + |Y0|+ 1) · ρ′(2t+ ωH)

vertices. 2

We can now easily prove Theorem 5.3.

Proof of Theorem 5.3: By Lemma 5.10 we know that |Y0| = xk. Together with
Lemma 5.11 we can bound the total number of vertices in a reduced instance by

|V (G)| = |Y0|+ |Y1|+ · · ·+ |Y`|
6 xk + (f#ω(xk) + fE(xk) + xk + 1)ρ′(2t+ ωH),

again using the shorthand xk = s(k) + 2fE(s(k)) · t. 2

We now show how to apply Theorem 5.3 to obtain kernels. Let GH be the class of graphs
that exclude some fixed graph H as a topological minor. Observe that GH is closed
under taking topological minors, and is therefore closed under taking d-constrictions for
any d > 2.

In order to obtain fE , f#ω, and ωGH we use the fact that H-topological-minor-free graphs
are ε-degenerate. That is, there exists a constant ε (that depends only on H) such that
every subgraph of G ∈ GH contains a vertex of degree at most ε. The following are
well-known properties of degenerate graphs.

Proposition 5.2 (Bollobás and Thomason [71], Komlós and Szemerédi [186])
There is a constant β 6 10 such that, for r > 2, every graph with no Kr-topological-minor
has average degree at most βr2.



102 Linear kernels and single-exponential algorithms via protrusion decompositions

As an immediate consequence, any graph with average degree larger than βr2 contains
every r-vertex graph as a topological minor. If a graph G excludes H as a topological
minor, then G clearly excludes K|H| as a topological minor. What is also true is that the
total number of cliques (not necessarily maximal) in G is O(|G|).

Proposition 5.3 (Fomin, Oum, and Thilikos [142]) There is a constant τ < 4.51
such that, for r > 2, every n-vertex graph with no Kr-topological-minor has at most
2τr log rn cliques.

Henceforth, let r := |H| denote the size of the forbidden topological minor. The following
is a slightly generalized version of our first main theorem.

Theorem 5.4 Fix a graph H and let GH be the class of H-topological-minor-free graphs.
Let Π be a parameterized graph problem that has finite integer index and is (sΠ,GH , tΠ,GH )-
treewidth-bounding on the class GH . Then Π admits a kernel of size O(sΠ,GH (k)).

Proof : We use Theorem 5.3 with the functions fE(n) = 1
2βr

2n, f#ω(n) = 2τr log rn
obtained from Propositions 5.2 and 5.3. Observe that an H-topological-minor-free graph
cannot contain a clique of size r, thus ωGH 6 r. The kernel size is then bounded by

sΠ,GH (k) ·
(
1 + βr2t

)(
1 + (2τr log r +

1

2
βr2 + 1)ρ′(2t+ r)

)
+ ρ′(2t+ r)

sΠ,GH (k) · (1 + βr2t+ (2τr log r(1 + βr2t) + βr2t) · ρ′(2t+ r)) + ρ′(2t+ r),

where we omitted the subscript of tΠ,GH for the sake of readability. 2

Theorem 5.1 is now just a consequence of the special case for which the treewidth-bound is
linear. Note that the class of graphs with bounded degree is a subset of those that exclude
a fixed topological minor, thus the above result translates directly to this class.

5.4.2 Problems affected by our result

We present concrete problems that satisfy the prerequisites of Theorem 5.1.

Corollary 5.1 Fix a graph H. The following problems are linearly treewidth-bounding and
have finite integer index and linear treewidth-bound on the class of H-topological-minor-free
graphs and hence possess a linear kernel on this graph class: Vertex Cover7; Cluster
Vertex Deletion7; Feedback Vertex Set; Chordal Vertex Deletion8; Inter-
val and Proper Interval Vertex Deletion; Cograph Vertex Deletion; Edge
Dominating Set.

7Listed for completeness; these problems have a kernel with a linear number of vertices on general
graphs.

8Note that Chordal Vertex Deletion is indeed linearly treewidth-bounding on H-topological-minor-
free graphs, since an H-topological-minor-free chordal graph has bounded clique size, and hence bounded
treewidth as well.



Linear kernels and single-exponential algorithms via protrusion decompositions 103

In particular, Corollary 5.1 also implies that Chordal Vertex Deletion and Interval
Vertex Deletion can be decided on H-topological-minor-free graphs in time O(ck ·
poly(n)) for some constant c. (This follows because one can first obtain a linear kernel
and then use brute-force to solve the kernelized instance.) On general graphs (complicated)
single-exponential algorithms for Interval Vertex Deletion have appeared only very
recently [77,78,219] (until now, this problem was not even known to be FPT), whereas only
an O(f(k) · poly(n)) algorithm is known for Chordal Vertex Deletion, where f(k) is
not even specified [203].

Corollary 5.2 Chordal Vertex Deletion and Interval Vertex Deletion are
solvable in single-exponential time on H-topological-minor-free graphs.

A natural extension of the (vertex deletion) problems in Corollary 5.1 is to seek a solution
that induces a connected graph. The connected versions of problems are typically more
difficult both in terms of proving fixed-parameter tractability and establishing polyno-
mial kernels. For instance, Vertex Cover admits a 2k-vertex kernel but Connected
Vertex Cover has no polynomial kernel unless NP ⊆ coNP/poly [108]. However on
H-topological-minor-free graphs, Connected Vertex Cover (and a couple of others)
admit a linear kernel.

Corollary 5.3 Connected Vertex Cover, Connected Cograph Vertex Dele-
tion, and Connected Cluster Vertex Deletion have linear kernels in graphs ex-
cluding a fixed topological minor.

Another property owell-known graph width measures treewidth (tw), rankwidth (rw), and
cliquewidth (cw), are all within a constant multiplicative factor of one another.

Proposition 5.4 (Fomin, Oum, and Thilikos [142]) There is a constant τ such that
for every r > 2, if G excludes Kr as a topological minor, then

rw(G) 6 cw(G) < 2 · 2τr log rrw(G)

rw(G) 6 tw(G) + 1 <
3

4
(r2 + 4r − 5)2τr log rrw(G).

An interesting vertex-deletion problem related to graph width measures is Width-b Ver-
tex Deletion [182]: given a graph G and an integer k, do there exist at most k vertices
whose deletion results in a graph with width at most b? From Definition 5.7 (see Sec-
tion 5.2), it follows that if the width measure is treewidth, then this problem is treewidth-
bounding. By Proposition 5.4, this also holds if the width measure is either rankwidth
or cliquewidth. The fact that this problem has finite integer index follows from the suffi-
ciency condition known as strong monotonicity in [63]. Since branchwidth differs only by
a constant factor from treewidth in general graphs [224], this gives us the following.

Corollary 5.4 The Width-b Vertex Deletion problem has a linear kernel on H-
topological-minor-free graphs, where the width measure is either treewidth, cliquewidth,
branchwidth, or rankwidth.



104 Linear kernels and single-exponential algorithms via protrusion decompositions

c© Felix Reidl

Figure 5.3: Kernelization results for problems with finite integer index on sparse graph
classes with their corresponding additional condition.

5.4.3 A comparison with earlier results

We briefly compare the structural constraints imposed in Theorem 5.1 with those im-
posed in the results on linear kernels on graphs of bounded genus [63] and H-minor-free
graphs [140]. In particular, we discuss how restrictive is the condition of being treewidth-
bounding. A graphical summary of the various notions of sparseness and the associated
structural constraints used to obtain results on linear kernels is depicted in Figure 5.3.

The theorem that guarantees linear kernels on graphs of bounded genus in [63] imposes a
condition called quasi-compactness. The notion of quasi-compactness is similar to that of
treewidth-bounding: Yes-instances (G, k) satisfy the condition that there exists a vertex
setX ⊆ V (G) of“small”size whose deletion yields a graph of bounded treewidth. Formally,
a problem Π is called quasi-compact if there exists an integer r such that for every (G, k) ∈
Π, there is an embedding of G onto a surface of Euler-genus at most g and a set X ⊆ V (G)
such that |X| 6 r · k and tw(G − RrG(X)) 6 r. Here RrG(X) denotes the set of vertices
of G at radial distance at most r from X. It is easy to see that the property of being
treewidth-bounding is stronger than quasi-compactness in the sense that if a problem is
treewidth-bounding and the graphs are embeddable on a surface of genus g, then the
problem is also quasi-compact, but not the other way around. The fact that we use a
stronger structural condition is expected, since our result proves a linear kernel on a much
larger graph class.

More interesting are the conditions imposed for linear kernels onH-minor-free graphs [140].
The problems here are required to be bidimensional and satisfy a so-called separation
property. Roughly speaking, a problem is bidimensional if the solution size on a k × k-
grid is Ω(k2) and the solution size does not decrease by deleting/contracting edges. The
notion of the separation property is essentially the following. A problem has the separation
property, if for any graph G and any vertex subset X ⊆ V (G), the optimum solution of G
projected on any subgraph G′ of G −X differs from the optimum for G′ by at most |X|



Linear kernels and single-exponential algorithms via protrusion decompositions 105

(cf. [140] for details.) At first glance, these conditions seem to have nothing to do with the
property of being treewidth-bounding. However in the same paper [140, Lemma 3.2], the
authors show that if a problem on H-minor-graphs is bidimensional and has the separation
property then it is also (ck, t)-treewidth-bounding for some constants c, t that depend on
the graph H excluded as a minor. Using this fact, the main result of [140] (namely,
that bidimensional problems with FII and the separation property have linear kernels on
H-minor-free graphs) can be reproved as an easy corollary of Theorem 5.3.

This discussion shows that in the results on linear kernels on sparse graph classes that we
know so far, the treewidth-bounding condition has appeared in some form or the other. In
the light of this we feel that this is the key condition for proving linear kernels on sparse
graph classes.

5.4.4 The limits of our approach

It is interesting to know for which notions of sparseness (beyond H-topological-minor-
free graphs) we can use our technique to obtain polynomial kernels. We show that our
technique fails for the following notion of sparseness: graph classes that locally exclude a
minor [98]. The notion of locally excluding a minor was introduced by Dawar et al. [98] and
graphs that locally exclude a minor include bounded-genus graphs but are incomparable
with H-minor-free graphs [213]. However we also show that there exist (restricted) graph
classes that locally exclude a minor where it is still possible to obtain a polynomial kernel
using our technique.

Definition 5.9 (Locally excluding a minor [98]) A class G of graphs locally excludes
a minor if for every r ∈ N there is a graph Hr such that the r-neighborhood of a vertex of
any graph of G excludes Hr as a minor.

Therefore if G locally excludes a minor then the 1-neighborhood of a vertex in any graph
of G does not contain H1 as a minor, and hence as a subgraph. In particular, the neigh-
borhood of no vertex contains a clique on h1 := |H1| vertices as a subgraph, meaning that
the clique number (that is, the maximum size of a clique) of such graphs is bounded from
above by h1. The total number of cliques in any graph of G is then bounded by h1n

h1 ,
and the number of edges can be trivially bounded by n2. We now have almost all the
prerequisites for applying Theorem 5.3. However the class G is not closed under taking
d-constrictions. Taking a d-constriction in a graph G ∈ G can increase the clique number
of the constricted graph. This seems to be a bottleneck in applying Theorem 5.3. However
if we assume that the size of the locally forbidden minors {Hr}r∈N grows very slowly, then
we can still obtain a polynomial kernel.

Definition 5.10 Given g : N → N, we say that a graph class G locally excludes minors
according to g if there exists a constant n0 ∈ N, such that for all r > n0, the g(r)-
neighborhood of a vertex in any graph of G does not contain Kr as a minor.

Lemma 5.12 Let G be a graph class that locally excludes a minor according to g : N→ N
and let n0 be the constant as in the above definition. Then for any r > n0, the class G
g(r)-constricts into a graph class H that excludes Kr as a subgraph.



106 Linear kernels and single-exponential algorithms via protrusion decompositions

Proof : Assume the contrary. Let G ∈ G and suppose that for some r > 2 the graph
H obtained by a g(r)-constriction of G contains Kr as a subgraph. Pick any vertex v
in this subgraph of H. The g(r)-neighborhood of v in G must contain Kr as a minor, a
contradiction. 2

Note that in the following, we assume that the problem is treewidth-bounding on general
graphs.

Corollary 5.5 Let Π be a parameterized graph problem with finite integer index that is
(s(k), tΠ)-treewidth-bounding. Let G be a graph class locally excluding a minor according
to a function g : N→ N such that for all r > n0, g(r) > ρ′(2tΠ + r) + 1. Then there exists
a constant r0 such that Π admits kernels of size O(s(k)r0) on G.

Proof : By Lemma 5.12, taking a g(r)-constriction results in a graph class H that
excludes Kr as a subgraph, for large enough r. Fixing r = n0, where n0 is the constant in
Definition 5.10, we apply Theorem 5.3 with the trivial functions fE(n) = n2, f#ω(n) = r·nr
and ωH = r. By Lemma 5.12, we have that ωGH 6 r. The kernel size is then bounded by

s(k)+2ts(k)2+
(
(s(k) + 2t · s(k)2)r + (s(k) + 2ts(k)2)2 + s(k) + 2ts(k)2 + 1

)
ρ′(2t+r) ∈ O(s(k)2r),

where we omitted the subscript of tΠ for the sake of readability. With r0 = 2r = 2n0, the
bound in the statement of the corollary follows. 2

We do not know how quickly the function ρ′(·) grows but intuition from automata theory
seems to suggest that this has at least superexponential growth. As such, the graph class
for which the polynomial kernel result holds (Corollary 5.5) is pretty restricted. However
this does suggest a limit to which our approach can be pushed as well as some intuition
as to why our result is not easily extendable to graph classes locally excluding a minor.
We note that graph classes of bounded expansion present the same problem.

5.4.5 An illustrative example: Edge Dominating Set

In this section we show how Theorem 5.1 can actually be used to obtain a simple explicit
kernel for the Edge Dominating Set problem on H-topological-minor-free graphs. This
is made possible by the fact that we can find in polynomial time a small enough treewidth-
modulator and replace the generic protrusion reduction rule by a handcrafted specific
reduction rule.

Let us first recall the problem at hand. We say that an edge e is dominated by a set
of edges D if either e ∈ D or e is incident with at least one edge in D. The problem
Edge Dominating Set asks, given a graph G and an integer k, whether there is an edge
dominating set D ⊆ E(G) of size at most k, i.e., an edge set which dominates every edge
of G. The canonical parameterization of this problem is by the integer k, i.e., the size of
solution set.

There is a simple 2-approximation algorithm for Edge Dominating Set [243]. Given
an instance (G, k), where G is H-topological-minor-free, let D be an edge dominating



Linear kernels and single-exponential algorithms via protrusion decompositions 107

set of G, given by the 2-approximation. We can assume that |D| 6 2k since oth-
erwise we can correctly declare (G, k) as a No-instance. Take X := {v ∈ V (G) |
v is incident to some edge in D} as the treewidth-modulator: note that |X| 6 4k and
that G−X is of treewidth at most 0, i.e., an independent set. One can easily verify that
that the bag marking Algorithm 1 of Section 5.3 would mark exactly those vertices of
G−X whose neighborhood in X has size at least r := |H|. By applying the edge-bound
of Proposition 5.2 to Lemma 5.10 we get that |V (M)| 6 βr2 · 8k.

Take Y0 := X ∪ V (M) and let P := Y0 ] Y1 ] · · · ] Y` be a partition of V (G), where
again Yi, 1 6 i 6 `, is now a cluster w.r.t. Y0, i.e., the vertices in a single Yi share the
same neighborhood in X and the Yi are of maximal size under this condition. We have
one reduction rule, which can be construed as an concrete instantiation of generic the
protrusion replacement rule. We would like to stress that this reduction rule relies on the
fact that we already have a protrusion decomposition of G, given by Algorithm 1.

Twin elimination rule: If |Yi| > |NY0(Yi)| for some i 6= 0, let G′ be the
instance obtained by keeping |NY0(Yi)| many vertices of Yi and removing the
rest of Yi. Take k′ := k.

Lemma 5.13 The twin elimination rule is safe.

Proof : Let Gi be the graph induced by the vertex set NY0(Yi)∪Yi and let Ei be its edge
set (as NY0(Yi) = N(Yi), we shall omit the subscript Y0). For a vertex v ∈ V (G), we define
the set E(v) as the set of edges incident with v. The notations G′i, E

′
i, Y

′
i , and E′(v) are

defined analogously for the graph G′ obtained after the application of twin elimination
rule. We say that a vertex v ∈ V (G) is covered by an edge set D if v is incident with an
edge of D.

To see the forward direction, suppose that (G, k) is a Yes-instance and let D be an
edge dominating set of size at most k. Without loss of generality, we can assume that
|D ∩Ei| 6 |N(Yi)|. Indeed, it can be easily checked that the edge set (D \Ei)∪E(u), for
an arbitrarily chosen u ∈ Yi, is an edge dominating set. Hence at most |N(Yi)| vertices
out of Yi are covered by D, and thus we can apply twin elimination rule so as to delete
only those vertices which are not incident with D. It just remains to observe that D is an
edge dominating set of G′.

For the opposite direction, let D′ be an edge dominating set for G′ of size at most k.
We first argue that N(Y ′i ) is covered by D′ without loss of generality. Indeed, suppose
v ∈ N(Y ′i ) is not covered by D′. In order for an edge e = uv ∈ E′(v) ∩ E′i to be
dominated by D′, at least one edge in E′(u) should be contained in D. Since the sets
{E′(u) : u ∈ Y ′i } are mutually disjoint, it follows that |D′ ∩ E′i| > |Y ′i |. Now take an
alternative edge set D′′ := (D′\E′i)∪E′(u) for an arbitrary vertex u ∈ Y ′i . It is not difficult
to see that D′′ is an edge dominating set for G′. Moreover, we have |D′′| 6 |D′| 6 k as
|D′ ∩ E′i| > |Y ′i | = |E′(u)| = |N(Y ′i )|. Hence D′′ is also an edge dominating set of size at
most k. Assuming that N(Y ′i ) is covered by D′, it is easy to see that D′ dominates Ei and
thus D′ is an edge dominating set of G. This completes the proof. 2



108 Linear kernels and single-exponential algorithms via protrusion decompositions

Back to the partition P, we can apply the twin elimination rule in time O(n) and ensure
that |Yi| 6 r − 1 for 1 6 i 6 `. The bound on ` is proved in Lemma 5.11 and taken
together with the edge- and clique-bounds from Proposition 5.2 and 5.3, respectively, we
obtain

` 6 2τr log r((2βr2 + 1)4k) + 2βr2((2βr2 + 1)4k) + (2βr2 + 1)4k + 1

= 4k(βr22τr log r+1 + 4β2r4 + 4βr2 + 2τr log r + 1) + 1

and thus we get the overall bound

|G| 6 |Y0|+ |Y1|+ · · ·+ |Y`|
6 4k(βr2 + 1) +

(
4k(βr22τr log r+1 + 4β2r4 + 4βr2 + 2τr log r + 1) + 1

)
(r − 1)

6 4k((βr22τr log r+1 + 4β2r4 + 4βr2 + 2τr log r + 1)(r − 1) + 2βr2 + 1) + (r − 1)

< k
(

(80r220.8r log r+1 + 6400r4 + 320r2 + 4 · 28.8r log r + 4)(r − 1) + 160r2 + 4
)

+ r

on the size of G. We remark that this upper bound can be easily made explicit once H
is fixed. Again, we can get better constants on H-minor-free graphs, just by replacing
constants βr2 and 2τr log r with α(r

√
log r) and 2µr log log r, respectively. Finally, note that

the whole procedure can be carried out in linear time.

5.5 Single-exponential algorithm for Planar-F-Deletion

This section is devoted to the single-exponential algorithm for the Planar-F-Deletion
problem. Let henceforth Hp be some fixed (connected or disconnected) arbitrary planar
graph in the family F , and let r := |Hp|. First of all, using iterative compression, we
reduce the problem to obtaining a single-exponential algorithm for the Disjoint Planar-
F-Deletion problem, which is defined as follows:

Disjoint Planar-F-Deletion
Input: A graph G and a subset of vertices X ⊆ V (G) such that G−X is

H-minor-free for every H ∈ F .
Parameter: The integer k.
Objective: Compute a set X̃ ⊆ V (G) disjoint from X such that |X̃| < |X| and

G− X̃ is H-minor-free for every H ∈ F , if such a set exists.

The input set X is called the initial solution and the set X̃ the alternative solution. Let
tF be a constant (depending on the family F) such that tw(G −X) 6 tF − 1 (note that
such a constant exists by Robertson and Seymour [222], and can be calculated by using
the results of Fellows and Langston [125]).

The following lemma relies on the fact that being F-minor-free is a hereditary property
with respect to induced subgraphs. For a proof, see for instance [83,182,202,J14].



Linear kernels and single-exponential algorithms via protrusion decompositions 109

Lemma 5.14 If the parameterized Disjoint Planar-F-Deletion problem can be
solved in time ck · p(n), where c is a constant and p(n) is a polynomial in n, then the
parameterized Planar-F-Deletion problem can be solved in time (c+ 1)k · p(n) · n.

Let us provide a brief sketch of our algorithm to solve Disjoint Planar-F-Deletion.
We start by computing a protrusion decomposition using Algorithm 1 with input (G,X, r).
But it turns out that the set Y0 output by Algorithm 1 does not define a linear protrusion
decomposition of G, which is crucial for our purposes (in fact, it can be only proved that
Y0 defines a quadratic protrusion decomposition of G). To circumvent this problem, our
strategy is to first use Algorithm 1 to identify a set Y0 of O(k) vertices of G, and then
guess the intersection I of the alternative solution X̃ with the set Y0. We prove that if the
input is a Yes-instance of Disjoint Planar-F-Deletion, then V (M) contains a subset
I such that the connected components of G−V (M) can be clustered together with respect
to their neighborhood in Y0 \ I to form an (O(k − |I|), 2tF + r)-protrusion decomposition
P of the graph G − I. As a result, we obtain Proposition 5.5, which is fundamental in
order to prove Theorem 5.2.

Proposition 5.5 (Linear protrusion decomposition) Let (G,X, k) be a Yes-
instance of the parameterized Disjoint Planar-F-Deletion problem. There exists
a 2O(k) · n-time algorithm that identifies a set I ⊆ V (G) of size at most k and a
(O(k), 2tF + r)-protrusion decomposition P = Y0 ] Y1 ] · · · ] Y` of G− I such that:

1. X ⊆ Y0;

2. there exists a set X ′ ⊆ V (G) \ Y0 of size at most k − |I| such that G − X̃, with
X̃ = X ′ ∪ I, is H-minor-free for every graph H ∈ F .

At this stage of the algorithm, we can assume that a subset I of the alternative solution
X̃ has been identified, and it remains to solve the instance (G − I,X, k − |I|) of the
Disjoint Planar-F-Deletion problem, which comes equipped with a linear protrusion
decomposition P = Y0]Y1]· · ·]Y`. In order to solve this problem, we prove the following
proposition:

Proposition 5.6 Let (G, Y0, k) be an instance of Disjoint Planar-F-Deletion and
let P = Y0]Y1] · · · ]Y` be an (α, β)-protrusion decomposition of G, for some constant β.
There exists an 2O(`) ·n-time algorithm that computes a solution X̃ ⊆ V (G) \Y0 of size at
most k if it exists, or correctly decides that there is no such solution.

The key observation in the proof of Proposition 5.6 is that for every restricted protrusion
Yi, there is a finite number of representatives such that any partial solution lying on Yi
can be replaced with one of these while preserving the feasibility of the solution. This
follows from the finite index of MSO-definable properties (see, e.g., [70]). Then, to solve
the problem in single-exponential time we can just use brute-force in the union of these
representatives, which has overall size O(k).



110 Linear kernels and single-exponential algorithms via protrusion decompositions

Organization of the section. In Section 5.5.1 we analyze Algorithm 1 when the input
graph is a Yes-instance of Disjoint Planar-F-Deletion. The branching step guessing
the intersection of the alternative solution X̃ with V (M) is described in Section 5.5.2,
concluding the proof of Proposition 5.5. Section 5.5.3 gives a proof of Proposition 5.6, and
finally Section 5.5.4 proves Theorem 5.2.

5.5.1 Analysis of the bag marking algorithm

We first need two results concerning graphs which exclude a clique as a minor. The
following lemma states that graphs excluding a fixed graph as a minor have linear number
of edges.

Proposition 5.7 (Thomason [234]) There is a constant α < 0.320 such that every n-
vertex graph with no Kr-minor has at most (αr

√
log r) · n edges.

Recall that a clique in a graph is a set of pairwise adjacent vertices. For simplicity, we
assume that a single vertex and the empty graph are also cliques.

Proposition 5.8 (Fomin, Oum, and Thilikos [142]) There is a constant µ < 11.355
such that, for r > 2, every n-vertex graph with no Kr-minor has at most 2µr log log r · n
cliques.

For the sake of simplicity, let henceforth in this section αr := αr
√

log r and µr := 2µr log log r.

Let us now analyze some properties of Algorithm 1 when the input graph is a Yes-instance
of the Disjoint Planar-F-Deletion problem. In this case, the bound on the treewidth
of G−X is tF − 1. The following two lemmas show that the number of bags identified at
the “Large-subgraph marking step” is linearly bounded by k. Their proofs use arguments
similar to those used in the proof of Theorem 5.3, but we provide the full proofs here for
completeness.

Lemma 5.15 Let (G,X, k) be a Yes-instance of the Disjoint Planar-F-Deletion
problem. If C1, . . . , C` is a collection of connected pairwise disjoint subsets of V (G) \ X
such that for all 1 6 i 6 `, |NX(Ci)| > r, then ` 6 (1 + αr) · k.

Proof : Let X ′ ⊆ V (G) \ X be a solution for (G,X, k), and observe that `′ 6 k of the
sets C1, . . . , C` contain vertices of X ′. Consider the sets C`′+1, . . . , C` which are disjoint
with X ′, and observe that G[X ∪ (

⋃
`′<j6`Cj)] is an H-minor-free graph. We proceed to

construct a family of graphs {Gi}`′6i6`, with V (Gi) = X for all `′ 6 i 6 `, and such that Gi
is a minor of G[X ∪ (

⋃
`′<j6iCj)], in the following way. We start with E(G`′) = E[G(X)],

and suppose inductively that the graph Gi−1 has been successfully constructed. Since
by assumption Gi−1 is a minor of G[X ∪ (

⋃
`′<j6i−1Cj)], which in turn is a minor of

G[X ∪ (
⋃
`′<j6`Cj)], it follows that Gi−1 is H-minor-free, and therefore it cannot contain

a clique on r vertices. In order to construct Gi from Gi−1, let xi, yi be two vertices in
X such that both xi and yi are neighbors in G of some vertex in Ci, and such that xi
and yi are non-adjacent in Gi−1. Note that such two vertices exist, since we can assume



Linear kernels and single-exponential algorithms via protrusion decompositions 111

that r > 2 and Gi−1 is H-minor-free. Then Gi is constructed from Gi−1 by adding an
edge between xi and yi. Since Ci is connected by hypothesis, we have that Gi is indeed a
minor of G[X ∪ (

⋃
`′<j6iCj)]. Since G` is H-minor-free, it follows by Proposition 5.7 that

|E(G`)| 6 αr · |X| edges. Since by construction we have that `− `′ 6 |E(G`)|, we conclude
that ` = `′ + (`− `′) 6 k + αr · k = (1 + αr) · k, as we wanted to prove. 2

Lemma 5.16 If (G,X, k) is a Yes-instance of the Disjoint Planar-F-Deletion prob-
lem, then the set Y0 = V (M) ∪ X of vertices returned by Algorithm 1 has size at most
k + 2tF · (1 + αr) · k.

Proof : As |X| = k and as the algorithm marks bags of an optimal forest-decomposition
of G − X, which is a graph of treewidth at most tF , in order to prove the lemma it is
enough to prove that the number of marked bags is at most 2 · (1 + αr) · k. It is an
easy observation to see that the set of connected components CB identified at the Large-
subgraph marking step contains pairwise vertex disjoint subset of vertices, each inducing
a connected subgraph of G−X with at least r neighbors in X. It follows by Lemma 5.15,
that the number of bags marked at the Large-subgraph marking step is at most (1+αr) ·k.
To conclude it suffices to observe that the number of bags identified at the LCA marking
step cannot exceed the number of bags marked at the Large-subgraph marking step. 2

5.5.2 Branching step and linear protrusion decomposition

At this stage of the algorithm, we have identified a set Y0 = X ∪ V (M) of O(k) vertices
such that, by Proposition 5.1, every connected component of G−Y0 is a restricted (2tF+r)-
protrusion. We would like to note that it can be proved, using ideas similar to the proof of
Lemma 5.17 below, that Y0 together with the clusters of G−Y0 form a quadratic protrusion
decomposition of the input graph G. But as announced earlier, for time complexity issues
we seek a linear protrusion decomposition. To this end, the second step of the algorithm
consists in a branching to guess the intersection I of the alternative solution X̃ with the
set of marked vertices V (M). By Lemma 5.16, this step yields 2O(k) branchings, which is
compatible with the desired single-exponential time.

For each guessed set I ⊆ Y0, we denote GI := G − I. Recall that a cluster of GI − Y0 as
a maximal collection of connected components of GI − Y0 with the same neighborhood in
Y0 \ I. We use Observation 5.2, a direct consequence of Lemma 5.7, to bound the number
of clusters under the condition that GI contains a vertex subset X ′ disjoint from Y0 of size
at most k − |I| such that GI −X ′ does not contain any graph H ∈ F as a minor (and so
the graph G− X̃, with X̃ = X ′ ∪ I, does not contain either any graph H ∈ F as a minor).

Remark 5.2 For every cluster C of GI − Y0, |NY0(C)| < r + 2tF .

The proof of the following lemma has a similar flavor to those of Theorem 5.3 and
Lemma 5.15.

Lemma 5.17 If (GI , Y0 \ I, k − |I|) is a Yes-instance of the Disjoint Planar-F-
Deletion problem, then the number of clusters of GI − Y0 is at most (5tFαrµr) · k.



112 Linear kernels and single-exponential algorithms via protrusion decompositions

Proof : Let C be the collection of all clusters of GI − Y0. Let X ′ be a subset of vertices
disjoint from Y0 such that |X ′| 6 k−|I| = kI and GI −X ′ is H-minor-free for every graph
H ∈ F . Observe that at most kI clusters in C contain vertices from X ′. Let C1, . . . , C` be
the clusters in C that do not contain vertices from X ′. So we have that |C| 6 kI +` 6 k+`.
LetGC be the subgraph ofG induced by (Y0\I)∪⋃`

i=1Ci. Observe that as (GI , Y0\I, k−|I|)
is a Yes-instance of the Disjoint Planar-F-Deletion problem, GC is H-minor-free for
every graph H ∈ F .

We greedily construct from GC a graph G′C , with V (G′C) = Y0 \ I, as follows. We start
with G′C = G[Y0 \ I]. As long as there is a non-used cluster C ∈ C with two non-adjacent
neighbors u, v in Y0 \ I, we add to G′C an edge between u and v and mark C as used. The
number of clusters in C used so far in the construction of G′C is bounded from above by the
number of edges of G′C . Observe that by construction G′C is clearly a minor of GC . Thereby
G′C is an H-minor-free graph (for every H ∈ F) on at most k + 2tF · (1 + αr) · k vertices
(by Lemma 5.16). By Proposition 5.7, it follows that |E(G′C)| 6 αr · (k+ 2tF · (1 +αr) · k)
and so there are the same number of used clusters.

Let us now count the number of non-used clusters. Observe that the neighborhood in
Y0 \ I of each non-used cluster induces a (possibly empty) clique in G′C (as otherwise
some further edge could have been added to G′C). As by definition distinct clusters have
distinct neighborhoods in Y0 \ I, and as G′C is an H-minor-free graph (for every H ∈ F)
on at most k + 2tF · (1 + αr) · k vertices, Proposition 5.8 implies that the number of
non-used clusters is at most µr · (k + 2tF · (1 + αr) · k). Summarizing, we have that
|C| 6 k+ (αr + µr) · (k+ 2tF · (1 +αr) · k) 6 (5tFαrµr) · k, where in the last inequality we
have used that µr > αr and we have assumed that αr > 4. 2

Piecing all lemmas together, we can now provide a proof of Proposition 5.5.

Proof of Proposition 5.5: By Lemmas 5.5 and 5.16 and Observation 5.2, we can
compute in linear time a set Y0 of O(k) vertices containing X such that every cluster of
G− Y0 is a restricted (2tF + r)-protrusion. If (G,X, k) is a Yes-instance of the Disjoint
Planar-F-Deletion problem, then there exists a set X̃ of size less than |X| and disjoint
from X such that G−X̃ does not contain any graph H ∈ F as a minor. Branching on every
possible subset of Y0\X, one can guess the intersection I of X̃ with Y0\X. By Lemma 5.16,
the branching degree is 2O(k). As (G,X, k) is a Yes-instance, for at least one of the guessed
subsets I, the instance (GI , Y0 \ I, k − |I|) is a Yes-instance of the Disjoint Planar-
F-Deletion problem. By Lemma 5.17, the partition P = (Y0 \ I) ] Y1 ] · · · ] Y`, where
{Y1, . . . , Y`} is the set of clusters of GI−Y0, is an (O(k), r+2tF )-protrusion decomposition
of GI . 2

5.5.3 Solving Planar-F-Deletion with a linear protrusion decomposition

After having proved Proposition 5.5, we can now focus in this subsection on solving Dis-
joint Planar-F-Deletion in single-exponential time when a linear protrusion decom-
position is given. Let PΠ(G,S) denote an MSO formula (of bounded size) which holds if
and only if G− S is F-minor-free.



Linear kernels and single-exponential algorithms via protrusion decompositions 113

Consider an instance (G, Y0, k) of Disjoint Planar-F-Deletion equipped with a linear
protrusion decomposition P of G. Let P = Y0 ] Y1 ] · · · ] Y` be an (α, β)-protrusion
decomposition of G for some constant β. The key observation is that for every restricted
protrusion Yi, there is a finite number of representatives such that any partial solution lying
on Yi can be replaced with one of these while preserving the feasibility of the solution.

We fix a constant t. Let Ut be the universe of t-boundaried graphs, and let U small
t denote

the universe of t-boundaried graphs having a tree-decomposition of width t − 1 with all
boundary vertices contained in one bag. Throughout this subsection we will assume that
all the restricted protrusions belonging to a given protrusion decomposition have the same
boundary size, equal to the maximum boundary size over all protrusions. This assumption
is licit as if some protrusion has smaller boundary size, we can add dummy independent
vertices to it without interfering with the structure of the solutions and without increasing
the treewidth.

Definition 5.11 Let P = Y0 ] Y1 ] · · · ] Y` be an (α, t)-protrusion decomposition of G.
For each 1 6 i 6 `, we define the following equivalence relation ∼F ,i on subsets of Yi: for
Q1, Q2 ⊆ Yi, we define Q1 ∼F ,i Q2 if for every H ∈ Ut, G[Y +

i \Q1]⊕H is F-minor-free
if and only if G[Y +

i \Q2]⊕H is F-minor-free.

Note that G equipped with P can be viewed as a gluing of two β-boundaried graphs G[Y +
i ]

and G	G[Y +
i ], for any 1 6 i 6 `, where Y +

i = NGI
[Yi]. Let us consider the equivalence

relation ∼F ,i applied on Yi when G is viewed as such gluing. Extending the notation
suggested in Section 5.2, we say that S is a set of minimum-sized representatives of the
equivalence relation ≈ if S contains exactly one element of minimum cardinality from
every equivalence class under ≈. Let R(Yi) := {Qi1, . . . , Qiqi} be a set of minimum-sized
representatives of equivalence classes under ∼F ,i for every 1 6 i 6 `. We say that a set
X̃ ⊆ V (G) \ Y0 is decomposable if X̃ = Q1 ∪ · · · ∪Q` for some Qi ∈ R(Yi) for 1 6 i 6 `.

Lemma 5.18 (Solution decomposability) Let (G, Y0, k) be an instance of Disjoint
Planar-F-Deletion and let P = Y0]Y1]· · ·]Y` be an (α, β)-protrusion decomposition
of G. Then, there exists a solution X̃ ⊆ V (G) \ Y0 of size at most k if and only if there
exists a decomposable solution X̃∗ ⊆ V (G) \ Y0 of size at most k.

Proof : Let X̃ be a subset of V (G) \ Y0. Let Si := X̃ ∩ Yi for every 1 6 i 6 `,
S̄i := X̃ ∩ (V (G) \ Yi) and let H := G	G[Y +

i ]− S̄i be the associated t-boundaried graph
with bd(H) := bd(G	G[Y +

i ]). Fix i and choose the (unique) representative Qi ∈ R(Yi)
such that Qi ∼F ,i Si. Note that Si ∩ bd(H) = S̄i ∩ bd(H) = ∅.
We claim that G− X̃ is F-minor-free if and only if G− (Qi ∪ S̄i) is F-minor-free. Indeed,
G − X̃ = G − (Si ∪ S̄i), which can be written as G[Y +

i \ Si] ⊕ H. From the choice of
Qi ∈ R(Yi) such that Qi ∼F ,i Si, it follows that G[Y +

i \Si]⊕H is F-minor-free if and only
if G[Y +

i \Qi]⊕H is so. Noting that G[Y +
i \Qi]⊕H = G− (Qi ∪ S̄i) proves our claim.

By replacing each Si with its representative Qi ∈ R(Yi), we eventually obtain X̃∗ of the
form X̃∗ =

⋃
16i6`Q

i, where Qi ∈ R(Yi) is the representative of Si for every 1 6 i 6 `.

Finally, it holds that PΠ(G, X̃∗) if and only if PΠ(G, X̃). It remains to observe that
|Qi| 6 |Si|, as we selected a minimum-sized set of an equivalence class of ∼F ,i as its
representative. 2



114 Linear kernels and single-exponential algorithms via protrusion decompositions

We are now ready to prove Proposition 5.6.

Reminder of Proposition 5.6. Let (G, Y0, k) be an instance of Disjoint Planar-
F-Deletion and let P = Y0 ] Y1 ] · · · ] Y` be an (α, β)-protrusion decomposition of G,
for some constant β. There exists an 2O(`) · n-time algorithm that computes a solution
X̃ ⊆ V (G) \ Y0 of size at most k if it exists, or correctly decides that there is no such
solution.

Proof : By Lemma 5.18, either there exists a solution of size at most k which is de-
composable or (G, Y0, k) is a No-instance. Henceforth we will just look for decomposable
solutions.

We first need to compute, for all 1 6 i 6 `, a set of representatives R(Yi) of the equivalence
relations ∼F ,i. To that aim, we define an equivalence relation ≡F ,t on U small

t , with the
objective of capturing all possible behaviors of the graphs G	G[Y +

i ] (we call such graphs
the context of the restricted protrusion Yi). For two t-boundaried graphs K1 and K2 from
U small
t , we say that:

K1 ≡F ,t K2 if for every Y ∈ U small
t , K1 ⊕ Y is F-minor-free iff K2 ⊕ Y is F-minor-free.

As the property of being F-minor-free is MSO-definable, ≡F ,t has finitely many equivalence
classes for each fixed t and there is a finite set K = {K1, . . . ,KM} of representatives of
≡F ,t (cf. for instance [91, 115]). Observe that the set K is independent from the instance
(it depends only on the problem). For the sake of readability we now assume that the
set K is given. Note that this assumption would make the proof non-constructive and
therefore the algorithm non-uniform on the family F (that is, for each family F we would
deduce the existence of a different algorithm). In the paragraph below the end of the proof
we briefly explain how this set K can be efficiently constructed in linear time, yielding a
constructive and uniform algorithm.

So given the setK = {K1, . . . ,KM}, we now proceed to find the set of representativesR(Yi)
in time O(|Yi|) for every 1 6 i 6 `. Our strategy is inspired by the method of test sets [39].
We consider the set of all binary vectors with M coordinates, to which we give the following
interpretation. Each fixed such vector v = (b1, . . . , bM ) will correspond to a minimum-sized
subset Qv ⊆ Yi such that, for 1 6 j 6M , the graph G[(Y +

i \Qv)]⊕Kj is F-minor-free iff
bj = 1. Formally, for each binary vector (b1, . . . , bM ) of length M we consider the following
optimization problem: find a set Q ⊆ Yi of minimum size such that ϕ(G[Y +

i ], Q) holds.

Here ϕ(G[Y +
i ], Q) := (Q ⊆ Yi) ∧

(∧M
j=1 b̃j

)
, where b̃j := ϕKj (G[Y +

i ], Q) if bj = 1 and

b̃j := ¬ϕKj (G[Y +
i ], Q) if bj = 0, each ϕKj (G[Y +

i ], Q) stating that G[(Y +
i \ Q)] ⊕ Kj is

F-minor-free. For each fixed Kj ∈ U small
t , whether G[(Y +

i \Q)]⊕Kj is F-minor-free or not
depends only on G[Y +

i ] and Q, and moreover this property can be expressed as an MSO
formula. As ϕ is an MSO formula, we can apply the linear-time dynamic programming
algorithm of Borie et al. [72] on graphs of bounded treewidth to solve the associated
optimization problem. Note that the running time is O(|Yi|), whose hidden constant
depends solely on |PΠ| and the treewidth t.

Claim 5.1 Let Ri be the set of the optimal solutions over all 2M binary vectors of length
M , obtained as explained above. Then Ri is a set of minimum-sized representatives of ∼F ,i.



Linear kernels and single-exponential algorithms via protrusion decompositions 115

Proof : We fix t := 2tF + r, so we can assume that all protrusions Y +
i belong to U small

t .
First note that in the definition the equivalence relation ∼F ,i (cf. Definition 5.11), one
only needs to consider graphs H ∈ U small

t . Indeed, if H ∈ Ut \U small
t , then for any Q ⊆ Yi it

follows that G[Y +
i \Q]⊕H is not F-minor-free (as tw(G[Y +

i \Q]⊕H) > 2tF+r > tF ), so in
order to define the equivalence classes of subsets of Yi it is enough to consider H ∈ U small

t .
In other words, only the elements of U small

t can distinguish the subsets of Yi with respect
to ∼F ,i.

Let Q ⊆ Yi, and we want to prove that there exists RQ ∈ Ri such that Q ∼F ,i RQ, that is,
such that for any H ∈ Ut, G[Y +

i \Q]⊕H is F-minor-free iff G[Y +
i \RQ]⊕H is F-minor-free.

By the remark in the above paragraph, we can assume that H ∈ U small
t , as otherwise the

statement is trivially true. Let vQ = (b1, . . . , bM ) be the binary vector on M coordinates
such that, for 1 6 j 6M , bj = 1 iff G[(Y +

i \Q)⊕Kj ] is F-minor-free. We define RQ to be
the graph in Ri corresponding to the vector vQ. As H ∈ U small

t , there exists KH ∈ K such
that H ≡F ,t KH . Then, G[Y +

i \Q]⊕H is F-minor-free iff G[Y +
i \Q]⊕KH is F-minor-free,

which by construction is F-minor-free iff G[Y +
i \ RQ] ⊕KH is F-minor-free, which is in

turn F-minor-free iff G[Y +
i \RQ]⊕H is F-minor-free, as we wanted to prove. 2

To summarize the above discussion, a set of minimum-sized representatives R(Yi) can
be constructed in time O(|Yi|), and therefore all the sets of such representatives can be
constructed in time O(n).

Once the sets R(Yi) of representatives for the equivalence relations ∼F ,i have been com-
puted for all 1 6 i 6 `, it remains to test every possible decomposable set X̃ (see
Lemma 5.18). Since we have computed a minimum-sized set of representatives R(Yi)
for each ∼F ,i, it follows that there exists a solution X̃ ⊆ V (G) \ Y0 of size at most k if
and only if there exists a decomposable solution X̃∗ ⊆ V (G) \ Y0 of size at most k which
is made of representatives from the sets R(Yi). Observe that for a given decomposable set
X̃, one can decide if X̃ is a solution or not in time O(h(tF ) · n). Indeed, for X̃ to be a
solution, the treewidth of G−X̃ is at most tF−1. Using the algorithm of Bodlaender [58],
one can decide in time 2O(t3F ) · n whether a graph is of treewidth at most tF and if so,
build a tree-decomposition of width at most tF . Courcelle’s theorem [90] says that testing
an MSO-definable property on treewidth-tF graphs can be done in linear time, where the
hidden constant depends solely on the treewidth tF and the length of the MSO-sentence.
It follows that one can decide whether G− X̃ is F-minor-free or not in time O(h(tF ) · n).
Here h(tF ) is an additive function resulting from Bodlaender’s treewidth testing algorithm
and Courcelle’s MSO-model checking algorithm, which depends solely on the treewidth
tF and the MSO formula |PΠ(G, X̃)|. It remains to observe that there are at most 2O(`)

decomposable sets to consider. This is because an MSO-definable graph property has
finitely many equivalence classes on Ut for every fixed t [70,90] (hence, also on U small

t ), and
being F-minor-free is an MSO-definable property. 2

Constructing the sets of representatives for ≡F ,t. Let ΦF be the MSO-formula
expressing that a graph is F-minor free. The set K of representatives can be efficiently
constructed on the universe U small

t from ΦF and the boundary size t. Let us discuss the



116 Linear kernels and single-exponential algorithms via protrusion decompositions

main line of the proof of this fact. Courcelle’s theorem is proved9 by converting an MSO
formula ϕ on tree-decompositions of width t into another MSO formula ϕ′ on labeled trees.
Trees, in which every internal node has bounded fan-in and every node is labeled with
an alphabet chosen from a fixed set, are considered as a tree language, which is a natural
generalization of the usual string language. It is well-known (as the analogue of Büchi’s
theorem [74] on tree languages) that the set of labeled trees for which an MSO formula
holds form a regular (tree) language10. Moreover, based on its proof it is not difficult
to construct a finite tree automaton (cf. for instance [131]). In particular, the number
of states in the corresponding tree automaton is bounded by a constant depending only
on ϕ and t. From this, it is possible to prove (using a “tree” pumping lemma) that one
can assume that the height of a distinguishing extension of two labeled trees is bounded
by a constant as well (in fact, the size of the tree automaton). Hence we can enumerate
all possible labeled trees of bounded height, which will be a test set to construct the
set of representatives K. Now one can apply the so-called method of test sets (basically
implicit in the proof of the Myhill-Nerode theorem [211], see [39, 115] for more details)
and retrieve the set of representatives K. Finally, the reader can check that each of these
standard procedures can be implemented in time O(n), which implies that the algorithm
of Proposition 5.6 has overall running time 2O(`) · n. (We note that an approach similar
to the one described here can be found in [238, Corollary 3.13].)

5.5.4 Proof of Theorem 5.2

We finally have all the ingredients to prove Theorem 5.2.

Reminder of Theorem 5.2. The parameterized Planar-F-Deletion problem can
be solved in time 2O(k) · n2.

Proof : Lemma 5.14 states that Planar-F-Deletion can be reduced to Disjoint
Planar-F-Deletion so that the former can be solved in single-exponential time solvable
provided that the latter is so, and the degree of the polynomial function just increases by
one. We now proceed to solve Disjoint Planar-F-Deletion in time 2O(k) ·n. Given an
instance (G,X, k) of Disjoint Planar-F-Deletion, we apply Proposition 5.5 to either
correctly decide that (G,X, k) is a No-instance, or identify in time 2O(k) ·n a set I ⊆ V (G)
of size at most k and a (O(k), 2tF + r)-protrusion decomposition P = Y0 ] Y1 ] · · · ] Y` of
G − I, with X ⊆ Y0, such that there exists a set X ′ ⊆ V (G) \ Y0 of size at most k − |I|
such that G− X̃, with X̃ = X ′ ∪ I, is H-minor-free for every graph H ∈ F . Finally, using
Proposition 5.6 we can solve the instance (GI , Y0 \ I, k − |I|) in time 2O(k) · n. 2

9In fact, there is more than one proof of Courcelle’s theorem. The one we depict here is as presented
in [131], which differs from the original proof of Courcelle [90].

10A regular tree language is an analogue of a regular language on labeled trees. Appropriately defined,
most of the nice properties on string regular languages transfer immediately to tree regular languages. It
is beyond the scope of this chapter to give details about tree languages and tree automatons. We invite
the interested readers to [91,115].



Linear kernels and single-exponential algorithms via protrusion decompositions 117

5.6 Some deferred results

In this section we provide some results that have been deferred in the current chapter.

5.6.1 Edge modification problems are not minor-closed

A graph problem Π is minor-closed if whenever G is a Yes-instance of Π and G′ is a minor
of G, then G′ is also a Yes-instance of Π. It is easy to see that F-(Vertex-)Deletion is
minor-closed, and therefore it is FPT by Robertson and Seymour [226]. Here we show that
the edge modification versions, namely, F-Edge-Contraction and F-Edge-Removal
(defined in the natural way), are not minor-closed.

Edge contraction. In this case, the problem Π is whether one can contract at most
k edges from a given graph G so that the resulting graph does not contain any of the
graphs in F as a minor. Let F = {K5,K3,3}, and let G be the graph obtained from K5

by subdividing every edge k times, and adding an edge e between two arbitrary original
vertices of K5. Then G can be made planar just by contracting edge e, but if G′ is the
graph obtained from G by deleting e (which is a minor of G), then at least k + 1 edge
contractions are required to make G′ planar.

Edge deletion. In this case, the problem Π is whether one can delete at most k edges
from a given graph G so that the resulting graph does not contain any of the graphs in F
as a minor. Let G, G′, and H be the graphs depicted in Figure 5.4, and let k = 1. Then
G can be made H-minor-free by deleting edge e, but G′, which is the graph obtained from
G by contracting edge e, needs at least two edge deletions to be H-minor-free.

c© Felix Reidl

Figure 5.4: Example to show that F-Edge-Removal is not minor-closed.

5.6.2 Disconnected planar obstructions

Let us argue that there exist natural obstruction sets that contain disconnected planar
graphs. Following Dinneen [107], given an integer ` > 0 and a graph invariant function
λ that maps graphs to integers such that whenever H �m G we also have λ(H) 6 λ(G),
we say that the graph class G`λ := {G : λ(G) 6 `} is an `-parameterized lower ideal. By
Robertson and Seymour [226], we know that for each `-parameterized lower ideal G`λ there
exists a finite graph family F such that G`λ has precisely F as (minor) obstruction set.
In this setting, the F-Deletion problem (parameterized by k) asks whether k vertices



118 Linear kernels and single-exponential algorithms via protrusion decompositions

can be removed from a graph G so that the resulting graph belongs to the corresponding
`-parameterized lower ideal G`λ. For instance, the parameterized Feedback Vertex
Set problem corresponds to the 0-parameterized lower ideal with graph invariant fvs,
namely G0

fvs, which is characterized by F = {K3} and therefore G0
fvs is the set of all

forests. Interestingly, it is proved in [107] that for ` > 1, the obstruction set of many
interesting graph invariants (such as `-Vertex Cover, `-Feedback Vertex Set, or
`-Face Cover to name just a few) contains the disjoint union of obstructions for ` − 1.
As for the above-mentioned problems there is a planar obstruction for ` = 0, we conclude
that for ` > 1 the corresponding family F contains disconnected planar obstructions.

5.6.3 Disconnected Planar-F-Deletion has not finite integer index

We proceed to prove that if F is a family of graphs containing some disconnected graph H
(planar or non-planar), then the F-Deletion problem has not finite integer index (FII)
in general.

We shall use the equivalent definition of FII as suggested for graph optimization problems,
see [99]. For a graph problem o-Π, the equivalence relation ∼o-Π,t on t-boundaried graphs
is defined as follows. Let G1 and G2 be two t-boundaried graphs. We define G1 ∼Π,t G2

if and only if there exists an integer i such that for any t-boundaried graph H, it holds
π(G1 ⊕ H) = π(G2 ⊕ H) + i, where π(G) denotes the optimal value of problem o-Π on
graph G. We claim that G1 ∼Π,t G2 if and only if G1 ≡Π,t G2 (recall Definition 5.5 of
canonical equivalence), where Π is the parameterized version of o-Π with the solution size
as the parameter. Suppose G1 ∼Π,t G2 and let π(G1 ⊕H) = π(G2 ⊕H) + i. Then

(G1 ⊕H, k) ∈ Π ⇔ π(G1 ⊕H) 6 k ⇔ π(G2 ⊕H) 6 k − i(G2 ⊕H, k − i) ∈ Π,

and thus the forward implication holds. The opposite direction is easy to see.

Let F1 and F2 be two incomparable graphs with respect to the minor relation, and let F
be the disjoint union of F1 and F2. For instance, if we want F to be planar, we can take
F1 = K4 and F2 = K2,3. We set F = {F}. Let Π be the non-parameterized version of
F-Vertex Deletion.

For i > 1, let Gi be the 1-boundaried graph consisting of the boundary vertex v together
with i disjoint copies of F1, and for each such copy, we add and edge between v and an
arbitrary vertex of F1. Similarly, for j > 1, let Hj be the 1-boundaried graph consisting
of the boundary vertex u together with j disjoint copies of F2, and for each such copy, we
add and edge between u and an arbitrary vertex of F2.

By construction, if i, j > 1, it holds π(Gi ⊕Hj) = min{i, j}. Then, if we take 1 6 n < m,

π(Gn ⊕Hn−1)− π(Gm ⊕Hn−1) = (n− 1)− (n− 1) = 0,

π(Gn ⊕Hm)− π(Gm ⊕Hm) = n−m < 0.

Therefore, Gn and Gm do not belong to the same equivalence class of ∼Π,1 whenever
1 6 n < m, so ∼Π,1 has infinitely many equivalence classes, and thus Π has not FII.

In particular, the above example shows that if F may contain some disconnected planar
graph H, then Planar-F-Deletion has not FII in general.



Linear kernels and single-exponential algorithms via protrusion decompositions 119

5.6.4 MSO formula for topological minor containment

For a fixed graph H we describe and MSO1-formula ΦH over the usual structure consisting
of the universe V (G) and a binary symmetric relation adj modeling E(G) such that
G |= ΦH iff H �tmG.

ΦH(G) := ∃xv1 . . . ∃xvr∃De1 . . . ∃De`( ∧

16i<j6r

xvi 6= xvj ∧
∧

16i6r

16j6`

xvi 6∈ Dej ∧
∧

16i<j6r

dis(Dei , Dej ) ∧
∧

16j6`
ej=vivk

conn(xvi , Dej , xvk)
)

with dis(X,Y ) := ∀x(x ∈ X → x 6∈ Y )

and conn(u,X, v) := ∃w(adj(u,w) ∧ w ∈ X) ∧ ∃w(adj(v, w) ∧ w ∈ X)

∧∀A∀B((A ⊆ X ∧B ⊆ X ∧ dis(A,B))→ ∃a∃b(a ∈ A ∧ b ∈ B ∧ adj(a, b)))

The subformula conn(u,X, v) expresses that u, v are adjacent to X and that G[X] is
connected, which implies that there exists a path from u to v in G[X∪{u, v}]. By negation
we can now express that G does not contain H as a topological minor, i.e., G |= ¬ΦH iff
G is H-topological-minor-free.

5.7 Concluding remarks

In this chapter we presented a simple algorithm to compute protrusion decompositions for
graphs G that come equipped with a set X ⊆ V (G) such that the treewidth of G−X is at
most some fixed constant t. Then we showed that this algorithm can be used in order to
achieve two different sets of results: linear kernels on graphs excluding a fixed topological
minor, and a single-exponential parameterized algorithm for the Planar-F-Deletion
problem.

Concerning our kernelization algorithm, the first main question is whether similar results
can be obtained for an even larger class of (sparse) graphs. A natural candidate is the
class of graphs of bounded expansion (see [215] for the definition), which strictly contains
H-topological-minor-free graphs. Let us now argue that the existence of linear kernels for
some of the considered problems on graphs of bounded expansion seems to be as plausible
as on general graphs. Indeed, consider for instance the Treewidth-t Vertex Deletion
problem, which is clearly treewidth-bounding. Take a general graph G on n vertices as
input of Treewidth-t Vertex Deletion, and let G′ be the graph obtained from G
by subdividing each edge n times. Note that G′ has bounded expansion, and that this
operation does not increase the treewidth. As far as t > 1, it is easy to see that one can
assume that none of the newly added vertices belong to a solution, and thus the size of an
optimal solution is the same in G and G′. Therefore, obtaining a kernel for Treewidth-
t Vertex Deletion on graphs of bounded expansion is as hard as on general graphs.
According to Fomin et al. [137], this problem has a kernel of size kO(t) on general graphs,
and by Giannopoulou et al. [156] no uniform polynomial kernel (that is, a polynomial
kernel whose degree does not depend on t) exists unless NP ⊆ coNP/poly. Since graphs
of bounded expansion strictly contain H-topological-minor-free graphs, and there are not



120 Linear kernels and single-exponential algorithms via protrusion decompositions

well-known graph classes in between, our kernelization result may settle the limit of meta-
theorems about the existence of linear, or even uniform polynomial, kernels on sparse
graph classes.

The second main question is which other problems have linear kernels on H-topological-
minor-free graphs. In particular, it has been recently proved by Fomin et al. that (Con-
nected) Dominating Set has a linear kernel on H-minor-free graphs [141] and on
H-topological-minor-free graphs [133]. It would be interesting to investigate how the
structure theorem by Grohe and Marx [163] can be used in this context.

We would like to note that the degree of the polynomial of the running time of our
kernelization algorithm depends linearly on the size of the excluded topological minor H.
It seems that the recent fast protrusion replacer of Fomin et al. [137] could be applied to
get rid of the dependency on H of the running time.

Let us now discuss some further research related to our single-exponential algorithm for
Planar-F-Deletion. As mentioned in the introduction, no single-exponential algorithm
is known when the family F does not contain any planar graph. Is it possible to find such
a family, or can it be proved that, under some complexity assumption, a single-exponential
algorithm is not possible? See [172] for recent advances in this direction. An ambitious
goal would be to optimize the constants involved in the function 2O(k), possibly depending
on the family F , and maybe even proving lower bounds for such constants, in the spirit
of Lokshtanov et al. [199] for problems parameterized by treewidth.

It also makes sense to forbid the family of graphs F according to another containment
relation, like topological minor. Using the fact that if H is a graph with maximum degree
at most 3, a graph G contains H as a minor if and only if G contains H as a topological
minor (hence, graphs that exclude a planar graph H with maximum degree at most 3 as
a topological minor have bounded treewidth), it can be proved that our approach also
yields a single-exponential algorithm for Planar-Topological-F-Deletion as far as
F contains some planar (connected or disconnected) graph with maximum degree at most
3.

We showed (in Section 5.5.3) how to obtain single-exponential algorithms for Disjoint
Planar-F-Deletion with a given linear protrusion decomposition. This approach seems
to be applicable to general vertex deletion problems to attain a property expressible in
CMSO (but probably, the fact of having bounded treewidth is needed in order to make
the algorithm constructive). It would be interesting to generalize this technique to p-max-
CMSO or p-eq-CMSO problems, as well as to edge subset problems.

The running time of the algorithm given in Theorem 5.2 is 2O(k)·n2, which can be improved
to 2O(k) · n log2 n by using the following trick based on [137]. Let t be a bound on the
treewidth of any graph excluding a planar graph in F as a minor, and let G the the input
graph to our problem. Instead of doing iterative compression, we first solve on G in time
2O(k) · n log2 n the problem consisting on deleting at most k vertices in order to obtain a
graph of treewidth at most t, using the algorithm of [137] (note that we can do so, as all
obstructions for treewidth are clearly connected). If we fail, we know that G is a negative
instance of Planar-F-Deletion, and we are done. Otherwise, let X be such a set of at
most k vertices. Now we can solve Planar-F-Deletion on the graph G−D in timeO(n),



Linear kernels and single-exponential algorithms via protrusion decompositions 121

as it has bounded treewidth, and obtain a set X ′ of size at most k such that G− (X ∪X ′)
is F-minor-free. Finally, we can guess the intersection of the set X ∪X ′ with the solution
of Planar-F-Deletion, and then solve the Disjoint Planar-F-Deletion problem
in time 2O(k) · n, as it is done in Section 5.5.

In the parameterized dual version of the F-Deletion problem, the objective is to find
at least k vertex-disjoint subgraphs of an input graph, each of them containing some
graph in F as a minor. For F = {K3}, the problem corresponds to k-Disjoint Cycle
Packing, which does not admit a polynomial kernel on general graphs [69] unless NP ⊆
coNP/poly. Does this problem, for some non-trivial choice of F , admit a single-exponential
parameterized algorithm?





Chapter 6

Explicit linear kernels via dynamic
programming

Several algorithmic meta-theorems on kernelization have appeared in the last years, start-
ing with the result of Bodlaender et al. [63] on graphs of bounded genus, then generalized
by Fomin et al. [140] to graphs excluding a fixed minor, and by Kim et al. [J15] (see Chap-
ter 5) to graphs excluding a fixed topological minor. Typically, these results guarantee the
existence of linear or polynomial kernels on sparse graph classes for problems satisfying
some generic conditions but, mainly due to their generality, it is not clear how to derive
from them constructive kernels with explicit constants. In this chapter we make a step
toward a fully constructive meta-kernelization theory on sparse graphs. Our approach is
based on a more explicit protrusion replacement machinery that, instead of expressibility
in CMSO logic, uses dynamic programming, which allows us to find an explicit upper
bound on the size of the derived kernels. We demonstrate the usefulness of our techniques
by providing the first explicit linear kernels for r-Dominating Set and r-Scattered
Set on apex-minor-free graphs, and for Planar-F-Deletion on graphs excluding a
fixed (topological) minor in the case where all the graphs in F are connected.

Keywords: parameterized complexity; linear kernels; dynamic programming; protrusion
replacement; graph minors.

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 An explicit protrusion replacer . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.2 Equivalence relations and representatives . . . . . . . . . . . . . . . 132
6.3.3 Explicit protrusion replacer . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 An explicit linear kernel for r-Dominating Set . . . . . . . . . . . . . . . 140
6.4.1 Description of the encoder . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.2 Construction of the kernel . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 An explicit linear kernel for r-Scattered Set . . . . . . . . . . . . . . . . 145
6.5.1 Description of the encoder . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.2 Construction of the kernel . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 An explicit linear kernel for Planar-F-Deletion . . . . . . . . . . . . . 149
6.6.1 The encoder for F-Deletion and the index of ∼G,t . . . . . . . . . 150
6.6.2 Construction of the kernel on H-minor-free graphs . . . . . . . . . . 152
6.6.3 Linear kernels on H-topological-minor-free graphs . . . . . . . . . . 153

6.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

123



124 Explicit linear kernels via dynamic programming

6.1 Introduction

As discussed in Section 3.2, a fundamental notion in parameterized complexity is that of
kernelization, which asks for the existence of polynomial-time preprocessing algorithms
that produce equivalent instances whose size depends exclusively (preferably polynomially
or event linearly) on the parameter k. Finding kernels of size polynomial or linear in k
(called linear kernels) is one of the major goals of this area.

An influential work in this direction was the linear kernel of Alber et al. [41] for Domi-
nating Set on planar graphs, which was generalized by Guo and Niedermeier [166] to a
family of problems on planar graphs. Several algorithmic meta-theorems on kernelization
have appeared in the last years, starting with the result of Bodlaender et al. [63] on graphs
of bounded genus. After that, similar results have been obtained on larger sparse graph
classes, such as graphs excluding a minor [140] or a topological minor [J15] (see Chapter 5).

Typically, the above results guarantee the existence of linear or polynomial kernels on
sparse graph classes for a number of problems satisfying some generic conditions but,
mainly due to their generality, it is hard to derive from them constructive kernels with
explicit constants. The main reason behind this non-constructibility is that the proofs
rely on a property of problems called Finite Integer Index (FII) that, roughly speaking,
allows to replace large “protrusions” (i.e., large subgraphs with small boundary to the rest
of the graph) with “equivalent” subgraphs of constant size. This substitution procedure is
known as protrusion replacer, and while its existence has been proved, so far, there is no
generic way to construct it. Using the technology developed in [63], there are cases where
protrusion replacements can become constructive given the expressibility of the problem
in Counting Monadic Second Order (CMSO) logic. This approach is essentially based
on extensions of Courcelle’s theorem [90] that, even when they offer constructibility, it is
hard to extract from them any explicit constant that upper-bounds the size of the derived
kernel.

Results and techniques. In this chapter we tackle the above issues and make a step
toward a fully constructive meta-kernelization theory on sparse graphs with explicit con-
stants. For this, we essentially substitute the algorithmic power of CMSO logic with that
of dynamic programming on graphs of bounded decomposability (i.e., bounded treewidth).
Our approach provides a dynamic programming framework able to construct a protrusion
replacer for a wide variety of problems.

Loosely speaking, the framework that we present can be summarized as follows. First
of all, we propose a general definition of a problem encoding for the tables of dynamic
programming when solving parameterized problems on graphs of bounded treewidth. Un-
der this setting, we provide general conditions on whether such an encoding can yield a
protrusion replacer. While our framework can also be seen as a possible formalization of
dynamic programming, our purpose is to use it for constructing protrusion replacement
algorithms and linear kernels whose size is explicitly determined.

In order to obtain an explicit linear kernel for a problem Π, the main ingredient is to
prove that when solving Π on graphs of bounded treewidth via dynamic programming, we
can use tables such that the maximum difference between all the values that need to be



Explicit linear kernels via dynamic programming 125

stored is bounded by a function of the treewidth. For this, we prove in Theorem 6.1 that
when the input graph excludes a fixed graph H as a (topological) minor, this condition
is sufficient for constructing an explicit protrusion replacer algorithm, i.e., a polynomial-
time algorithm that replaces a large protrusion with an equivalent one whose size can
be bounded by an explicit constant. Such a protrusion replacer can then be used, for
instance, whenever it is possible to compute a linear protrusion decomposition of the
input graph (that is, an algorithm that partitions the graph into a part of size linear in
O(k) and a set of O(k) protrusions). As there is a wealth of results for constructing such
decompositions [63, 137, 140, J15], we can use them as a starting point and, by applying
dynamic programming, obtain an explicit linear kernel for Π.

We demonstrate the usefulness of this general strategy by providing the first explicit linear
kernels for three distinct families of problems on sparse graph classes. On the one hand, for
each integer r > 1, we provide a linear kernel for r-Dominating Set and r-Scattered
Set on graphs excluding a fixed apex graph H as a minor. Moreover, for each finite family
F of connected graphs containing at least one planar graph, we provide a linear kernel
for Planar-F-Deletion on graphs excluding a fixed graph H as a (topological) minor
(note that it has been recently proved that this problem does not admit uniform polynomial
kernels on general graphs [156]). We chose these families of problems as they are all tuned
by a secondary parameter that is either the constant r or the size of the graphs in the
family F . That way, we not only capture a wealth of parameterized problems, but we also
make explicit the contribution of the secondary parameter in the size of the derived kernels.
(We would like to note that the constants involved in the kernels for r-Dominating Set
and r-Scattered Set (resp. Planar-F-Deletion) depend on the function fc (resp.
fm) defined in Proposition 6.2 (resp. Proposition 6.1) in Section 6.2.)

Organization of the chapter. We need some definitions that have been introduced
in Chapters 3 and 5, as well as in previous work on this topic [63, 140, J15], including
graph minors, parameterized problems, (rooted) tree-decompositions, boundaried graphs,
the canonical equivalence relation ≡Π,t for a problem Π and an integer t, FII, protrusions,
and protrusion decompositions. For convenience, we restate some of these definitions
in Section 6.2. In Section 6.3 we introduce the basic definitions of our framework and
present an explicit protrusion replacer. The next three sections are devoted to showing
how to apply our methodology to various families of problems, Namely, we focus on r-
Dominating Set in Section 6.4, on r-Scattered Set in Section 6.5, and on Planar-
F-Deletion in Section 6.6. Finally, we conclude with some directions for further research
in Section 6.7.

6.2 Preliminaries

In this section we restate some of the definitions introduced Chapter 5 concerning bound-
aried graphs, the canonical equivalence relation, and finite integer index. The reason is
that, for convenience, there are slight differences between some of the definitions and the
notations we use in this chapter with respect to the ones introduced in Chapter 5.



126 Explicit linear kernels via dynamic programming

Boundaried graphs and canonical equivalence relation. The following two defini-
tions are taken from [63].

Definition 6.1 (Boundaried graphs) A boundaried graph is a graph G with a set B ⊆
V (G) of distinguished vertices and an injective labeling λ : B → N+ . The set B is called
the boundary of G and the vertices in B are called boundary vertices. Given a boundaried
graph G, we denote its boundary by ∂(G), we denote its labeling by λG, and we define its
label set by Λ(G) = {λG(v) | v ∈ ∂(G)}. We say that a boundaried graph is a t-boundaried
graph if Λ(G) ⊆ {1, . . . , t}.

Note that a 0-boundaried graph is just a graph with no boundary.

Definition 6.2 (Gluing operation) Let G1 and G2 be two boundaried graphs. We de-
note by G1 ⊕G2 the graph obtained by taking the disjoint union of G1 and G2 and identi-
fying vertices with the same label of the boundaries of G1 and G2. In G1 ⊕G2 there is an
edge between two labeled vertices if there is an edge between them in G1 or in G2.

In the above definition, after identifying vertices with the same label, we may consider the
resulting graph as a boundaried graph or not, depending on whether we need the labels
for further gluing operations.

We now introduce the canonical equivalence relation on boundaried graphs. Note that we
adopt here the original definition given in [70], and reused in [63], rather than the one
we used for convenience in Definition 5.5 in Chapter 5. Namely, the main difference is
that here we do not require condition 1 of Definition 5.5. Also, for simplicity ask here the
graphs to share the same set of labels in order for them to belong to the same equivalence
class.

Definition 6.3 (Canonical equivalence on boundaried graphs) Let Π be a param-
eterized graph problem and let t ∈ N+. Given two t-boundaried graphs G1 and G2,
we say that G1 ≡Π,t G2 if Λ(G1) = Λ(G2) and there exists a transposition constant
∆Π,t(G1, G2) ∈ Z such that for every t-boundaried graph H ∈ G and every k ∈ Z, it
holds that (G1 ⊕H, k) ∈ Π if and only if (G2 ⊕H, k −∆Π,t(G1, G2)) ∈ Π.

We define in Section 6.3 another equivalence relation on boundaried graphs that refines
this canonical one (cf. Definitions 6.9 and 6.10), and that will allow us to perform a
constructive protrusion replacement with explicit bounds.

As discussed in Chapter 5, the notion of Finite Integer Index was originally defined by
Bodlaender and van Antwerpen-de Fluiter [70, 237] (see also [39]). We would like to note
that FII does not play any role in the framework that we present for constructing explicit
kernels, but we present its definition for completeness, as we will sometimes refer to it
throughout the chapter.

Definition 6.4 (Finite Integer Index (FII)) A parameterized graph problem Π has
Finite Integer Index ( FII for short) if for every positive integer t, the equivalence relation
≡Π,t has finite index.



Explicit linear kernels via dynamic programming 127

Note again that the above definition of FII slightly differs from the one given in Defini-
tion 5.5 in Chapter 5.

The following definitions concerning protrusions coincide with those given in Chapter 5;
we recall them here for completeness.

Protrusions and protrusion decompositions. Given a graph G = (V,E) and a
set W ⊆ V , we define bd(W ) as the vertices in W that have a neighbor in V \ W .
A set W ⊆ V (G) is a t-protrusion if |bd(W )| 6 t and tw(G[W ]) 6 t − 1. We would
like to note that a t-protrusion W can be naturally seen as a t-boundaried graph by
arbitrarily assigning labels to the vertices in bd(W ). In this case, it clearly holds that
∂(W ) = bd(W ). Note also that if G is a t-boundaried graph of treewidth at most t − 1,
we may assume that the boundary vertices are contained in any specified bag of a tree-
decomposition, by increasing the width of the given tree-decomposition to at most 2t− 1.

An (α, t)-protrusion decomposition of a graph G is a partition P = Y0 ] Y1 ] · · · ] Y` of
V (G) such that:

(i) for every 1 6 i 6 `, N(Yi) ⊆ Y0;

(ii) max{`, |Y0|} 6 α; and

(iii) for every 1 6 i 6 `, Yi ∪NY0(Yi) is a t-protrusion of G.

When G is the input of a parameterized graph problem with parameter k, we say that an
(α, t)-protrusion decomposition of G is linear whenever α = O(k).

Large treewidth and grid minors. In our applications in Sections 6.4, 6.5, and 6.6
we will need the following results, which state a linear relation between the treewidth
and certain grid-like graphs that can be found as minors or contractions in a graph that
excludes some fixed (apex) graph as a minor.

Proposition 6.1 (Demaine and Hajiaghayi [104]) There is a function fm : N → N

such that for every h-vertex graph H and every positive integer r, every H-minor-free
graph with treewidth at least fm(h) · r, contains an (r × r)-grid as a minor.

Before we state the next proposition, we need to define a grid-like graph that is suitable
for a contraction counterpart of Proposition 6.1. Let Γr (r > 2) be the graph obtained
from the (r×r)-grid by triangulating internal faces of the (r×r)-grid such that all internal
vertices become of degree 6, all non-corner external vertices are of degree 4, and one corner
of degree 2 is joined by edges with all vertices of the external face (the corners are the
vertices that in the underlying grid have degree 2). The graph Γ6 is shown in Figure 6.1.

Proposition 6.2 (Fomin et al. [134]) There is a function fc : N → N such that for
every h-vertex apex graph H and every positive integer r, every H-minor-free graph with
treewidth at least fc(h) · r, contains the graph Γr as a contraction.

Propositions 6.1 and 6.2 have been the main tools for developing Bidimensionality theory
for kernelization [140]. The best known estimation for function fm has been given by



128 Explicit linear kernels via dynamic programming

c© Dimitrios M. Thilikos

Figure 6.1: The graph Γ6.

Kawarabayashi and Kobayashi in [178] and is fm(r) = 2O(r2·log r). To our knowledge, no
reasonable estimation for the function fc is known up to now. The two functions fm and
fc will appear in the upper bounds on the size of the kernels presented in Sections 6.4,
6.5, and 6.6. Any improvement on these functions will directly translate to the sizes of
our kernels. We would like to stress that, even if we are not aware on any explicit upper
bound on the function fc, this function is a fixed one, that is, it does not depend on any
particular problem or on the “meta-parameters” associated with the problems.

6.3 An explicit protrusion replacer

In this section we present our strategy to construct an explicit protrusion replacer via
dynamic programming. For a positive integer t, we define Bt as the class of all t-boundaried
graphs, and we define Ft as the class of all t-boundaried graphs of treewidth at most t− 1
that have a rooted tree-decomposition with all boundary vertices contained in the root-
bag1. Note that it holds clearly that Ft ⊆ Bt. We will restrict ourselves to parameterized
graph problems such that a solution can be certified by a subset of vertices.

Definition 6.5 (Vertex-certifiable problem) A parameterized graph problem Π is
called vertex-certifiable if there exists a language LΠ (called certifying language for Π)
defined on pairs (G,S), where G is a graph and S ⊆ V (G), such that (G, k) is a Yes-
instance of Π if and only if there exists a subset S ⊆ V (G) with |S| 6 k (or |S| > k,
depending on the problem) such that (G,S) ∈ LΠ.

Many graph problems are vertex-certifiable, like r-Dominating Set, Feedback Ver-
tex Set, or Treewidth-t Vertex Deletion. This section is structured as follows.
In Section 6.3.1 we define the notion of encoder, the main object that will allow us to
formalize in an abstract way the tables of dynamic programming. In Section 6.3.2 we
use encoders to define an equivalence relation on graphs in Ft that, under some natural

1Note that the latter condition in the definition of Ft could be avoided by allowing the width of the
tree-decompositions of the graphs in Ft to be at most 2t − 1, such that all boundary vertices could be
added to all bags of any tree-decomposition.



Explicit linear kernels via dynamic programming 129

technical conditions, will be a refinement of the canonical equivalence relation defined by
a problem Π (see Definition 6.3 in Section 6.2). This refined equivalence relation allows
us to provide an explicit upper bound on the size of its representatives (Lemma 6.3), as
well as a linear-time algorithm to find them (Lemma 6.4). In Section 6.3.3 we use the pre-
vious ingredients to present an explicit protrusion replacement rule (Theorem 6.1), which
replaces a large enough protrusion with a bounded-size representative from its equivalence
class, in such a way that the parameter does not increase.

6.3.1 Encoders

The Dominating Set problem, as a vertex-certifiable problem, will be used hereafter as a
running example to particularize our general framework and definitions. Let us start with
a description of dynamic programming tables for Dominating Set on graphs of bounded
treewidth, which will illustrate the final purpose of the definitions stated below.

Running example: Let B be a bag of a rooted tree-decomposition (T,X ) of width t − 1
of a graph G ∈ Ft. The dynamic programming (DP) tables for Dominating Set can
be defined as follows. The entries of the DP-table for B are indexed by the set of tuples
R ∈ {0, ↑ 1, ↓ 1}|B|, so-called encodings. As detailed below, the symbol 0 stands for vertices
in the (partial) dominating set, the symbol ↓ 1 for vertices that are already dominated,
and ↑ 1 for vertices with no constraints. More precisely, the coordinates of each |B|-tuple
are in one-to-one correspondence with the vertices of B. For a vertex v ∈ B, we denote
by R(v) its corresponding coordinate in the encoding R. A subset S ⊆ V (GB) is a partial
dominating set satisfying R if the following conditions are satisfied:

• ∀v ∈ V (GB) \B, dGB
(v, S) 6 1; and

• ∀v ∈ B: R(v) = 0 ⇒ v ∈ S, and R(v) =↓ 1 ⇒ dGB
(v, S) 6 1.

Observe that if S is a partial dominating set satisfying R, then {v ∈ B | R(v) = 0} ⊆ S,
but S may also contain vertices with R(v) 6= 0. Likewise, the vertices that are not (yet)
dominated by S are contained in the set {v ∈ B | R(v) =↑ 1}. �

The following definition considers the tables of dynamic programming in an abstract way.

Definition 6.6 (Encoder) An encoder E is a pair (C, LC) where

(i) C is a function that, for each (possibly empty) finite subset I ⊆ N+, outputs a
(possibly empty) finite set C(I) of strings over some alphabet. Each R ∈ C(I) is
called a C-encoding of I; and

(ii) LC is a computable language whose strings encode triples (G,S,R), where G is a
boundaried graph, S ⊆ V (G), and R ∈ C(Λ(G)). If (G,S,R) ∈ LC, we say that S
satisfies the C-encoding R.



130 Explicit linear kernels via dynamic programming

As it will become clear with the running example, the set I represents the labels from a
bag, C(I) represents the possible configurations of the vertices in the bag, and LC contains
triples that correspond to solutions to these configurations.

Running example: Each rooted graph GB can be naturally viewed as a |B|-boundaried
graph such that B = ∂(GB) with I = Λ(GB). Let EDS = (CDS, LCDS) be the encoder
described above for Dominating Set. The tables of the dynamic programming al-
gorithm to solve Dominating Set are obtained by assigning to every CDS-encoding
(that is, DP-table entry) R ∈ CDS(I), the size of a minimum partial dominating set
satisfying R, or +∞ if such a set of vertices does not exist. This defines a function
fEDS
G : CDS(I) → N ∪ {+∞}. Observe that if B = ∂(GB) = ∅, then the value assigned to

the encodings in CDS(∅) is indeed the size of a minimum dominating set of GB. �

In the remainder of this subsection we will state several definitions for minimization prob-
lems, and we will restate them for maximization problems whenever some change is needed.
For a general minimization problem Π, we will only be interested in encoders that permit
to solve Π via dynamic programming. More formally, we define a Π-encoder and the values
assigned to the encodings as follows.

Definition 6.7 (Π-encoder and its associated function) Let Π be a vertex-
certifiable minimization problem.

(i) An encoder E = (C, LC) is a Π-encoder if C(∅) consists of a single C-encoding, namely
R∅, such that for every 0-boundaried graph G and every S ⊆ V (G), (G,S,R∅) ∈ LC
if and only if (G,S) ∈ LΠ.

(ii) Let G be a t-boundaried graph with Λ(G) = I. We define the function fEG : C(I) →
N ∪ {+∞} as

fEG(R) = min{k : ∃S ⊆ V (G), |S| 6 k, (G,S,R) ∈ LC}. (6.1)

In Equation (6.1), if such a set S does not exist, we set fEG(R) := +∞. We define
C∗G(I) := {R ∈ C(I) | fEG(R) 6= +∞}.

Condition (i) in Definition 6.7 guarantees that, when the considered graph G has no
boundary, the language of the encoder is able to certify a solution of problem Π. In other
words, we ask that the set {(G,S) | (G,S,R∅) ∈ LC)} is a certifying language for Π.
Observe that for a 0-boundaried graph G, the function fEG(R∅) outputs the minimum size
of a set S such that (G,S) ∈ LΠ.

For encoders E ′ = (C′, LC′) that will be associated with problems where the objective is to
find a set of vertices of size at least some value, the corresponding function fE

′
G : C′(I)→

N ∪ {−∞} is defined as

fE
′

G (R) = max{k : ∃S ⊆ V (G), |S| > k, (G,S,R) ∈ LC′}. (6.2)

Similarly, in Equation (6.2), if such a set S does not exist, we set fEG(R) := −∞. We
define C′∗G(I) := {R ∈ C′(I) | fE ′G (R) 6= −∞}.



Explicit linear kernels via dynamic programming 131

The following definition provides a way to control the number of possible distinct values
assigned to encodings. This property will play a similar role to FII or monotonicity in
previous work [63,140,J15].

Definition 6.8 (Confined encoding) An encoder E is g-confined if there exists a func-
tion g : N→ N such that for any t-boundaried graph G with Λ(G) = I it holds that either
C∗G(I) = ∅ or

max
R∈C∗G(I)

fEG(R) − min
R∈C∗G(I)

fEG(R) 6 g(t). (6.3)

See Figure 6.2 for a schematic illustration of a confined encoder. In this figure, each column
of the table corresponds to a C-encoding R, which is filled with the value fEG(R).

∂(G)

G

C

fEG

R0 R1
. . .





{
N
O

0

|G|

Y
E
S

g(t)

fEG(R0)

fEG(R1)

c© Valentin Garnero

Figure 6.2: Schematic illustration of a g-confined encoding, in which we assume for sim-
plicity that C∗G(Λ(G)) = C(Λ(G)).

Running example: It is easy to observe that the encoder EDS described above is g-confined
for g(t) = t. Indeed, let G be a t-boundaried graph (corresponding to the graph GB con-
sidered before) with Λ(G) = I. Consider an arbitrary encoding R ∈ C(I) and the encoding
R0 ∈ C(I) satisfying R0(v) = 0 for every v ∈ ∂(G). Let S0 ⊆ V (G) be a minimum-sized
partial dominating set satisfying R0, i.e., such that (G,S0, R0) ∈ LCDS . Observe that S0

also satisfies R, i.e., (G,S0, R) ∈ LCDS . It then follows that fEDS
G (R0) = maxR f

EDS
G (R).

Moreover, let S ⊆ V (G) be a minimum-sized partial dominating set satisfying R, i.e.,
such that (G,S,R) ∈ LCDS

. Then note that R0 is satisfied by the set S ∪ ∂(G), so
we have that for every encoding R, fEDS

G (R) + |∂(G)| > fEDS
G (R0). It follows that

fEDS
G (R0)−minR f

EDS
G (R) 6 |∂(G)| 6 t, proving that the encoder is indeed g-confined. �

For some problems and encoders, we may need to “force” the confinement of an encoder E
that may not be confined according to Definition 6.8, while still preserving its usefulness
for dynamic programming, in the sense that no relevant information is removed from the
tables (for example, see the encoder for r-Scattered Set in Section 6.5.1). To this end,
given a function g : N→ N, we define the function fE,gG : C(I)→ N ∪ {+∞} as



132 Explicit linear kernels via dynamic programming

fE,gG (R) =

{
+∞, if fEG(R)− g(t) > minR′∈C(I) fEG(R′)
fEG(R), otherwise.

(6.4)

Intuitively, one shall think as the function fE,gG as a “compressed” version of the function
fEG, which stores only the values that are useful for performing dynamic programming.

For encoders E ′ = (C′, LC′) associated with maximization problems, given a function g :

N→ N, we define the function fE
′,g

G : C(I)→ N ∪ {−∞} as

fE
′,g

G (R) =

{
−∞, if fE

′
G (R) + g(t) < maxR′∈C(I) fE

′
G (R′)

fE
′

G (R), otherwise.
(6.5)

6.3.2 Equivalence relations and representatives

An encoder E together with a function g : N → N define an equivalence relation ∼∗E,g,t
on t-boundaried graphs as follows. (In fact, in our applications we will use only this
equivalence relation on graphs in Ft, but for technical reasons we need to define it on
general t-boundaried graphs.)

Definition 6.9 (Equivalence relations ∼∗E,g,t and ∼E,g,t) Let E be an encoder, let g :
N→ N, and let G1, G2 ∈ Bt. We say that G1 ∼∗E,g,t G2 if and only if Λ(G1) = Λ(G2) =: I
and there exists an integer c, depending only on G1 and G2, such that for every C-encoding
R ∈ C(I) it holds that

fE,gG1
(R) = fE,gG2

(R) + c. (6.6)

If we restrict the graphs G1, G2 to belong to Ft, then the corresponding equivalence relation,
which is a restriction of ∼∗E,g,t, is denoted by ∼E,g,t.

Note that if there exists R ∈ C(I) such that fE,gG1
(R) /∈ {−∞,+∞}, then the integer c

satisfying Equation (6.6) is unique, otherwise every integer c satisfies Equation (6.6). We
define the following function ∆E,g,t : Bt×Bt → Z, which is called, following the terminology
from Bodlaender et al. [63], the transposition function for the equivalence relation ∼∗E,g,t.

∆E,g,t(G1, G2) =





c, if G1 ∼∗E,g,t G2 and Eq. (6.6) holds for a unique integer c;

0, if G1 ∼∗E,g,t G2 and Eq. (6.6) holds for every integer; and

undefined otherwise
(6.7)

Note that we can consider the restriction of the function ∆E,g,t to couples of graphs in Ft,
defined by using the restricted equivalence relation ∼E,g,t.
If we are dealing with a problem defined on a graph class G, the protrusion replacement
rule has to preserve the class G, as otherwise we would obtain a bikernel instead of a kernel.
That is, we need to make sure that, when replacing a graph in Bt ∩ G or in Ft ∩ G with
one of its representatives, we do not produce a graph that does not belong to G anymore.
To this end, we define an equivalence relation ∼∗E,g,t,G (resp. ∼E,g,t,G) on graphs in Bt ∩ G
(resp. Ft ∩G), which refines the equivalence relation ∼∗E,g,t (resp. ∼E,g,t) of Definition 6.9.



Explicit linear kernels via dynamic programming 133

Definition 6.10 (Equivalence relations ∼∗E,g,t,G and ∼E,g,t,G) Let G be a class of
graphs and let G1, G2 ∈ Bt ∩ G.

(i) G1 ∼G,t G2 if and only if for any graph H ∈ Bt, G1⊕H ∈ G if and only if G2⊕H ∈ G.

(ii) G1 ∼∗E,g,t,G G2 if and only if G1 ∼∗E,g,t G2 and G1 ∼G,t G2.

If we restrict the graphs G1, G2 to belong to Ft (but still H ∈ Bt), then the corresponding
equivalence relation, which is a restriction of ∼∗E,g,t,G, is denoted by ∼E,g,t,G.

It is well-known by Büchi’s theorem that regular languages are precisely those definable
in Monadic Second Order logic (MSO logic). By Myhill-Nerode’s theorem, it follows that
if the membership in a graph class G can be expressed in MSO logic, then the equivalence
relation ∼G,t has a finite number of equivalence classes (see for instance [115,131]). How-
ever, we do not have in general an explicit upper bound on the number of equivalence
classes of ∼G,t, henceforth denoted by rG,t. Fortunately, in the context of our applications
in Sections 6.4, 6.5, and 6.6, where G will be a class of graphs that exclude some fixed
graph on h vertices as a (topological) minor, this will always be possible, and in this case
it holds that rG,t 6 2t log t · ht · 2h2 (see Section 6.6.1). Note that (topological-)minor-free
graphs constitute a particular case of the classes of graphs whose membership can be ex-
pressed in MSO logic. We would like to stress here that we rely on the expressibility of
the graph class G in MSO logic, whereas in previous work [63,140,J15] what is used in the
expressibility in CMSO logic of the problems defined on a graph class.

For an encoder E = (C, LC), we let sE(t) := maxI⊆{1,...,t} |C(I)|, where |C(I)| denotes the
number of C-encodings in C(I). The following lemma gives an upper bound on the number
of equivalence classes of ∼∗E,g,t,G , which depends also on rG,t.

Lemma 6.1 Let G be a graph class whose membership can be expressed in MSO logic. For
any encoder E, any function g : N→ N, and any positive integer t, the equivalence relation
∼∗E,g,t,G has finite index. More precisely, the number of equivalence classes of ∼∗E,g,t,G is

at most r(E , g, t,G) := (g(t) + 2)sE(t) · 2t · rG,t. In particular, the number of equivalence
classes of ∼E,g,t,G is at most r(E , g, t,G) as well.

Proof : Let us first show that the equivalence relation ∼∗E,g,t has finite index. Indeed,
let I ⊆ {1, . . . , t}. By definition, we have that for any graph G ∈ Bt with Λ(G) = I, the
function fE,gG can take at most g(t) + 2 distinct values (g(t) + 1 finite values and possibly
the value +∞). Therefore, it follows that the number of equivalence classes of ∼∗E,g,t
containing all graphs G in Bt with Λ(G) = I is at most (g(t) + 2)|C(I)|. As the number
of subsets of {1, . . . , t} is 2t, we deduce that the overall number of equivalence classes of
∼∗E,g,t is at most (g(t) + 2)sE(t) · 2t. Finally, since the equivalence relation ∼∗E,g,t,G is the
Cartesian product of the equivalence relations ∼∗E,g,t and ∼G,t, the result follows from the
fact that G can be expressed in MSO logic. 2

In order for an encoding E and a function g to be useful for performing dynamic pro-
gramming on graphs in Ft that belong to a graph class G (recall that this is our final
objective), we introduce the following definition, which captures the natural fact that the



134 Explicit linear kernels via dynamic programming

tables of a dynamic programming algorithm should depend exclusively on the tables of
the descendants in a rooted tree-decomposition. Before moving to the definition, we note
that given a graph G ∈ Ft and a rooted tree-decomposition (T,X ) of G of width at most
t − 1 such that ∂(G) is contained in the root-bag of (T,X ), the labels of ∂(G) can be
propagated in a natural way to all bags of (T,X ) by introducing, removing, and shifting
labels appropriately. Therefore, for any node x of T , the graph Gx can be naturally seen
as a graph in Ft. (A brief discussion can be found in the proof of Lemma 6.4, and we refer
to [63] for more details.)

Again, for technical reasons (namely, for the proof of Lemma 6.2), we need to state the
definition below for graphs in Bt, even if we will only use it for graphs in Ft.

Definition 6.11 (DP-friendly equivalence relation) An equivalence relation ∼∗E,g,t,G
is DP-friendly if for any graph G ∈ Bt with ∂(G) = A and any separator B ⊆ V (G) with
|B| 6 t, the following holds: let GB = G[H ∪ B] for H being any collection of connected
components of G−B such that A∩V (GB) ⊆ B. Considering GB as a t-boundaried graph
with boundary B, let G′ be the t-boundaried graph with ∂(G′) = A obtained from G by
replacing the subgraph GB with a t-boundaried graph G′B such that GB ∼∗E,g,t,G G′B. Then
G′ satisfies the following conditions:

(i) G ∼∗E,g,t,G G′; and

(ii) ∆E,g,t(G,G′) = ∆E,g,t(GB, G′B).

Note that if an equivalence relation ∼∗E,g,t,G is DP-friendly, then by definition its restriction
∼E,g,t,G to graphs in Ft is DP-friendly as well.

We would like to note that in the above definition we have used the notation GB because
in all applications the subgraph to be replaced will correspond to a rooted subtree in
a tree-decomposition of a graph G. With this in mind, the condition A ∩ V (GB) ⊆ B
in Definition 6.11 corresponds to the fact that the boundary A will correspond in the
applications to the vertices in the root-bag of a rooted tree-decomposition of G.

In Definition 6.11, as well as in the remainder of the chapter, when we replace the graph
GB with the graph G′B, we do not remove from G any of the edges with both endvertices
on the boundary of GB. That is, G′ = (G− (V (Gx)− ∂(V (GB))))⊕G′B.

Recall that for the protrusion replacement to be valid for a problem Π, the equivalence
relation ∼E,g,t,G needs to be a refinement of the canonical equivalence relation ≡Π,t (note
that this implies, in particular, that if ∼E,g,t,G has finite index, then Π has FII). The next
lemma states a sufficient condition for this property, and furthermore it gives the value
of the transposition constant ∆Π,t(G1, G2), which will be needed in order to update the
parameter after the replacement.

Lemma 6.2 Let Π be a vertex-certifiable problem. If E is a Π-encoder and ∼∗E,g,t,G is a
DP-friendly equivalence relation, then for any two graphs G1, G2 ∈ Bt such that G1 ∼∗E,g,t,G
G2, it holds that G1 ≡Π,t G2 and ∆Π,t(G1, G2) = ∆E,g,t(G1, G2). In particular, if E is a
Π-encoder and ∼∗E,g,t,G is DP-friendly, then for any two graphs G1, G2 ∈ Ft such that
G1 ∼E,g,t,G G2, it holds that G1 ≡Π,t G2 and ∆Π,t(G1, G2) = ∆E,g,t(G1, G2).



Explicit linear kernels via dynamic programming 135

Proof : Assume without loss of generality that Π is a minimization problem, and let
E = (C, LC). We need to prove that for any t-boundaried graph H and any integer k,
(G1⊕H, k) ∈ Π if and only if (G2⊕H, k+∆E,g,t(G1, G2)) ∈ Π. Suppose that (G1⊕H, k) ∈
Π (by symmetry the same arguments apply starting with G2). This means that there exists
S1 ⊆ V (G1 ⊕ H) with |S1| 6 k such that (G1 ⊕ H,S1) ∈ LΠ. And since G1 ⊕ H is a
0-boundaried graph and E is a Π-encoder, we have that (G1 ⊕ H,S1, R∅) ∈ LC , where
C(∅) = {R∅}. This implies that

fEG1⊕H(R∅) 6 |S1| 6 k. (6.8)

As ∼∗E,g,t,G is DP-friendly and G1 ∼∗E,g,t,G G2, it follows that (G1 ⊕H) ∼∗E,g,t,G (G2 ⊕H)
and that ∆E,g,t(G1 ⊕H,G2 ⊕H) = ∆E,g,t(G1, G2). Since G2 ⊕H is also a 0-boundaried
graph, the latter property and Equation (6.8) imply that

fEG2⊕H(R∅) = fEG1⊕H(R∅) + ∆E,g,t(G1, G2) 6 k + ∆E,g,t(G1, G2). (6.9)

From Equation (6.9) it follows that there exists S2 ⊆ V (G2 ⊕ H) with |S2| 6 k +
∆E,g,t(G1, G2) such that (G2 ⊕ H,S2, R∅) ∈ LC . Since G2 ⊕ H is a 0-boundaried graph
and E is a Π-encoder, this implies that (G2 ⊕ H,S2) ∈ LΠ, which in turn implies that
(G2 ⊕H, k + ∆E,g,t(G1, G2)) ∈ Π, as we wanted to prove. 2

Note that, in particular, Lemma 6.2 implies that under the same hypothesis, for graphs
in Ft the equivalence relation ∼E,g,t,G refines the canonical equivalence relation ≡Π,t.

In the following, we will only deal with equivalence relations ∼E,g,t,G defined on graphs in
Ft, and therefore we will only use this particular case of Lemma 6.2. The reason why we
restrict ourselves to graphs in Ft is that, while a DP-friendly equivalence relation refines
the canonical one for all graphs in Bt (Lemma 6.2), we need bounded treewidth in order to
bound the size of the progressive representatives (Lemma 6.3) and to explicitly compute
these representatives for performing the replacement (Lemma 6.4).

The following definition will be important to guarantee that, when applying our protrusion
replacement rule, the parameter of the problem under consideration does not increase.

Definition 6.12 (Progressive representatives of ∼E,g,t,G) Let C be some equivalence
class of ∼E,g,t,G and let G ∈ C. We say that G is a progressive representative of C if for
any graph G′ ∈ C it holds that ∆E,g,t(G,G′) 6 0.

In the next lemma we provide an upper bound on the size of a smallest progressive repre-
sentative of any equivalence class of ∼E,g,t,G .

Lemma 6.3 Let G be a graph class whose membership can be expressed in MSO logic.
For any encoder E, any function g : N → N, and any t ∈ N such that ∼∗E,g,t,G is DP-
friendly, every equivalence class of ∼E,g,t,G has a progressive representative of size at most
b(E , g, t,G) := 2r(E,g,t,G)+1 · t, where r(E , g, t,G) is the function defined in Lemma 6.1.

Proof : Let C be an arbitrary equivalence class of ∼E,g,t,G , and we want to prove that
there exists in C a progressive representative of the desired size. Let us first argue that



136 Explicit linear kernels via dynamic programming

C contains some progressive representative. We construct an (infinite) directed graph
DC as follows. There is a vertex in DC for every graph in C, and for any two vertices
v1, v2 ∈ V (DC), corresponding to two graphs G1, G2 ∈ C respectively, there is an arc from
v1 to v2 if and only if ∆E,g,t(G1, G2) > 0. We want to prove that DC has a sink, that
is, a vertex with no outgoing arc, which by construction is equivalent to the existence of
a progressive representative in C. Indeed, let v be an arbitrary vertex of DC, and grow
greedily a directed path P starting from v. Because of the transitivity of the equivalence
relation ∼E,g,t,G and by construction of DC, it follows that DC does not contain any finite
cycle, so P cannot visit vertex v again. On the other hand, since the function fEG takes only
positive values (except possibly for the value −∞), it follows that there are no arbitrarily
long directed paths in DC starting from any fixed vertex, so in particular the path P must
be finite, and therefore the last vertex in P is necessarily a sink. (Note that for any two
graphs G1, G2 ∈ C such that their corresponding vertices v1, v2 ∈ V (DC) are sinks, it holds
by construction of DC that ∆E,g,t(G1, G2) = 0.)

Now let G ∈ Ft∩G be a progressive representative of C with minimum number of vertices.
We claim that G has size at most 2r(E,g,t,G)+1 · t. (We would like to stress that at this stage
we only need to care about the existence of such representative G, and not about how to
compute it.) Indeed, let (T,X ) be a nice rooted tree-decomposition of G of width at most
t − 1 such that ∂(G) is contained in the root-bag (such a nice tree-decomposition exists
by [184]), and let r be the root of T .

We first claim that for any node x of T , the graph Gx is a progressive representative of
its equivalence class with respect to ∼E,g,t,G , namely A. Indeed, assume that it is not the
case, and let H be a progressive representative of A, which exists by the discussion in the
first paragraph of the proof. Since H is progressive and Gx is not, ∆E,g,t(H,Gx) < 0. Let
GH be the graph obtained from G by replacing Gx with H. Since ∼∗E,g,t,G is DP-friendly,
it follows that G ∼E,g,t,G GH and that ∆E,g,t(GH , G) = ∆E,g,t(H,Gx) < 0, contradicting
the fact that G is a progressive representative of the equivalence class C.

We now claim that for any two nodes x, y ∈ V (T ) lying on a path from r to a leaf of T ,
it holds that Gx �E,g,t,G Gy. Indeed, assume for contradiction that there are two nodes
x, y ∈ V (T ) lying on a path from r to a leaf of T such that Gx ∼E,g,t,G Gy. Let A be
the equivalence class of Gx and Gy with respect to ∼E,g,t,G . By the previous claim, it
follows that both Gx and Gy are progressive representatives of A, and therefore it holds
that ∆E,g,t(Gy, Gx) = 0. Suppose without loss of generality that Gy ( Gx (that is,
Gy is a strict subgraph of Gx), and let G′ be the graph obtained from G by replacing
Gx with Gy. Again, since ∼∗E,g,t,G is DP-friendly, it follows that G ∼E,g,t,G G′ and that
∆E,g,t(G′, G) = ∆E,g,t(Gy, Gx) = 0. Therefore, G′ is a progressive representative of C with
|V (G′)| < |V (G)|, contradicting the minimality of |V (G)|.
Finally, since for any two nodes x, y ∈ V (T ) lying on a path from r to a leaf of T we have
that Gx �E,g,t,G Gy, it follows that the height of T is at most the number of equivalence
classes of ∼E,g,t,G , which is at most r(E , g, t,G) by Lemma 6.1. Since T is a binary tree,
we have that |V (T )| 6 2r(E,g,t,G)+1 − 1. Finally, since |V (G)| 6 |V (T )| · t, it follows that
|V (G)| 6 2r(E,g,t,G)+1 · t, as we wanted to prove. 2

The next lemma states that if one is given an upper bound on the size of the progressive
representatives of an equivalence relation defined on t-protrusions (that is, on graphs in



Explicit linear kernels via dynamic programming 137

Ft)2, then a small progressive representative of a t-protrusion can be explicitly calculated
in linear time. In other words, it provides a generic and constructive way to perform a
dynamic programming procedure to replace protrusions, without needing to deal with the
particularities of each encoder in order to compute the tables. Its proof uses some ideas
taken from [63,140].

Lemma 6.4 Let G be a graph class, let E be an encoder, let g : N → N, and let t ∈ N
such that ∼∗E,g,t,G is DP-friendly. Assume that we are given an upper bound b on the size
of a smallest progressive representative of any equivalence class of ∼E,g,t,G, with b > t.
Then, given an n-vertex t-protrusion G inside some graph, we can output in time O(n)
a t-protrusion H inside the same graph of size at most b such that G ∼E,g,t,G H and the
corresponding transposition constant ∆E,g,t(H,G) with ∆E,g,t(H,G) 6 0, where the hidden
constant in the O-notation depends only on E , g, b,G, and t.

Proof : Let E = (C, LC) be the given encoder. We start by generating a repository
R containing all the graphs in Ft with at most b + 1 vertices. Such a set of graphs, as
well as a rooted nice tree-decomposition of width at most t − 1 of each of them, can be
clearly generated in time depending only on b and t. By assumption, the size of a smallest
progressive representative of any equivalence class of ∼E,g,t,G is at most b, so R contains
a progressive representative of any equivalence class of ∼E,g,t,G with at most b vertices.
We now partition the graphs in R into equivalence classes of ∼E,g,t,G as follows. For each
graph H ∈ R and each C-encoding R ∈ C(Λ(G)), as LC is a computable language, we
can compute the value fE,gG (R) in time depending only on E , g, t, and b. Therefore, for
any two graphs H1, H2 ∈ R, we can decide in time depending only on E , g, t, b, and G
whether H1 ∼E,g,t,G H2, and if this is the case, we can compute the transposition constant
∆E,g,t(H1, H2) within the same running time.

Given a t-protrusion G on n vertices with boundary ∂(G), we first compute a rooted
nice tree-decomposition (T,X ) of G such that ∂(G) is contained in the root bag in time
f(t) · n, by using the linear-time algorithm of Bodlaender [58,184]. Such a t-protrusion G
equipped with a tree-decomposition can be naturally seen as a graph in Ft by assigning
distinct labels from {1, . . . , t} to the vertices in the root-bag. These labels from {1, . . . , t}
can be transferred to the vertices in all the bags of (T,X ) by performing a standard
shifting procedure when a vertex is introduced or removed from the nice tree-decomposition
(see [63] for more details). Therefore, each node x ∈ V (T ) defines in a natural way a graph
Gx ⊆ G in Ft with its associated rooted nice tree-decomposition. Let us now proceed to
the description of the replacement algorithm.

We process the bags of (T,X ) in a bottom-up way until we encounter the first node x in
V (T ) such that |V (Gx)| = b+ 1. (Note that as (T,X ) is a nice tree-decomposition, when
processing the bags in a bottom-up way, at most one new vertex is introduced at every
step, and recall that by hypothesis t 6 b.) Let C be the equivalence class of Gx according to
∼E,g,t,G . As |V (Gx)| = b+ 1, the graph Gx is contained in the repository R, so in constant
time we can find in R a progressive representative F of C with at most b vertices and the
corresponding transposition constant ∆E,g,t(F,Gx) 6 0, where the inequality holds because

2Note that we slightly abuse notation when identifying t-protrusions and graphs in Ft, as protrusions
are defined as subsets of vertices of a graph. Nevertheless, this will not cause any confusion.



138 Explicit linear kernels via dynamic programming

F is a progressive representative. Let G′ be the graph obtained from G by replacing Gx
with F , so we have that |V (G′)| < |V (G)|. (Note that this replacement operation directly
yields a rooted nice tree-decomposition of width at most t − 1 of G′.) Since ∼∗E,g,t,G is
DP-friendly, it follows that G ∼E,g,t,G G′ and that ∆E,g,t(G′, G) = ∆E,g,t(F,Gx) 6 0.

We recursively apply this replacement procedure on the resulting graph until we even-
tually obtain a t-protrusion H with at most b vertices such that G ∼E,g,t,G H. The
corresponding transposition constant ∆E,g,t(H,G) can be easily computed by summing up
all the transposition constants given by each of the performed replacements. Since each of
these replacements introduces a progressive representative, we have that ∆E,g,t(H,G) 6 0.
As we can assume that the total number of nodes in a nice tree-decomposition of G is
O(n) [184, Lemma 13.1.2], the overall running time of the algorithm is O(n), where the
constant hidden in the O-notation depends indeed exclusively on E , g, b,G, and t. 2

6.3.3 Explicit protrusion replacer

We are now ready to piece everything together and state our main technical result, which
can be interpreted as a generic constructive way of performing protrusion replacement
with explicit size bounds. For our algorithms to be fully constructive, we restrict G to be
the class of graphs that exclude some fixed graph H as a (topological) minor.

Theorem 6.1 Let H be a fixed graph and let G be the class of graphs that exclude H as a
(topological) minor. Let Π be a vertex-certifiable parameterized graph problem defined on G,
and suppose that we are given a Π-encoder E, a function g : N→ N, and an integer t ∈ N
such that ∼∗E,g,t,G is DP-friendly. Then, given an input graph (G, k) and a t-protrusion Y
in G, we can compute in time O(|Y |) an equivalent instance ((G− (Y − ∂(Y )))⊕ Y ′, k′),
where k′ 6 k and Y ′ is a t-protrusion with |Y ′| 6 b(E , g, t,G), where b(E , g, t,G) is the
function defined in Lemma 6.3.

Proof : By Lemma 6.1, the number of equivalence classes of the equivalence relation
∼E,g,t,G is finite, and by Lemma 6.3 the size of a smallest progressive representative of any
equivalence class of ∼E,g,t,G is at most b(E , g, t,G). Therefore, we can apply Lemma 6.4
and deduce that, in time O(|Y |), we can find a t-protrusion Y ′ of size at most b(E , g, t,G)
such that Y ∼E,g,t,G Y ′, and the corresponding transposition constant ∆E,g,t(Y ′, Y ) with
∆E,g,t(Y ′, Y ) 6 0. Since E is a Π-encoder and ∼∗E,g,t,G is DP-friendly, it follows from
Lemma 6.2 that Y ≡Π,t Y

′ and that ∆Π,t(Y
′, Y ) = ∆E,g,t(Y ′, Y ) 6 0. Therefore, if we set

k′ := k + ∆Π,t(Y
′, Y ), it follows that (G, k) and ((G − (Y − ∂(Y ))) ⊕ Y ′, k′) are indeed

equivalent instances of Π with k′ 6 k and |Y ′| 6 b(E , g, t,G). 2

The general recipe to use our framework on a parameterized problem Π defined on a
class of graphs G is as follows: one has just to define the tables to solve Π via dynamic
programming on graphs of bounded treewidth (that is, the encoder E and the function
g), check that E is a Π-encoder and that ∼∗E,g,t,G is DP-friendly, and then Theorem 6.1
provides a linear-time algorithm that replaces large protrusions with graphs whose size
is bounded by an explicit constant, and that updates the parameter of Π accordingly.
This protrusion replacer can then be used, for instance, whenever one is able to find a
linear protrusion decomposition of the input graphs of Π on some sparse graph class G. In
particular, Theorem 6.1 yields the following corollary.



Explicit linear kernels via dynamic programming 139

Corollary 6.1 Let H be a fixed graph, and let G be the class of graphs that exclude H as
a (topological) minor. Let Π be a vertex-certifiable parameterized graph problem on G, and
suppose that we are given a Π-encoder E, a function g : N → N, and an integer t ∈ N
such that ∼∗E,g,t,G is DP-friendly. Then, given an instance (G, k) of Π together with an
(α · k, t)-protrusion decomposition of G, we can construct a linear kernel for Π of size at
most (1 + b(E , g, t,G)) · α · k, where b(E , g, t,G) is the function defined in Lemma 6.3.

Proof : For 1 6 i 6 `, we apply the polynomial-time algorithm given by Theorem 6.1
to replace each t-protrusion Yi with a graph Y ′i of size at most b(E , g, t,G), and to update
the parameter accordingly. In this way we obtain an equivalent instance (G′, k′) such that
G′ ∈ G, k′ 6 k, and |V (G′)| 6 |Y0|+ ` · b(E , g, t,G) 6 (1 + b(E , g, t,G))α · k . 2

Notice that once we fix the problem Π and the class of graphs G where Corollary 6.1 is
applied, a kernel of size c ·k can be derived with a concrete upper bound for the value of c.
Notice that such a bound depends on the problem Π and the excluded (topological) minor
H. In general, the bound can be quite big as it depends on the bound of Lemma 6.3,
and this, in turn, depends on the bound of Lemma 6.1. However, as we see in the next
section, more moderate estimates can be extracted for particular families of parameterized
problems.

Before demonstrating the applicability of our framework by providing linear kernels for
several families of problems on graphs excluding a fixed graph as a (topological) minor,
we need another ingredient. Namely, the following result will be fundamental in order to
find linear protrusion decompositions when a treewidth-modulator X of the input graph
G is given, with |X| = O(k). It is a consequence of [J15, Lemma 3, Proposition 1, and
Theorem 1] and, loosely speaking, the algorithm consists in marking the bags of a tree-
decomposition of G − X according to the number of neighbors in the set X. When the
graph G is restricted to exclude a fixed graph H as a topological minor, it can be proved
that the obtained protrusion decomposition is linear. All the details can be found in
Chapter 5.

Theorem 6.2 (Kim et al. [J15]) Let c, t be two positive integers, let H be an h-vertex
graph, let G be an n-vertex H-topological-minor-free graph, and let k be a positive integer
(typically corresponding to the parameter of a parameterized problem). If we are given a
set X ⊆ V (G) with |X| 6 c · k such that tw(G − X) 6 t, then we can compute in time
O(n) an ((αH · t · c) · k, 2t + h)-protrusion decomposition of G, where αH is a constant
depending only on H, which is upper-bounded by 40h225h log h.

As mentioned in Section 6.3.2, if G is a graph class whose membership can be expressed
in MSO logic, then ∼G,t has a finite number of equivalence classes, namely rG,t. In our
applications, we will be only concerned with families of graphs G that exclude some fixed
h-vertex graph H as a (topological) minor. In this case, using standard dynamic program-
ming techniques, it can be shown that rG,t 6 2t log t · ht · 2h2 . The details can be found in
the encoder described in Section 6.6.1 for the F-Deletion problem.



140 Explicit linear kernels via dynamic programming

6.4 An explicit linear kernel for r-Dominating Set

Let r > 1 be a fixed integer. We define the r-Dominating Set problem as follows.

r-Dominating Set
Instance: A graph G = (V,E) and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a set S ⊆ V with |S| 6 k and such that every vertex

in V \ S is within distance at most r from some vertex in S?

For r = 1, the r-Dominating Set problem corresponds to Dominating Set. Our
encoder for r-Dominating Set is strongly inspired by the work of Demaine et al. [102],
and it generalizes the one given for Dominating Set in the running example of Section 6.3.
The encoder for r-Dominating Set, which we call ErDS = (CrDS, LCrDS), is described in
Section 6.4.1, and we show how to construct the linear kernel in Section 6.4.2. We will
use the shortcut rDS for r-Dominating Set.

6.4.1 Description of the encoder

Let G be a boundaried graph with boundary ∂(G) and let I = Λ(G). The function CrDS

maps I to a set CrDS(I) of CrDS-encodings. Each R ∈ CrDS(I) maps I to an |I|-tuple
in {0, ↑ 1, ↓ 1, . . . , ↑ r, ↓ r}|I|, and thus the coordinates of the tuple are in one-to-one
correspondence with the vertices of ∂(G). For a vertex v ∈ ∂(G) we denote by R(v) its
coordinate in the |I|-tuple. For a subset S of vertices of G, we say that (G,S,R) belongs
to the language LCrDS (or that S is a partial r-dominating set satisfying R) if :

• for every vertex v ∈ V (G) \ ∂(G), either dG(v, S) 6 r or there exists w ∈ ∂(G) such
that R(w) =↑ j and dG(v, w) + j 6 r; and

• for every vertex v ∈ ∂(G): R(v) = 0 implies that v ∈ S, and if R(v) =↓ i for
1 6 i 6 r, then there exists either w ∈ S such that dG(v, w) 6 i or w ∈ ∂(G) such
that R(w) =↑ j and dG(v, w) + j 6 i.

Observe that if S is a partial r-dominating set satisfying R, then S∩∂(G) contains the set
of vertices {v ∈ ∂(G) | R(v) = 0}, but it may also contain other vertices of ∂(G). As the
optimization version of r-Dominating Set is a minimization problem, by Equation (6.1)
the function fCrDS

G (R) associates with a CrDS-encoding R the minimum size of a partial
r-dominating set S satisfying R. By definition of ErDS, it is clear that

sErDS(t) 6 (2r + 1)t. (6.10)

Lemma 6.5 The encoder ErDS is an rDS-encoder. Furthermore, if G is an arbitrary class
of graphs and g(t) = t, then the equivalence relation ∼∗ErDS,g,t,G is DP-friendly.



Explicit linear kernels via dynamic programming 141

Before providing the proof of Lemma 6.5, we will first state a general fact, which will be
useful in order to prove that an encoder is DP-friendly.

Fact 1 To verify that an equivalence relation ∼∗E,g,t,G satisfies Definition 6.11, property
(i) can be replaced with G ∼∗E,g,t G′. That is, if G ∼∗E,g,t G′, then G ∼∗E,g,t,G G′ as well.

Proof : Assume that G ∼∗E,g,t G′, and we want to deduce that G ∼∗E,g,t,G G′, that is, we
just have to prove that G ∼G,t G′. Let H be a t-boundaried graph, and we need to prove
that G ⊕H ∈ G if and only if G′ ⊕H ∈ G. Let GB, G

′
B, G

− be such that G = GB ⊕ G−
and G′ = G′B ⊕ G−. We have that G ⊕ H = (GB ⊕ G−) ⊕ H = GB ⊕ (G− ⊕ H), and
similarly we have that G′B ⊕ (G−⊕H) = (G′B ⊕G−)⊕H = G′⊕H. Since GB ∼G,t G′B, it
follows that G⊕H = GB ⊕ (G−⊕H) ∈ G if and only if G′B ⊕ (G−⊕H) = G′⊕H ∈ G. 2

Proof of Lemma 6.5: Let us first prove that ErDS = (CrDS, LCrDS) is an rDS-encoder.
Note that there is a unique 0-tuple R∅ ∈ CrDS(∅), and by definition of LCrDS , (G,S,R∅) ∈
LCrDS if and only if S is an r-dominating set of G. Let us now prove that the equivalence
relation ∼∗ErDS,g,t,G is DP-friendly for g(t) = t.

As in Definition 6.11, let G be a t-boundaried graph with boundary A, let B be any
separator B ⊆ V (G) with |B| 6 t, and let GB be obtained from any collection of connected
components of G−B by adding the set B, such that A ∩ V (GB) ⊆ B, which we consider
as a t-boundaried graph with boundary B. We define H to be the t-boundaried graph
induced by V (G) \ (V (GB) \ B), and with boundary B (that is, we forget boundary A)
labeled as in GB. Let G′B be a t-boundaried graph such that GB ∼∗ErDS,g,t,G G

′
B. Let

G′ := H ⊕G′B with boundary A. See Figure 6.3 for an illustration.

AA

B

G

B

H

B

B

GB G′B

∼∗E,g,t,G

A

G′

B

c© Valentin Garnero

Figure 6.3: Graphs G and G′ in the proof of Lemma 6.5.

We claim that the encoder ErDS is g-confined for g(t) = t. Indeed, consider an arbitrary
encoding RA ∈ CrDS(Λ(G)) and the encoding R0 satisfying R0(v) = 0 for every v ∈ A.
Let S0 ⊆ V (G) be a minimum-sized partial r-dominating set satisfying R0, i.e., such that
(G,S0, R0) ∈ LCrDS . Observe that S0 also satisfies RA, i.e., (G,S0, RA) ∈ LCrDS . It then
follows that fErDS

G (R0) = maxRA
fErDS
G (RA). Moreover, let S ⊆ V (G) be a minimum-sized

partial r-dominating set satisfying RA, i.e., such that (G,S,RA) ∈ LCrDS . Then R0 is also



142 Explicit linear kernels via dynamic programming

satisfied by S ∪ A. It follows that fErDS
G (R0)−minRA

fErDS
G (RA) 6 |A| 6 t, proving that

the encoder is indeed g-confined.

We want to show that G ∼∗ErDS,g,t,G G′ and that ∆ErDS,g,t(G,G
′) = ∆ErDS,g,t(GB, G

′
B).

According to Fact 1, we can consider the relation ∼∗ErDS,g,t
(that is, we do not need to

consider the refinement with respect to the class of graphs G), and due to the g-confinement
it holds that fErDS,g

G = fErDS
G for g(t) = t. Hence it suffices to prove that fErDS

G (RA) =

fErDS
G′ (RA) + ∆ErDS,g,t(GB, G

′
B) for all RA ∈ CrDS(Λ(G)).

Let RA ∈ CrDS(Λ(G)) be a CrDS-encoding defined on A. First assume that fErDS
G (RA) 6=

+∞, that is, RA ∈ C∗rDS,G(Λ(G)). Let S = D ∪ DH be a partial r-dominating set of

size fErDS
G (RA) of G satisfying RA, with D ⊆ V (GB) and DH ⊆ V (H) \ B. We use S to

construct a CrDS-encoding RB ∈ CrDS(Λ(GB)) defined on B, satisfied by D as follows. Let
v ∈ B:

• if v ∈ S, then RB(v) = 0;

• otherwise, if there is either a shortest path from v to S of length i with its first edge
in GB, or a path from v to any a ∈ A such that RA(a) =↑ j of length i − j, also
with its first edge in GB, then RB(v) =↓ i;

• otherwise, RB(v) =↑ i where i = dG(v, S) or i = dG(v, a) + j such that RA(a) =↑ j
(the first edge of any shortest path from v to S is not in GB).

G′

B

A

v0

v1

v2

G

B

A

0
↓3

0

↑5

↑2

↓2

(b)

↑1

(a) c© Valentin Garnero

Figure 6.4: Illustration of the proof of Lemma 6.5. Black vertices belong to the solution:
(a) construction of the CrDS-encoding RB ∈ CrDS(Λ(GB)); and (b) construction of the
corresponding paths.

See Figure 6.4(a) for an illustration of the construction of the CrDS-encoding RB ∈
CrDS(Λ(GB)) described above.



Explicit linear kernels via dynamic programming 143

Observe that by construction of RB, |D| > fErDS
GB

(RB). Let D′ be a subset of vertices

of G′B of minimum size such that (G′B, D
′, RB) ∈ LCrDS , that is, |D′| = fErDS

G′B
(RB). As

GB ∼ErDS,g,t G
′
B, we have |D′| = fErDS

GB
(RB)+∆ErDS,g,t(GB, G

′
B) and therefore |D′∪DH | =

fErDS
GB

(RA) + ∆ErDS,g,t(GB, G
′
B) + |DH | 6 fErDS

G (RA) + ∆ErDS,g,t(GB, G
′
B).

Let us now prove that S′ = D′ ∪ DH is a partial r-dominating set of G′ satisfying RA.
According to the definition of ErDS, we distinguish vertices in V (G′) \A and in A.

We start with vertices not in A. For any vertex v ∈ V (G′) \ (A ∪ S′), we consider the
following iterative process that builds a path of length at most r from v to S′ or a path
of length at most r − i from v to a ∈ A such that R(a) =↑ i. At step j > 0, we identify a
vertex vj ∈ B. We initially set v0 = v. If v0 ∈ V (G′B), we can assume that dG′B (v0, D

′) > r,
as otherwise we are done. As D′ satisfies RB, this implies that B contains a vertex v1

such that RB(v1) =↑ i1 and dG′B (v0, v1) + i1 6 r. Similarly, if v0 ∈ V (H) \ B, we can
assume that dH(v0, DH) > r and dH(v0, a) > r − i for any a ∈ A such that RA(a) =↑ i,
as otherwise we are done. As S = D ∪ DH is a partial r-dominating set of G satisfying
RA, any shortest path P (of length at most r) between v0 and S and any path (of length
r − i) between v0 and a ∈ A such that RA(a) =↑ i, contains a vertex of B incident to
an edge of GB. Let v1 be the first such vertex of P . By definition of RB, we have that
RB(v1) =↓ i1 with dH(v0, v1) + i1 6 r. Let us now consider vj with j > 1, and denote by
lj the length of the path we discovered from v0 to vj . We need to prove that lj + ij 6 r
(or lj + ij 6 r− i in the other case) is an invariant of the process. As we argued, it is true
for j = 1, so assume it holds at step j. We consider two cases:

1. RB(vj) =↓ ij : We can assume that dG′B (vj , D
′) > ij , otherwise we are done as by

construction it holds that lj + ij 6 r (or lj + ij 6 r − i in the other case). So as
D′ is a partial r-dominating set satisfying RB, there exists a vertex vj+1 ∈ B such
that RB(vj+1) =↑ ij+1 and dG′B (vi, vj+1) + ij+1 6 ij . As lj+1 = lj + dG′B (vi, vj+1), it
follows that lj+1+ij+1 6 r (or lj+1+ij+1 6 r−i in the other case). See Figure 6.4(b)
for an illustration of this case.

2. RB(vj) =↑ ij : We can assume that dH(vj , DH) > ij and dH(vj , a) > ij − i for any
a ∈ A such that RA(a) =↑ i, otherwise we are done as by construction it holds
that lj + ij 6 r (or lj + ij 6 r − i in the other case). As by definition of the
encoding RB, dG(vj , S) = ij , any shortest path P between vj and S (or a ∈ A) uses
a vertex of B incident to an edge of GB. Let vj+1 be the first such vertex of P .
Then RB(vj+1) =↓ ij+1 with dH(vj , vj+1) + ij+1 6 ij . As lj+1 = lj + dH(vi, vj+1), it
follows that lj+1 + ij+1 6 r (or lj + ij 6 r − i in the other case).

Observe that the process ends, since the parameter r − (lj + ij) is strictly decreasing.

We now consider vertices of A. Note that as ∂(GB) = ∂(G′B), it holds that ∂(G) = ∂(G′)
as well. In particular, any vertex v ∈ A is also in H. If RA(v) = 0 since S = D ∪ DH

satisfies A, v ∈ DH and hence, v ∈ S′ = D′ ∪ DH . If RA(v) =↓ i, the iterative process
above built a path from v to S′ of length at most r, or from v to a ∈ A with RA(a) =↑ j
of length at most r − i− j.
It follows that S′ = D′ ∪ DH is a partial r-dominating set of size at most fErDS

G (RA) +
∆ErDS,g,t(GB, G

′
B) satisfying RA, as we wanted to prove.



144 Explicit linear kernels via dynamic programming

Finally, assume that fErDS
G (RA) = +∞. Then it holds that fErDS

G′ (RA) = +∞ as well.

Indeed, suppose that fErDS
G′ (RA) is finite. Then, given a partial r-dominating set of G′

satisfying RA, by the argument above we could construct a partial r-dominating set of G
satisfying RA, contradicting that fErDS

G (RA) = +∞.

Therefore, we can conclude that G ∼∗ErDS,g,t
G′, and hence the equivalence relation

∼∗ErDS,g,t,G is DP-friendly for g(t) = t. 2

6.4.2 Construction of the kernel

We proceed to construct a linear kernel for r-Dominating Set when the input graph
excludes a fixed apex graph H as a minor. Toward this end, we use the fact that this
problem satisfies the contraction-bidimensionality and separability conditions required in
order to apply the results of Fomin et al. [140]. In the following proposition we specify
the result in [140, Lemma 3.3] for the case of r-Dominating Set while making visible
the dependance on r and the size h of the excluded apex graph. The polynomial-time
algorithm follows from Fomin et al. [139, Lemma 3.2], whose proof makes use of the
polynomial-time approximation algorithm for the treewidth of general graphs by Feige et
al. [122].

Proposition 6.3 Let r > 1 be an integer, let H be an h-vertex apex graph, and let rDSH
be the restriction of the r-Dominating Set problem to input graphs which exclude H as a
minor. If (G, k) ∈ rDSH , then there exists a set X ⊆ V (G) such that |X| = O(r ·fc(h) ·k)
and tw(G −X) = O(r · (fc(h))2), where fc is the function in Proposition 6.2. Moreover,
given an instance (G, k) of rDSH , there is a polynomial-time algorithm that either finds
such a set X or correctly reports that (G, k) is a No-instance.

We are now ready to present the linear kernel for r-Dominating Set.

Theorem 6.3 Let r > 1 be an integer, let H be an h-vertex apex graph, and let rDSH be
the restriction of the r-Dominating Set problem to input graphs which exclude H as a
minor. Then rDSH admits a constructive linear kernel of size at most f(r, h) · k, where f
is an explicit function depending only on r and h, defined in Equation (6.11) below.

Proof : Given an instance (G, k) of rDSH , we run the polynomial-time algorithm given by
Proposition 6.3 to either conclude that (G, k) is a No-instance or to find a set X ⊆ V (G)
such that |X| = O(r · fc(h) · k) and tw(G − X) = O(r · (fc(h))2). In the latter case, we
use the set X as input to the algorithm given by Theorem 6.2, which outputs in linear
time a (r2 · 2O(h log h) · (fc(h))3 · k,O(r · (fc(h))2))-protrusion decomposition of G. We now
consider the encoder ErDS = (CrDS, LCrDS) defined in Section 6.4.1. By Lemma 6.5, ErDS is
an rDS-encoder and ∼∗ErDS,g,t,G is DP-friendly, where G is the class of H-minor-free graphs

and g(t) = t. By Equation (6.10) in Section 6.4.1, we have that sErDS(t) 6 (2r + 1)t.
Therefore, we are in position to apply Corollary 6.1 and obtain a linear kernel for rDSH
of size at most

r2 · 2O(h log h) · (fc(h))3 · b
(
ErDS, g,O(r · (fc(h))2),G

)
· k , (6.11)

where b
(
ErDS, g,O(r · (fc(h))2),G

)
is the function defined in Lemma 6.3. 2



Explicit linear kernels via dynamic programming 145

It can be routinely checked that, once the excluded apex graph H is fixed, the dependance
on r of the multiplicative constant involved in the upper bound of Equation (6.11) is of

the form 222
O(r·log r)

, that is, it depends triple-exponentially on the integer r.

6.5 An explicit linear kernel for r-Scattered Set

Let r > 1 be a fixed integer. Given a graph G and a set S ⊆ V (G), we say that S is an
r-independent set if any two vertices in S are at distance greater than r in G. We define
the r-Scattered Set problem, which can be seen as a generalization of Independent
Set, as follows.

r-Scattered Set
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a 2r-independent set of size at least k?

Our encoder for r-Scattered Set (or equivalently, for 2r-Independent Set) is in-
spired from the proof of Fomin et al. [63] that the problem has FII, and can be found in
Section 6.5.1. We then show how to construct the linear kernel in Section 6.5.2.

6.5.1 Description of the encoder

Equivalently, we proceed to present an encoder for the r-Independent Set problem,
which we abbreviate as rIS. Let G be a boundaried graph with boundary ∂(G) and denote
I = Λ(G). The function CrIS maps I to a set CrIS(I) of CrIS-encodings. Each R ∈ CrIS(I)
maps I to an |I|-tuple the coordinates of which are in one-to-one correspondence with
the vertices of ∂(G). The coordinate R(v) of vertex v ∈ ∂(G) is a (|I| + 1)-tuple in
(dS , dv1 , . . . , dv|I|) ∈ {0, 1, . . . , r, r + 1}|I|+1. For a subset S of vertices of G, we say that
(G,S,R) belongs to the language LCrIS (or that S is a partial r-independent set satisfying
R) if:

• for every pair of vertices v ∈ S and w ∈ S, dG(v, w) > r;

• for every vertex v ∈ ∂(G): dG(v, S) > dS and for every w ∈ ∂(G), dG(v, w) > dw.

As r-Independent Set is a maximization problem, by Equation (6.2) the function fErIS
G

associates to each encoding R the maximum size of a partial r-independent set S satisfying
R. By definition of ErIS it is clear that

sErIS(t) 6 (r + 2)t(t+1). (6.12)

Lemma 6.6 The encoder ErIS = (CrIS, LCrIS) described above is an rIS-encoder. Further-
more, if G is an arbitrary class of graphs and g(t) = 2t, then the equivalence relation
∼∗ErIS,g,t,G is DP-friendly.



146 Explicit linear kernels via dynamic programming

Proof : We first prove that ErIS = (CrIS, LCrIS) is an rIS-encoder. There is a unique
0-tuple R∅ ∈ CrIS(∅), and by definition of LCrIS , (G,S,R∅) ∈ LCrIS if and only if S is an
r-independent set of G.

Let G,G′ with boundary A and H,GB, G
′
B with boundary B be the graphs as defined in

the proof of Lemma 6.5 (see Figure 6.3).

Let R0 be the encoding satisfying R0(v) = (0, 0, . . . , 0) for every v ∈ B. Observe that if S
is a maximum partial r-independent set satisfying an encoding RB ∈ CrIS(Λ(GB)), then
S also satisfies R0. It follows that fErIS

G (R0) = maxRB
fErIS
G (RB) (and thus fErIS

G (R0) =

fErIS,g
G (R0)).

We want to show that G ∼∗ErIS,g,t,G G
′ and that ∆ErIS,g,t(G,G

′) = ∆ErIS,g,t(GB, G
′
B). Ac-

cording to Fact 1, it is enough to consider the relation ∼∗ErIS,g,t
. To that aim, we will

prove that fErIS,g
G (RA) = fErIS,g

G′ (RA) + ∆ErIS,g,t(GB, G
′
B) for all RA ∈ CrIS(Λ(G)) and for

g(t) = 2t.

Let RA ∈ CrIS(Λ(G)) be a CrIS-encoding defined on A. First assume that fErIS,g
G (RA) 6=

−∞, that is, RA ∈ C∗rIS,G(Λ(G)). Let S = I ∪ IH be a partial r-independent set of size

fErIS,g
G (RA) of G, with I ⊆ V (GB) and IH ⊆ V (H) \ B. An encoding RB ∈ CrIS(Λ(GB)),

satisfied by S is defined as follows. Let v ∈ B, then RB(v) = (dS , dv1 , . . . , dv|B|) where

• dS = dGB
(v, I); and

• for i ∈ {1, . . . , |B|}, dvi = min{dGB
(v, vi), r + 1} (remind that vi ∈ ∂(G)).

Fact 2 For the RB defined above, it holds that fErIS,g
GB

(RB) 6= −∞, where g(t) = 2t.

Proof : Let I0 ⊆ V (GB) be a maximum partial r-independent set satisfying R0, i.e.,
(GB, I0, R0) ∈ LCrIS . Let us define I∗ = I \ Nr/2(B), I∗0 = I0 \ Nr/2(B) and I∗H =
IH \Nr/2(B). By the pigeon-hole principle, it is easy to see that |I∗0 | > |I0|−t (otherwise B
would contain a vertex at distance at most r/2 from two distinct vertices of I0). Likewise,
|I∗H | > |IH | − t. Now observe that I∗0 ∪ I∗H is an r-independent set of G and therefore
|I∗0 | + |I∗H | 6 |S| (1) (as S was chosen as a maximum r-independent set of G). As S is
the disjoint union of I and IH , we also have that |S| 6 |I| + |I∗H | + t (2). Combining
(1) and (2), we obtain that |I∗0 | 6 |I| + t and therefore |I0| 6 |I| + 2t. It follows that

fErIS
GB

(RB) = fErIS,g
GB

(RB), proving the fact. 2

Observe that by construction of RB, |I| 6 fErIS,g
GB

(RB). Consider a subset of vertices

I ′ of G′B of maximum size such that (G′B, I
′, RB) ∈ LCrIS , that is |I ′| = fErIS,g

G′B
(RB).

As GB ≡ErIS,t G
′
B, by the above claim, we have |I ′| = fErIS,g

GB
(RB) + ∆ErIS,g,t(GB, G

′
B) and

therefore |I ′∪IH | = fErIS,g
GB

(RB)+∆ErIS,g,t(GB, G
′
B)+|IH | > fErIS,g

G (RA)+∆ErIS,g,t(GB, G
′
B).

Let us prove that S′ = I ′∪IH is a partial r-independent set of G′ satisfying RA. Following
the definition of ErIS, we have to verify two kinds of conditions: those on vertices in S′

and those on vertices in A. We start with vertices in S′. Let P be a shortest path in G
between two vertices v ∈ S′ and w ∈ S′. We partition P into maximal subpaths P1, . . . , Pq



Explicit linear kernels via dynamic programming 147

G′

B

A

P1

P2

P3

P4

c© Valentin Garnero

Figure 6.5: Illustration in the proof of Lemma 6.6. The black vertices belong to the
solution.

such that Pj (for 1 6 j 6 q) is either a path of G′B (called a G′B-path) or of H (called
an H-path). An illustration of these paths can be found in Figure 6.5. If q = 1, then
dG′(v, w) > r follows from the fact that IH and I ′ are respectively r-independent sets of
H and G′B (a partial r-independent set is an r-independent set). So assume that q > 1.
Observe that every H-subpath is a path in G. By the choice of S′, observe that the length
of every G′B-subpath is at least the distance in GB between its extremities. We consider
three cases:

• v, w ∈ V (H) \ B: By the observations above, the length of P is at least dG(v, w).
As v, w ∈ IH , we obtained that dG′(v, w) > dG(v, w) > r.

• v ∈ V (H) \ B and w ∈ V (G′B): Let u be the last vertex of Pq−1. By the same
argument as in the previous case we have dG′(v, u) > dG(v, u). Now by the choice of
S′, observe that dG′B (u,w) > dGB

(u, I). So the length of P is at least the distance
in G from v to a vertex w′ ∈ I, we can conclude that dG′(v, w) > r.

• v, w ∈ V (G′B): Let u1 and uq be respectively the last vertex of P1 and the first vertex
of Pq. By the same argument as above, we have that dG′(u1, uq) > dG(u1, uq). By
the choice of S′, we have that dG′B (u1, v) > dGB

(u1, I) and dG′B (uq, w) > dGB
(uq, I).

So the length of P is a least the distance in G between two vertices v′ ∈ I and w′ ∈ I.
We can therefore conclude that dG′(v, w) > r.

We now consider vertices of A. Let v ∈ A such that RA(v) = (dS , dv1 , . . . , dv|A|). Let P
be a shortest path in G′ between vertices v ∈ A and w ∈ S′, similarly to the previous
argumentation (two first items) dG′(v, w) > dS . Now let P be a a shortest path in G′

between vertices v ∈ A and vi ∈ A similarly to the previous argumentation (first item)
dG′(v, w) > dvi .



148 Explicit linear kernels via dynamic programming

It follows that S′ = I ′ ∪ IH is a partial r-independent set of size at least fErIS,g
G (RA) +

∆ErIS,g,t(GB, G
′
B) satisfying RA, as we wanted to prove.

Finally, assume that fErIS
G (RA) = −∞. Then it holds that fErIS

G′ (RA) = −∞ as well.

Indeed, suppose that fErIS
G′ (RA) is finite. Then, given a partial r-independent set of G′

satisfying RA, by the argument above we could construct a partial r-independent set of G
satisfying RA, contradicting that fErIS

G (RA) = −∞.

Therefore, we can conclude that G ∼∗ErIS,g,t
G′, and hence the equivalence relation ∼∗ErIS,g,t,G

is DP-friendly for g(t) = 2t. 2

6.5.2 Construction of the kernel

For constructing a linear kernel, we use the following observation, also noted in [63].
Suppose that (G, k) is a No-instance of r-Scattered Set. Then, if for 1 6 i 6 k we
greedily choose a vertex vi in G − ⋃j<iN2r[vj ], the graph G − ⋃16i6kN2r[vi] is empty.
Thus, {v1, . . . , vk} is a 2r-dominating set.

Lemma 6.7 (Fomin et al. [63]) If (G, k) is a No-instance of the r-Scattered Set
problem, then (G, k) is a Yes-instance of the 2r-Dominating Set problem.

We are ready to present the linear kernel for r-Scattered Set on apex-minor-free graphs.

Theorem 6.4 Let r > 1 be an integer, let H be an h-vertex apex graph, and let rSSH be
the restriction of the r-Scattered Set problem to input graphs which exclude H as a
minor. Then rSSH admits a constructive linear kernel of size at most f(r, h) · k, where f
is an explicit function depending only on r and h, defined in Equation (6.13) below.

Proof : Given an instance (G, k) of rSSH , we run on it the algorithm given by Proposi-
tion 6.3 for the r′-Dominating Set problem with r′ := 2r. If the algorithm is not able to
find a set X of the claimed size, then by Lemma 6.7 we can conclude that (G, k) ∈ rSSH .
Otherwise, we use again the set X as input to the algorithm given by Theorem 6.2, which
outputs in linear time a (r2 ·2O(h log h) ·(fc(h))3 ·k,O(r·(fc(h))2))-protrusion decomposition.
We now consider the encoder ErIS = (CrIS, LCrIS) defined in Section 6.5.1. By Lemma 6.6,
ErIS is an rIS-encoder and ∼∗ErIS,g,t,G is DP-friendly, where G is the class of H-minor-free

graphs and g(t) = 2t, and furthermore by Equation (6.12) it satisfies sErIS(t) 6 (r+2)t(t+1).
Therefore, we are again in position to apply Corollary 6.1 and obtain a linear kernel for
rSSH of size at most

r2 · 2O(h log h) · (fc(h))3 · b
(
ErIS, g,O(r · (fc(h))2),G

)
· k , (6.13)

where b
(
ErIS, g,O(r · (fc(h))2),G

)
is the function defined in Lemma 6.3. 2



Explicit linear kernels via dynamic programming 149

6.6 An explicit linear kernel for Planar-F-Deletion

Let F be a finite set of graphs. We recall the F-Deletion problem, defined as follows.

F-Deletion
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a set S ⊆ V (G) such that |S| 6 k

and G− S is F -minor-free for every F ∈ F?

When all the graphs in F are connected, the corresponding problem is called Connected-
F-Deletion, and when F contains at least one planar graph, we call it Planar-F-
Deletion. When both conditions are satisfied, the problem is called Connected-
Planar-F-Deletion. Note that Connected-Planar-F-Deletion encompasses, in
particular, Vertex Cover and Feedback Vertex Set.

Our encoder for the F-Deletion problem uses the dynamic programming machinery de-
veloped by Adler et al. [J1], and it is described in Section 6.6.1. The properties of this
encoder also guarantee that the equivalence relation ∼G,t has finite index (see the last para-
graph of Section 6.3.3). We prove that this encoder is indeed an F-Deletion-encoder
and that the corresponding equivalence relation is DP-friendly, under the constraint that
all the graphs in F are connected. Interestingly, this phenomenon concerning the con-
nectivity seems to be in strong connection with the fact that the F-Deletion problem
has FII if all the graphs in F are connected [63, 137], but for some families F containing
disconnected graphs, F-Deletion has not FII (see [J15] for an example of such a family).

We then obtain a linear kernel for the problem using two different approaches. The first
one, described in Section 6.6.1, follows the same scheme as the one used in the previous
sections (Sections 6.4 and 6.5), that is, we first find a treewidth-modulator X in polynomial
time, and then we use this set X as input to the algorithm of Theorem 6.2 to find a linear
protrusion decomposition of the input graph. In order to find the treewidth-modulator X,
we need that the input graph G excludes a fixed graph H as a minor.

With our second approach, which can be found in Section 6.6.3, we obtain a linear ker-
nel on the larger class of graphs that exclude a fixed graph H as a topological minor.
We provide two variants of this second approach. One possibility is to use the random-
ized constant-factor approximation for Planar-F-Deletion by Fomin et al. [137] as
treewidth-modulator, which yields a randomized linear kernel (in the sense that the ker-
nelization algorithm is randomized, and the expected size of the kernel is linear) that can
be found in uniform polynomial time. The second possibility consists in arguing just about
the existence of a linear protrusion decomposition in Yes-instances, and then greedily find-
ing large protrusions to be reduced by the protrusion replacer given by Theorem 6.1. This
yields a deterministic linear kernel that can be found in time nf(H,F), where f is a function
depending on H and F .



150 Explicit linear kernels via dynamic programming

6.6.1 The encoder for F-Deletion and the index of ∼G,t

In this subsection we define an encoder EFD = (CFD, LCFD
) for F-Deletion, and along

the way we will also prove that when G is the class of graphs excluding a fixed graph
on h vertices as a minor, then the index of the equivalence relation ∼G,t is bounded by

2t log t · ht · 2h2 .

Recall first that a model of a graph F in a graph G is a mapping φ that assigns to every
edge e ∈ E(F ) an edge φ(e) ∈ E(G), and to every vertex v ∈ V (F ) a non-empty connected
subgraph φ(v) ⊆ G, such that

(i) the graphs {φ(v) | v ∈ V (F )} are mutually vertex-disjoint and the edges {φ(e) | e ∈
E(F )} are pairwise distinct;

(ii) for e = {u, v} ∈ E(F ), φ(e) has one end-vertex in V (φ(u)) and the other in V (φ(v)).

Assume first for simplicity that F = {F} consists of a single connected graph F . Fol-
lowing [J1], we introduce a combinatorial object called rooted packing. These objects are
originally defined for branch decompositions, but we can directly translate them to tree-
decompositions. Loosely speaking, rooted packings capture how “potential models” of F
intersect the separators that the algorithm is processing. It is worth mentioning that the
notion of rooted packing is related to the notion of folio introduced by Robertson and
Seymour in [226], but more suited to dynamic programming. See [J1] for more details.

Formally, let S∗F ⊆ V (F ) be a subset of the vertices of the graph F , and let SF ⊆ S∗F .
Given a bag B of a tree-decomposition (T,X ) of the input graph G, we define a rooted
packing of B as a quintuple rp = (A, S∗F , SF , ψ, χ), where A is a (possible empty) collection
of mutually disjoint non-empty subsets of B (that is, a packing of B), ψ : A → SF is a
surjective mapping (called the rooting) assigning vertices of SF to the sets in A, and
χ : SF × SF → {0, 1} is a binary symmetric function between pairs of vertices in SF .

The intended meaning of a rooted packing (A, S∗F , SF , ψ, χ) is as follows. In a given
separator B, a packing A represents the intersection of the connected components of the
potential model with B. The subsets S∗F , SF ⊆ V (F ) and the function χ indicate that we
are looking in the graph GB for a potential model of F [S∗F ] containing the edges between
vertices in SF given by the function χ. Namely, the function χ captures which edges of
F [S∗F ] have been realized so far in the processed graph. Since we allow the vertex-models
intersecting B to be disconnected, we need to keep track of their connected components.
The subset SF ⊆ S∗F tells us which vertex-models intersect B, and the function ψ associates
the sets in A with the vertices in SF . We can think of ψ as a coloring that colors the
subsets in A with colors given by the vertices in SF . Note that several subsets in A
can have the same color u ∈ SF , which means that the vertex-model of u in GB is not
connected yet, but it may get connected in further steps of the dynamic programming.
Again, see [J1] for the details.

It is proved in [J1] that rooted packings allow to carry out dynamic programming in
order to determine whether an input graph G contains a graph F as a minor. It is
easy to see that the number of distinct rooted packings at a bag B is upper-bounded by
f(t, F ) := 2t log t · rt · 2r2 , where t = tw(G) and r = |V (F )|. In particular, this proves that



Explicit linear kernels via dynamic programming 151

when G is the class of graphs excluding a fixed graph H on h vertices as a minor, then the
index of the equivalence relation ∼G,t is bounded by 2t log t · ht · 2h2 .

Nevertheless, in order to solve the F-Deletion problem, we need a more complicated
data structure. The intuitive reason is that it is inherently more difficult to cover all
models of a graph F with at most k vertices, rather than just finding one. We define CFD

as the function which maps I ⊆ {1, . . . , t} to a subspace of {0, 1}f(|I|,F ). That is, each
CFD-encoding R ∈ C(I) is a vector of f(|I|,F) bits, which when interpreted as the tables
of a dynamic programming algorithm at a given bag B such that Λ(GB) = I, prescribes
which rooted packings exist in the graph GB once the corresponding vertices of the desired
solution to F-Deletion have been removed. More precisely, the language LCFD

contains
the triples (G,S,R) (recall from Definition 6.6 that here G is a boundaried graph with
Λ(G) ⊆ I, S ⊆ V (G), and R ∈ C(I)) such that the graph G − S contains precisely the
rooted packings prescribed by R (namely, those whose corresponding bit equals 1 in R),
and such that the graph G− (∂G ∪ S) does not contain F as a minor.

When the family F = {F1, . . . , F`} may contain more than one graph, let f(t,F) =∑`
i=1 f(t, Fi), and we define CFD as the function which maps I ⊆ {1, . . . t} to a subspace

of {0, 1}f(|I|,F). The language is defined LCFD
is defined accordingly, that is, such that

the graph G − S contains precisely the rooted packings of Fi prescribed by R, for each
1 6 i 6 `, and such that the graph G− (∂G∪ S) does not contain any of the graphs in F
as a minor. By definition of EFD, it clearly holds that

sEFD
(t) 6 2f(t,F1) · 2f(t,F2) · · · 2f(t,F`) = 2f(t,F). (6.14)

Assume henceforth that all graphs in the family F are connected. This assumption is
crucial because for a connected graph F ∈ F and a potential solution S, as the graph G−
(∂G∪S) does not contain F as a minor, we can assume that the packing A corresponding
to a potential model of F rooted at ∂G \ S is nonempty. Indeed, as F is connected, a
rooted packing which does not intersect ∂G \ S can never be extended to a (complete)
model of F in G ⊕K for any t-boundaried graph K. Therefore, we can directly discard
these empty rooted packings. We will use this property in the proof of Lemma 6.8 below.
Note that this assumption is not safe if F contains more than one connected component.
As mentioned before, this phenomenon seems to be in strong connection with the fact that
the F-Deletion problem has FII if all the graphs in F are connected [63, 137], but for
some families F containing disconnected graphs, F-Deletion has not FII.

Lemma 6.8 The encoder EFD is a Connected-F-Deletion-encoder. Furthermore, if
G is an arbitrary class of graphs and g(t) = t, then the equivalence relation ∼∗EFD,g,t,G is
DP-friendly.

Proof : The fact that EFD = (CFD, LCFD
) is a Connected-F-Deletion-encoder follows

easily from the above discussion, as if G is a 0-boundaried graph, then CFD(∅) consists of
a single CFD-encoding R∅, and (G,S,R∅) ∈ LCFD

if and only if the graph G− S contains
none of the graphs in F as a minor. It remains to prove that the equivalence relation
∼∗EFD,g,t,G is DP-friendly for g(t) = t.

The proof is similar to the proofs for r-Dominating Set and r-Scattered Set, so
we will omit some details. As in the proof of Lemma 6.5, we start by proving that the



152 Explicit linear kernels via dynamic programming

encoder EFD for Connected-F-Deletion is g-confined for the identity function g(t) = t.
Similarly to the encoder we presented for r-Dominating Set, EFD = (CFD, LCFD

) has

the following monotonicity property. For R1, R2 ∈ CF (I) such that fCFD
G (R1) < ∞ and

fCFD
G (R2) <∞,

if R−1
1 (0) ⊆ R−1

2 (0), then fCFD
G (R1) 6 fCFD

G (R2), (6.15)

where for i ∈ {1, 2}, R−1
i (0) denotes the set of rooted packings whose corresponding bit

equals 0 in Ri. Indeed, Equation (6.15) holds because any solution S in G that covers all
the rooted packings forbidden by R2 also covers those forbidden by R1 (as by hypothesis
R−1

1 (0) ⊆ R−1
2 (0)), so it holds that fCFD

G (R1) 6 fCFD
G (R2).

Let R0 = {0, 0, . . . , 0} be the CFD(I)-encoding will all the bits set to 0. The key observation
is that, since each graph in F is connected, by the discussion above the lemma we can
assume that each packing A in a rooted packing is nonempty. This implies that if R ∈
CFD(I) such that (G,S,R) ∈ LCFD

for some set S ⊆ V (G), then (G,S ∪ ∂G,R0) ∈ LCFD
.

In other words, any solution S for an arbitrary CFD-encoding R can be transformed into a
solution for R0 by adding a set of vertices of size at most |∂(G)| 6 t. As by Equation (6.15),
for any CFD-encoding R with fCFD

G (R) <∞ it holds that fCFD
G (R) 6 fCFD

G (R0), it follows
that for any graph G with Λ(G) = I,

max
R∈C∗FD,G(I)

fEFD
G (R) − min

R∈C∗FD,G(I)
fEFD
G (R) 6 t, as we wanted to prove.

Once we have that EFD = (CFD, LCFD
) is g-confined, the proof goes along the same lines

of that of Lemma 6.5. That is, the objective is to show that, in the setting depicted in
Figure 6.3, G ∼∗EFD,g,t,G G

′ (due to Fact 1) and ∆EFD,g,t(G,G
′) = ∆EFD,g,t(GB, G

′
B). Due

to the g-confinement, it suffices to prove that fEFD
G (RA) = fEFD

G′ (RA) + ∆EFD,g,t(GB, G
′
B)

for all RA ∈ CFD(Λ(G)). Since GB ∼∗EFD,g,t
G′B, the definition of EFD it implies that the

graphs GB and G′B contain exactly the same set of rooted packings, so their behavior with
respect to H (see Figure 6.3) in terms of the existence of models of graphs in F is exactly
the same. For more details, it is proved in [J1] that using the encoder EFD = (CFD, LCFD

),
the tables of a given bag in a tree- or branch-decomposition can indeed be computed from
the tables of their children. Therefore, we have that G ∼∗EFD,g,t,G G

′. Finally, the fact that

fEFD
G (RA) = fEFD

G′ (RA) + ∆EFD,g,t(GB, G
′
B) can be easily proved by noting that any set

S ∈ V (G) satisfying RA can be transformed into a set S′ ∈ V (G′) satisfying RA such that
|S′| 6 |S| −∆EFD,g,t(GB, G

′
B) (by just replacing S ∩ V (GB) with the corresponding set of

vertices in V (G′B), using that GB ∼∗EFD,g,t
G′B), and vice versa. 2

6.6.2 Construction of the kernel on H-minor-free graphs

The objective of this subsection is to prove the following theorem.

Theorem 6.5 Let F be a finite set of connected graphs containing at least one r-vertex
planar graph F , let H be an h-vertex graph, and let CPFDH be the restriction of the
Connected-Planar-F-Deletion problem to input graphs which exclude H as a minor.
Then CPFDH admits a constructive linear kernel of size at most f(r, h) · k, where f is
an explicit function depending only on r and h, defined in Equation (6.16) below.



Explicit linear kernels via dynamic programming 153

Similarly to the strategy that we presented in Section 6.4.2 for r-Dominating Set, in
order to construct a linear kernel for Connected-Planar-F-Deletion when the input
graph excludes a fixed graph H as a minor, we use the fact that this problem satisfies the
minor-bidimensionality and separability conditions required in order to apply the results
of Fomin et al. [140]. Namely, in the following proposition we specify the result in [140,
Lemma 3.3] for the case of Planar-F-Deletion while making visible the dependance
on r and the size h of the excluded graph. Again, the polynomial-time algorithm follows
from Fomin et al. [139, Lemma 3.2].

Proposition 6.4 Let F be a finite set of graphs containing at least one r-vertex planar
graph F , let H be an h-vertex graph, and let PFDH be the restriction of the Planar-F-
Deletion problem to input graphs which exclude H as a minor. If (G, k) ∈ PFDH , then
there exists a set X ⊆ V (G) such that |X| = O(r·fm(h)·k) and tw(G−X) = O(r·(fm(h))2),
where fm is the function in Proposition 6.1. Moreover, given an instance (G, k) of PFDH ,
there is a polynomial-time algorithm that either finds such a set X or correctly reports that
(G, k) is a No-instance.

We are ready to present a linear kernel for Connected-Planar-F-Deletion when the
input graph excludes a fixed graph H as a minor.

Proof of Theorem 6.5: The proof is very similar to the one of Theorem 6.3. Given
an instance (G, k), we run the polynomial-time algorithm given by Proposition 6.4 to
either conclude that (G, k) is a No-instance or to find a set X ⊆ V (G) such that |X| =
O(r · fm(h) · k) and tw(G−X) = O(r · (fm(h))2). In the latter case, we use the set X as
input to the algorithm given by Theorem 6.2, which outputs in linear time a (r2 ·2O(h log h) ·
(fm(h))3 ·k,O(r · (fm(h))2))-protrusion decomposition of G. We now consider the encoder
EFD = (CFD, LCFD

) defined in Section 6.6.1. By Lemma 6.8, EFD is a CPFDH -encoder
and ∼∗EFD,g,t,G is DP-friendly, where g(t) = t and G is the class of H-minor-free graphs.
An upper bound on sEFD

(t) is given in Equation (6.14). Therefore, we are in position to
apply Corollary 6.1 and obtain a linear kernel for CPFDH of size at most

r2 · 2O(h log h) · (fm(h))3 · b
(
EFD, g,O(r · (fm(h))2),G

)
· k , (6.16)

where b
(
EFD, g,O(r · (fm(h))2),G

)
is the function defined in Lemma 6.3. 2

6.6.3 Linear kernels on H-topological-minor-free graphs

In this subsection we explain how to obtain linear kernels for Planar-F-Deletion on
graphs excluding a topological minor. We first describe a uniform randomized kernel and
then a nonuniform deterministic one. We would like to note that in the case that G is the
class of graphs excluding a fixed h-vertex graph H as a topological minor, by using a slight
variation of the rooted packings described in Section 6.6.1 it can be proved, using standard
dynamic techniques, that the index of the equivalence relation ∼G,t is also upper-bounded

by 2t log t · ht · 2h2 .

Before presenting the uniform randomized kernel, we need the following two results.



154 Explicit linear kernels via dynamic programming

Theorem 6.6 (Fomin et al. [137]) The optimization version of the Planar-F-
Deletion problem admits a randomized constant-factor approximation.

Theorem 6.7 (Leaf and Seymour [193]) For every simple planar graph F on r ver-
tices, every F -minor-free graph G satisfies tw(G) 6 215r+8r log r.

Theorem 6.8 Let F be a finite set of connected graphs containing at least one r-vertex
planar graph F , let H be an h-vertex graph, and let CPFDH-top be the restriction of
the Connected-Planar-F-Deletion problem to input graphs which exclude H as a
topological minor. Then CPFDH-top admits a linear randomized kernel of size at most
f(r, h) · k, where f is an explicit function depending only on r and h, defined in Equa-
tion (6.17) below.

Proof : Given an instance (G, k) of CPFDH-top , we first run the randomized polynomial-
time approximation algorithm given by Theorem 6.6, which achieves an expected constant
ratio cF . If we obtain a solution X ⊆ V (G) such that |X| > cF ·k, we declare that (G, k) is
a No-instance. Otherwise, if |X| 6 cF ·k, we use the set X as input to the algorithm given
by Theorem 6.2. As by Theorem 6.7 we have that tw(G−X) 6 215r+8r log r, we obtain in
this way a

(
cF · 40h2 · 215r+8r log r+5h log h · k, 215r+8r log r+1 + h

)
-protrusion decomposition

of G. We now consider again the encoder EFD = (CFD, LCFD
) defined in Section 6.6.1, and

by Corollary 6.1 we obtain a kernel of size at most

(
1 + b

(
EFD, g, 2

15r+8r log r+1 + h,G
))
·
(
cF · 40h2 · 215r+8r log r+5h log h

)
· k , (6.17)

where b
(
EFD, g, 2

15r+8r log r+1 + h,G
)

is the function defined in Lemma 6.3 and G is the
class of H-topological-minor-free graphs. 2

We finally present a deterministic kernel, whose drawback is that the running time is
nonuniform on F and H.

Theorem 6.9 Let F be a finite set of connected graphs containing at least one r-vertex
planar graph F , let H be an h-vertex graph, and let CPFDH-top be the restriction of
the Connected-Planar-F-Deletion problem to input graphs which exclude H as a
topological minor. Then CPFDH-top admits a linear kernel of size at most f(r, h) · k,
where f is an explicit function depending only on r and h, defined in Equation (6.18)
below.

Proof : The main observation is that if (G, k) ∈ CPFDH-top, then there exists a set
X ⊆ V (G) with |X| 6 k such that G−X is F-minor-free. In particular, by Theorem 6.7
it holds that tw(G − X) 6 215r+8r log r. Therefore, we know by Theorem 6.2 that if
(G, k) ∈ CPFDH-top, then G admits a (40 · h2 · 215r+8r log r+5h log h · k, 215r+8r log r+1 + h)-
protrusion decomposition. Nevertheless, we do not have tools to efficiently find such linear
decomposition. However, we use that, as observed in [63], a t-protrusion of size more than
a prescribed number x in an n-vertex graph can be found in nO(t) steps, it if exists. Our
kernelization algorithm proceeds as follows. We try to find a (215r+8r log r+1 +h)-protrusion



Explicit linear kernels via dynamic programming 155

Y of size strictly larger than x := b(EFD, g, 2
15r+8r log r+1 +h,G), where EFD is the encoder

for F-Deletion described in Section 6.6.1, b
(
EFD, g, 2

15r+8r log r+1 + h,G
)

is the function
defined in Lemma 6.3, and G is the class of H-topological-minor-free graphs. If we succeed,
we apply the protrusion replacement algorithm given by Theorem 6.1 and replace Y with
another t-boundaried graph Y ′ such that |Y ′| 6 b

(
EFD, g, 2

15r+8r log r+1 + h,G
)
. The

algorithm continues as far as we are able to find such large protrusion. At the end of this
procedure, we either obtain an equivalent instance of size at most

b
(
EFD, g, 2

15r+8r log r+1 + h,G
)
· 40 · h2 · 215r+8r log r+5h log h · k , (6.18)

or otherwise we can correctly declare that (G, k) is a No-instance. This kernelization

algorithm runs in time nO(215r+8r log r+1+h). 2

To conclude this section, we would like to note that the recent results of Chekuri and
Chuzhoy [81] show that in Theorem 6.7, the inequality tw(G) 6 215r+8r log r can be replaced
with tw(G) = rO(1). This directly implies that in Equations (6.17) and (6.18), as well as
in the running time of the algorithm of Theorem 6.9, the term 215r+8r log r can be replaced
with rO(1). Nevertheless, we decided to keep the current bounds in order to be able to
give explicit constants.

6.7 Concluding remarks

The methodology for performing explicit protrusion replacement via dynamic program-
ming that we have presented is quite general, and it could also be used to obtain polynomial
kernels (not necessarily linear). We have restricted ourselves to vertex-certifiable prob-
lems, but is seems plausible that our approach could be also extended to edge-certifiable
problems or to problems on directed graphs. In this direction, we provided in [S37] an
extension of our framework to so-called packing-certifiable problems, which, in a nutshell,
are problems whose solutions can be certified by a collection of subgraphs.

We have presented in Section 6.6 a linear kernel for Connected-Planar-F-Deletion
when the input graph excludes a fixed graph H as a (topological) minor. The Planar-
F-Deletion problem is known to admit a polynomial kernel on general graphs [137].
Nevertheless, this kernel has size O(kc), where c is a constant depending on F that is

upper-bounded by 22r
10

, where r is the size of a largest graph in F . This dependance is
justified by the recent results of Giannopoulou et al. [156], ruling out the existence of a
uniform polynomial kernel (that is, a polynomial kernel whose degree does not depend on
the family F) for Planar-F-Deletion on general graphs.

As mentioned above, our linear kernel for Planar-F-Deletion requires that all graphs
in the family F are connected. It would be interesting to get rid of this assumption,
as we did in Chapter 5 to deduce the existence of a linear kernel. On the other hand,
in the linear kernel for Connected-Planar-F-Deletion on H-topological-minor-free
graphs given in Theorem 6.8, the randomization appears because we use the randomized
constant-factor approximation for Planar-F-Deletion on general graphs [137], but for



156 Explicit linear kernels via dynamic programming

our kernel to be deterministic, it would be enough with a constant-factor approximation
on H-topological-minor-free graphs, which is not known.

All the applications examined in this chapter concerned parameterized problems tuned by
a secondary parameter, i.e., r for the case of r-Dominating Set and r-Scattered Set
and the size of the graphs in F for the case of F-Deletion. In all kernels derived for
these problems, the dependance on this secondary parameter is triple-exponential, while
the dependance on the excluded graph H involves the functions fm and fc defined in
Section 6.2. Two questions arise:

• Extend our results to larger graph classes and more general problems, other than
the ones considered in [S37]. Also, improve the dependance of the size of the kernels
on the “meta-parameters” associated with the problems (that is, r, F , and H).
Probably the recent results of Chekuri and Chuzhoy [81] can be used in this direction.
Moreover, provide refinements of this framework that can lead to reasonable explicit
bounds for the kernels for particular problems.

• Examine to what extent this exponential dependance is unavoidable under some
assumptions based on automata theory or (parameterized) complexity theory. We
suspect that the unification between dynamic programming and kernelization that
we propose in this chapter might offer a common understanding of the lower
bounds in the running time of dynamic programming algorithms for certain prob-
lems (see [196, 197]) and the sizes of their corresponding kernels (see for in-
stance [59,61,64,101]). Finally, we refer the reader to [46] for constructibility issues
of algebraic graph reduction.

Finally, it is worth mentioning the recent work of Jansen and Wulms [173], which studies
the size of the graphs in the set of representatives Rt that we consider in our approach.
Namely, in the framework we presented in this chapter, the size of the graphs in the set Rt
grows at most triple-exponentially with the boundary size t. They complement this bound
by proving that each set of planar representatives for Independent Set or Dominating
Set contains a graph with Ω(2t/

√
4t) vertices. Jansen and Wulms [173] also show that the

number of equivalence classes for Independent Set on t-boundaried graphs is at most
22t , improving over the bound of (t+ 1)2t that follows from our Lemma 6.1.



Chapter 7

On the number of labeled graphs
of bounded treewidth

Let Tn,k be the number of labeled graphs on n vertices and treewidth at most k (equiva-
lently, the number of labeled partial k-trees). In this chapter we show that

(
c
k 2kn

log k

)n
2−

k(k+3)
2 k−2k−2 6 Tn,k 6

(
k 2kn

)n
2−

k(k+1)
2 k−k,

for k > 1 and some explicit absolute constant c > 0. Disregarding lower-order terms, the
gap between the lower and upper bound is of order (log k)n. The upper bound is a direct
consequence of the well-known formula for the number of labeled k-trees, while the lower
bound is obtained from an explicit construction. It follows from this construction that
both bounds also apply to graphs of pathwidth and proper-pathwidth at most k.

Keywords: treewidth; partial k-trees; enumeration; pathwidth; proper-pathwidth.

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.1 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.2 Description of the construction . . . . . . . . . . . . . . . . . . . . . 160
7.2.3 Bounding the treewidth . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.1 Number of constructible triples (σ, f,N) . . . . . . . . . . . . . . . . 163
7.3.2 Bounding the number of duplicates . . . . . . . . . . . . . . . . . . . 163
7.3.3 Choosing the parameter s . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Introduction

Given an integer k > 0, a k-tree is a graph that can be constructed starting from a (k+1)-
clique and iteratively adding a vertex connected to k vertices that form a clique. They
are natural extensions of trees, which correspond to 1-trees. A formula for the number of
labeled k-trees on n vertices was first found by Beineke and Pippert [50], and alternative
proofs were given by Moon [209] and Foata [132].

157



158 On the number of labeled graphs of bounded treewidth

Theorem 7.1 The number of n-vertex labeled k-trees is equal to
(
n

k

)
(kn− k2 + 1)n−k−2. (7.1)

A partial k-tree is a subgraph of a k-tree. For integers n, k with 0 < k + 1 6 n, let
Tn,k denote the number of n-vertex labeled partial k-trees. While the number of n-vertex
labeled k-trees is given by Theorem 7.1, it appears that very little is known about Tn,k.
Indeed, to the best of our knowledge, only the cases k = 1 (forests) and k = 2 (series-
parallel graphs) have been studied. The number of n-vertex labeled forests is asymptot-
ically Tn,1 ∼

√
enn−2 [231], and the number of n-vertex labeled series-parallel graphs is

asymptotically Tn,2 ∼ g · n−5/2γnn! for some explicit constants g and γ ≈ 9.07 [54].

Partial k-trees are exactly the graphs of treewidth at most k; see Section 3.1.3 for the
definition of treewidth and pathwidth. The following lemma is well-known and a proof
can be found, for instance, in [184].

Lemma 7.1 A graph has treewidth at most k if and only if it is a partial k-tree.

In this chapter we are interested in counting n-vertex labeled graphs that have treewidth
at most k. By Lemma 7.1, this number is equal to Tn,k, and actually our approach relies
heavily on the definition of partial k-trees.

An easy upper bound on Tn,k is obtained as follows. Since every partial k-tree is a subgraph
of a k-tree, and a k-tree has exactly kn− k(k + 1)/2 edges, Theorem 7.1 gives

Tn,k 6 2kn−
k(k+1)

2

(
n

k

)
(kn− k2 + 1)n−k−2. (7.2)

Simple calculations yield, disregarding lower-order terms, that

Tn,k 6 (k2kn)n2−
k(k+1)

2 k−k 6 (k2kn)n. (7.3)

We can provide a lower bound with the following construction. Starting from an (n−k+1)-
vertex forest, we add k − 1 apices, that is, k − 1 vertices with an arbitrary neighborhood
in the forest. Every graph created in this way has exactly n vertices and is of treewidth at
most k, since adding an apex increases treewidth by at most one. The number of labeled
forests on n− k + 1 vertices is at least the number of trees on n− k + 1 vertices, which is
well-known to be (n−k+ 1)n−k−1. Since each apex can be connected to the ground forest
in 2n−k+1 different ways, we obtain

Tn,k > (n− k + 1)n−k−12(k−1)(n−k+1). (7.4)

If we assume that n/k tends to infinity then asymptotically

Tn,k >
(

2k−1n
)n−o(1)

. (7.5)

We conclude that Tn,k is essentially between (2kn)n and (k2kn)n. These bounds differ by
a factor kn. For constant k this does not matter much since (except when k = 1, 2) we do
not have a precise estimate on Tn,k. However, when k goes to infinity, the gap kn is quite
significant. Our main result of this chapter considerably reduces the gap.



On the number of labeled graphs of bounded treewidth 159

Theorem 7.2 For integers n, k with k > 2 and k + 1 6 n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satisfies

Tn,k >

(
1

128e
· k2kn

log k

)n
2−

k(k+3)
2 k−2k−2. (7.6)

It follows that Tn,k is asymptotically between
(

k
log k2kn

)n
and (k2kn)n when n and k grow.

Thus the gap is now of order (log k)n instead of kn.

In order to prove Theorem 7.2, we present in Section 7.2 an algorithmic construction of
a family of n-vertex labeled partial k-trees, which is inspired by the definition of k-trees.
When exhibiting such a construction toward a lower bound, one has to play with the trade-
off of, on the one hand, constructing as many graphs as possible and, on the other hand,
being able to bound the number of duplicates; we perform this analysis in Section 7.3.
Namely, we first count the number of elements created by the construction, and then we
bound the number of times that the same element may have been created. We conclude
in Section 7.4 with some remarks and a discussion of further research.

7.2 The construction

Let n and k be fixed positive integers with 0 < k 6 n − 1. In this section we construct
a set Rn,k of n-vertex labeled partial k-trees. We let Rn,k = |Rn,k|. In Section 7.2.1
we introduce some notation and definitions used in the construction, in Section 7.2.2 we
describe the construction, and in Section 7.2.3 we prove that the treewidth of the graphs
generated this way is indeed at most k. In fact, we prove a stronger property, namely that
the graphs we construct have proper-pathwidth at most k, where the proper-pathwidth,
defined later, is a graph invariant that is at least the pathwidth, which is at least the
treewidth.

7.2.1 Notation and definitions

For the construction, we use a labeling function σ defined by a permutation of {1, . . . , n}
with the constraint that σ(1) = 1. Inspired by the definition of k-trees, we will introduce
vertices {v1, v2, . . . , vn} one by one following the order σ(1), σ(2), . . . , σ(n) given by σ. If
i, j ∈ {1, . . . , n}, then i is called the index of vσ(i), the vertex vσ(i) is the i-th introduced
vertex and, if j < i, the vertex vσ(j) is said to be to the left of vσ(i).

In order to build explicitly a class of partial k-trees, for every i > k + 1 we define:

1. A set Ai ⊆ {j | j < i} of active vertices, corresponding to the clique to which a new
vertex can be connected in the definition of k-trees, such that |Ai| = k.

2. A vertex ai ∈ Ai, called the anchor, whose role will be described in the next para-
graph.



160 On the number of labeled graphs of bounded treewidth

3. An element f(i) ∈ Ai, called the frozen vertex, which corresponds to a vertex that
will not be active anymore.

4. A set N(i) ⊆ Ai, which corresponds to the indices of the neighbors of vσ(i) to the
left.

The construction works with blocks of size s, for some integer s depending of n and k, to
be specified later. Namely, we insert the vertices by consecutive blocks of size s, with the
property that all vertices of the same block share the same anchor and are adjacent to it.

In the description of the construction, we use the term choose for the elements for which
there are several choices, which will allow us to provide a lower bound on the number of
elements in Rn,k. This will be the case for the functions σ, f , and N . As will become
clear later (see Section 7.3), once σ, f , and N are fixed, all the other elements of the
construction are uniquely defined.

For every index i > k + 2, we impose that

|N(i)| > k + 1

2
,

in order to have simultaneously enough choices for N(i) and enough choices for the frozen
vertex f(i), which will be chosen among the vertices in N(i − 1). On the other hand, as
will become clear later, the role of the anchor vertices is to determine uniquely the vertices
belonging to “its” block. To this end, when a new block starts, its anchor is defined as the
smallest currently active vertex.

7.2.2 Description of the construction

We say that a triple (σ, f,N), with σ a permutation of {1, . . . , n}, f : {k + 2, . . . , n} →
{1, . . . , n}, and N : {2, . . . , n} → 2{1,...,n}, is constructible if it is one of the possible outputs
of the following algorithm:



On the number of labeled graphs of bounded treewidth 161

Choose σ, a permutation of {1, . . . , n} such that σ(1) = 1.
for i=2 to k do

Choose N(i) ⊆ {j | j < i}, such that 1 ∈ N(i).

for i=k+1 do
Define Ak+1 = {j | j < k + 1}.
Define ak+1 = 1.
Choose N(k + 1) ⊆ {j | j < i}, such that 1 ∈ N(k + 1).

for i=k+2 to n do
if i ≡ k + 2 (mod s) then

Define f(i) = ai−1.
Define Ai = (Ai−1 \ {f(i)}) ∪ {i− 1}.
Define ai = minAi.
Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| > k+1

2 ; cf. Figure 7.1.

else
Choose f(i) ∈ (Ai−1 \ {ai−1}) ∩N(i− 1).
Define Ai = (Ai−1 \ {f(i)}) ∪ {i− 1}.
Define ai = ai−1.
Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| > k+1

2 ; cf. Figure 7.2.

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

vσ(i6)

Ai−1

vσ(i)

block of s vertices

c© Julien Baste

Figure 7.1: Introduction of vσ(i) with k + 2 6 i 6 n and i ≡ k + 2 (mod s), s = 4, and
k = 5. We assume that i1 < i2 < i3 < i4 < i5 < i6 < i, and note that i5 = i − 2 and
i6 = i− 1. We have defined f(i) = vσ(i1) and ai = vσ(i2). The frozen vertex f(i) is marked
with a cross, and the anchor ai is marked with a circle. We choose N(i) = {i2, i3, i5}.

Let (σ, f,N) be a constructible triple. We define the graph G(σ, f,N) = (V,E) such that
V = {vi | i ∈ {1, . . . , n}}, and E = {{vσ(i), vσ(j)} | j ∈ N(i)}. Note that, given (σ, f,N),
the graph G(σ, f,N) is well-defined. We denote by Rn,k the set of all graphs G(σ, f,N)
such that (σ, f,N) is constructible.



162 On the number of labeled graphs of bounded treewidth

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

vσ(i6)

Ai−1

vσ(i)

block of s vertices

c© Julien Baste

Figure 7.2: Introduction of vσ(i) with k + 2 6 i 6 n and i 6≡ k + 2 (mod s), s = 4, and
k = 5. We assume that i1 < i2 < i3 < i4 < i5 < i6 < i, and note that i5 = i − 2 and
i6 = i − 1. We have defined ai = ai−1 = vσ(i1). The frozen vertex f(i) is marked with a
cross, and the anchor ai is marked with a circle. We choose f(i) = vσ(i3), assuming vσ(i3)

is a neighbor of vσ(i5), and N(i) = {i1, i2, i5}.

7.2.3 Bounding the treewidth

We start by defining the notion of proper-pathwidth of a graph. This parameter was
introduced by Takahashi et al. [232] and its relation with search games has been studied
in [233].

Let G be a graph and let X = {X1, X2, . . . , Xr} be a sequence of subsets of V (G). The
width of X is max16i6r |Xi| − 1. X is called a proper-path decomposition of G if the
following conditions are satisfied:

1. For any distinct i and j, Xi 6⊆ Xj .

2.
⋃r
i=1Xi = V (G).

3. For every edge {u, v} ∈ E(G), there exists an i such that u, v ∈ Xi.

4. For all a, b, and c with 1 6 a 6 b 6 c 6 r, Xa ∩Xc ⊆ Xb.

5. For all a, b, and c with 1 6 a < b < c 6 r, |Xa ∩Xc| 6 |Xb| − 2.

The proper-pathwidth of G, denoted by ppw(G), is the minimum width over all proper-
path decompositions of G. Note that if X satisfies only conditions 1-4 above, then X is a
path-decomposition as defined in Section 3.1.3.

From the definitions, for any graph G it clearly holds that

ppw(G) > pw(G) > tw(G). (7.7)

Let us show that any element of Rn,k has proper-pathwidth at most k. Let (σ, f,N) be
constructible such that G(σ, f,N) ∈ Rn,k and let Ai be defined as in Section 7.2.2. We



On the number of labeled graphs of bounded treewidth 163

define for every i ∈ {k + 1, . . . , n} the bag Xi = {vσ(j) | j ∈ Ai ∪ {i}}. The sequence
X = {Xk+1, Xk+2, . . . , Xn} is a path-decomposition satisfying the five conditions of the
above definition, and for every i ∈ {k+1, . . . , n}, |Xi| = k+1. It follows that G(σ, f,N) has
proper-pathwidth at most k, so it also has treewidth at most k, and therefore G(σ, f,N)
is a partial k-tree by Lemma 7.1.

7.3 Proof of the main result

In this section we analyze our construction and give a lower bound on Rn,k. We first start
by counting the number of constructible triples (σ, f,N) generated by the algorithm, and
then we provide an upper bound on the number of duplicates. Finally, we determine the
best choice for the parameter s defined in the construction.

7.3.1 Number of constructible triples (σ, f,N)

We proceed to count the number of constructible triples (σ, f,N) created by the algorithm
given in Section 7.2.2. As σ is a permutation of {1, . . . , n} with the constraint that
σ(1) = 1, there are (n − 1)! distinct possibilities for the choice of σ. The function f can
take more than one value only for k + 2 6 i 6 n and i 6≡ k + 2 (mod s). This represents

n−(k+1)−dn−(k+1)
s e cases. In each of these cases, there are at least k−1

2 distinct possible

values for f(i). Thus, we have at least (k−1
2 )(n−(k+1)−dn−(k+1)

s
e) distinct possibilities for the

choice of f . For every i ∈ {2, . . . , k+ 1}, N(i) can be chosen as any subset of i−1 vertices

containing the fixed vertex vσ(1). This yields
∏k+1
i=2 2i−2 = 2

k(k−1)
2 ways to define N over

{2, . . . , k + 1}. For i > k + 2, N(i) can be chosen as any subset of size at least k+1
2 of a

set of k elements with one element that is imposed. This results in
∑k

i=d k+1
2
e
(
k−1
i−1

)
> 2k−2

possible choices for N(i). Thus, we have 2
k(k+1)

2 2(n−(k+1))(k−2) distinct possibilities to
construct N .

By combining everything, we obtain at least

(n− 1)!

(
k − 1

2

)n−(k+1)−dn−(k+1)
s

e
2

k(k−1)
2 2(n−(k+1))(k−2) (7.8)

distinct possible constructible triples (σ, f,N).

7.3.2 Bounding the number of duplicates

Let H be an element of Rn,k. Our objective is to obtain an upper bound on the number
of constructible triples (σ, f,N) such that H = G(σ, f,N).

Given H, we start by reconstructing σ. Firstly, we know by construction that σ(1) = 1.
Secondly, we know that f(k + 2) = 1 and so, for every i > k + 1, 1 6∈ Ai, implying that
1 6∈ N(i). It follows that the only neighbors of vσ(1) are the vertices {vσ(i) | 1 < i 6 k+1}.



164 On the number of labeled graphs of bounded treewidth

So the set of images under σ of {2, . . . , k + 1} is uniquely determined. Then we guess the
function σ over this set {2, . . . , k + 1}. Overall, this results in k! possible guesses for σ.

Thirdly, assume that we have correctly guessed σ on {1, . . . , k + 1 + ps} for some non-
negative integer p with k + 1 + ps < n. Then ak+1+ps+1 is the smallest active vertex
that is adjacent to at least one element that is still not introduced after step k + 1 + ps.
Then the neighbors of ak+1+ps+1 over the elements that are not introduced yet after step
k+ 1 + ps are the elements whose indices are between k+ 1 + ps+ 1 and k+ 1 + (p+ 1)s,
and these vertices constitute the next block of the construction; see Figure 7.3 for an
illustration. As before, the set of images by σ of {k + 1 + ps + 1, . . . , k + 1 + (p + 1)s}
is uniquely determined, and we guess σ over this set. We have at most s! possible such
guesses. Fourthly, if k + 1 + (p+ 1)s > n (that is, for the last block, which may have size

smaller than s), we have t! possible guesses with t = n− (k + 1)− sbn−(k+1)
s c.

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

vσ(i6)

Ai−1

block of s vertices

c© Julien Baste

Figure 7.3: The current anchor vσ(i1) is connected to all the s vertices of the current block
but will not be connected to any of the remaining non-introduced vertices.

We know that the first, the second, and the fourth cases can occur only once in the
construction, and the third case can occur at most bn−(k+1)

s c times. Therefore, an upper

bound on the number of distinct possible guesses for σ is k!(s!)b
n−(k+1)

s
ct!, where t =

n− (k + 1)− sbn−(k+1)
s c .

Let us now fix σ. Then the function N is uniquely determined. Indeed, for every i ∈
{1, . . . , n}, N(i) corresponds to the neighbors of vσ(i) to the left. It remains to bound
the number of possible functions f . In order to do this, we define for every i > 1,
Di = {j ∈ N(i) | ∀j′ > i, {vσ(j), vσ(j′)} 6∈ E(H)}. Then, for every i > k + 2, by definition
of f(i), f(i) ∈ Di−1. Moreover, for i, j > k + 1 with i 6= j, it holds that, by definition of
Di and Dj , Di∩Dj = ∅. Indeed, assume w.l.o.g. that i < j, and suppose for contradiction
that there exists a ∈ Di ∩Dj . As a ∈ Dj , it holds that a ∈ N(j), but as a ∈ Di, for every
j′ > i, a 6∈ N(j′), hence a 6∈ N(j), a contradiction.

We obtain that the number of distinct functions f is bounded by
∏n
i=k+1 |Di|. As Di∩Dj =

∅ for every i, j > k + 1 with i 6= j and Di ⊆ {1, . . . , n} for every i > k + 1, we have that∑n
i=k+1 |Di| 6 n. Let I = {i ∈ {k + 1, . . . , n} | |Di| > 2}, and note that |I| 6 k.



On the number of labeled graphs of bounded treewidth 165

By the previous discussion, it holds that
∑

i∈I |Di| 6 2k. So it follows that, by using
Cauchy-Schwarz inequality,

n∏

i=k+1

|Di| =
∏

i∈I
|Di| 6

(∑
i∈I |Di|
k

)k
6

(
2k

k

)k
= 2k. (7.9)

To conclude, the number of constructible triples that can give rise to H is at most

2k(s!)b
n−(k+1)

s
ct! where t = n− (k + 1)− sbn−(k+1)

s c. Thus, we obtain that

Rn,k >
(n− 1)!

(
k−1

2

)n−(k+1)−dn−(k+1)
s

e
2

k(k−1)
2 2(n−(k+1))(k−2)

2kk!(s!)b
n−(k+1)

s
c(n− (k + 1)− sbn−(k+1)

s c)!
. (7.10)

For better readability, we bound separately each of the terms on the right-hand side:

• (n− 1)! > (ne )n2−n, 2
k(k−1)

2 2(n−(k+1))(k−2) > 2kn−
k(k+3)

2 2−2n.

• (k − 1)(n−(k+1)−dn−(k+1)
s

e) > 2−nk(n−n
s
−k−2), since k > 2.

• 2kk! 6 2nkk, (s!)b
n−(k+1)

s
c(n− (k + 1)− sbn−(k+1)

s c)! 6 sn.

Applying these relations to (7.10) gives

Rn,k >

(
1

64e
· k2kn

k1/ss

)n
2−

k(k+3)
2 k−2k−2. (7.11)

7.3.3 Choosing the parameter s

We now discuss how to choose the size s of the blocks in the construction. In order to
obtain the largest possible lower bound for Rn,k, we would like to choose s minimizing the
factor k1/ss in the denominator of (7.11). To be as general as possible, assume that s is

a function s(n, k) that may depend on n and k, and we define t(n, k) = s(n,k)
log k . With this

definition, it follows that

log
(
k

1
s(n,k) s(n, k)

)
=

log k

s(n, k)
+ log s(n, k) =

1

t(n, k)
+ log t(n, k) + log log k. (7.12)

It is elementary that the minimum of 1
t(n,k) + log t(n, k) is achieved for t(n, k) = 1. Thus,

we obtain that s(n, k) = log k is the function that maximizes the lower bound given by
Equation (7.11). Therefore, we obtain that

Rn,k >

(
1

128e
· k2kn

log k

)n
2−

k(k+3)
2 k−2k−2, (7.13)

concluding the proof of Theorem 7.2, where we assume that k > 2.



166 On the number of labeled graphs of bounded treewidth

7.4 Concluding remarks

Comparing Equations (7.3) and (7.6), there is still a gap of (128e · log k)n in the dominant
term of Tn,k, and closing this gap remains an open problem. The factor (log k)n appears
because, in our construction, when a new block starts, we force the frozen vertex to be the
previous anchor. Therefore, this factor is somehow artificial, and we believe that it could
be avoided.

One way to improve the upper bound would be to show that every partial k-tree with n
vertices and m edges can be extended to at least a large number α(n,m) of k-trees, and
then use double counting. This is the approach taken in [216] for bounding the number of
planar graphs, but so far we have not been able to obtain a significant improvement using
this technique.

As mentioned before, our results also apply to other relevant graph parameters such as
pathwidth and proper-pathwidth. For both parameters, besides improving the lower bound
given by our construction, it may be also possible to improve the upper bound given by
Equation (7.3). For proper-pathwidth, a modest improvement can be obtained as follows.
It follows easily from the definition of proper-pathwidth that the edge-maximal graphs of
proper-pathwidth k, which we call proper linear k-trees, can be constructed starting from
a (k+ 1)-clique and iteratively adding a vertex vi connected to a clique Kvi of size k, with
the constraints that vi−1 ∈ Kvi and Kvi \ {vi−1} ⊆ Kvi−1 . From this observation, and
taking into account that the order of the first k vertices is not relevant and that there
are 2k initial cliques giving rise to the same graph, it follows that the number of n-vertex
labeled proper linear k-trees is equal to

n!kn−k−1 1

(2k)k!
. (7.14)

From this and the fact that a k-tree has kn− k(k+1)
2 edges, an easy calculation yields that

the number of n-vertex labeled graphs of proper-pathwidth at most k is at most
(
k2kn
c

)n
,

for some absolute constant c > 1.88.

It would be interesting to count graphs of bounded “width” in other cases. For instance,
branchwidth seems to be a good candidate, as it is known that, if we denote by tw(G) the
branchwidth of a graph G and |E(G)| > 3, then tw(G) 6 tw(G)+1 6 3

2 tw(G) [224]. Other
relevant graph parameters are cliquewidth, rankwidth, tree-cutwidth, or booleanwidth.
For any of these parameters, a first natural step would be to find a “canonical” way to
build such graphs, as in the case of partial k-trees.

Our results find algorithmic applications, specially in the area of parameterized complex-
ity [94]. When designing a parameterized algorithm, usually a crucial step is to solve the
problem at hand restricted to graphs decomposable along small separators by performing
dynamic programming (see [172] for a recent example). For instance, precise bounds on
Tn,k are useful when dealing with the Treewidth-k Vertex Deletion problem, which
has recently attracted significant attention in the area [137, 147, J15]. In this problem,
given a graph G and a fixed integer k > 0, the objective is to remove as few vertices
from G as possible in order to obtain a graph of treewidth at most k. When solving



On the number of labeled graphs of bounded treewidth 167

Treewidth-k Vertex Deletion by dynamic programming, the natural approach is to
enumerate, for any partial solution at a given separator of the decomposition, all possible
graphs of treewidth at most k that are “rooted” at the separator. In this setting, the value
of Tn,k, as well as an explicit construction to generate such graphs, may be crucial in order
to speed-up the running time of the algorithm. Other recent algorithmic applications of
knowing the precise number of graphs of bounded treewidth are finding path- or tree-
decompositions with minimum number of bags [65] and subgraph embedding problems on
sparse graphs [66].

Finally, a challenging open problem is to count the number of unlabeled partial k-trees, for
which nothing is known except for some results concerning random models [55, 153, 207].
Note that the number of unlabeled k-trees was an open problem for long time, until it was
recently solved by Gainer-Dewar [145] (see also [117,146]).





Chapter 8

Finding a spanning tree with
minimum reload cost diameter

In this chapter we study the minimum diameter spanning tree problem under the reload
cost model (Diameter-Tree for short) introduced by Wirth and Steffan [241]. In this
problem, given an undirected edge-colored graph G, reload costs on a path arise at a
node where the path uses consecutive edges of different colors. The objective is to find
a spanning tree of G of minimum diameter with respect to the reload costs. We initiate
a systematic study of the parameterized complexity of the Diameter-Tree problem by
considering the following parameters: the cost of a solution, and the treewidth and the
maximum degree ∆ of the input graph. We prove that Diameter-Tree is para-NP-hard
for any combination of two of these three parameters, and that it is FPT parameterized by
the three of them. We also prove that the problem can be solved in polynomial time on
cactus graphs. This result is somehow surprising since we prove Diameter-Tree to be
NP-hard on graphs of treewidth two, which is best possible as the problem can be trivially
solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Stef-
fan [241] proved that the problem can be solved in polynomial time on graphs with ∆ = 3,
and Galbiati [148] proved that it is NP-hard if ∆ = 4. Our results show, in particular,
that without the requirement of the triangle inequality, the problem is NP-hard if ∆ = 3,
which is also best possible. Finally, in the case where the reload costs are polynomially
bounded by the size of the input graph, we prove that Diameter-Tree is in XP and
W[1]-hard parameterized by the treewidth plus ∆.

Keywords: reload cost problems; minimum diameter spanning tree; parameterized com-
plexity; FPT algorithm; treewidth; dynamic programming.

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3 Para-NP-hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.4 A polynomial-time algorithm on cactus graphs . . . . . . . . . . . . . . . . 180
8.5 FPT algorithm parameterized by k + tw + ∆ . . . . . . . . . . . . . . . . . 187
8.6 Polynomially bounded costs . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

169



170 Finding a spanning tree with minimum reload cost diameter

8.1 Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. Wirth
and Steffan introduced in [241] the concept of reload cost, which refers to the cost that
arises in an edge-colored graph while traversing a vertex via two consecutive edges of
different colors. The value of the reload cost depends on the colors of the traversed edges.
Although the reload cost concept has many important applications in telecommunication
networks, transportation networks, and energy distribution networks, it has surprisingly
received attention only recently.

In heterogeneous communication networks, routing requires switching among different
technologies such as cables, fibers, and satellite links. Due to data conversion between
incompatible subnetworks, this switching causes high costs, largely outweighing the cost
of routing the packets within each subnetwork. The recently popular concept of vertical
handover [105], which allows a mobile user to have undisrupted connection during transi-
tioning between different technologies such as 3G (third generation) and wireless local area
network (WLAN), constitutes another application area of the reload cost concept. Even
within the same technology, switching between different service providers incurs switching
costs. Another paradigm that has received significant attention in the wireless networks
research community is cognitive radio networks (CRN), a.k.a. dynamic spectrum access
networks. Unlike traditional wireless technologies, CRNs operate across a wide frequency
range in the spectrum and frequently requires frequency switching; therefore, the frequency
switching cost is indispensable and of paramount importance. Many works in the CRNs
literature focused on this frequency switching cost from an application point of view (for
instance, see [40,45,48,49,121,159,230]) by analyzing its various aspects such as delay and
energy consumption. Operating in a wide range of frequencies is indeed a property of not
only CRNs but also other 5G technologies. Hence, applications of the reload cost concept
in communication networks continuously increase. In particular, the energy consumption
aspect of this switching cost is especially important in the recently active research area
of green networks, which aim to tackle the increasing energy consumption of information
and communication technologies [53,79].

The concept of reload cost also finds applications in other networks such as transportation
networks and energy distribution networks. For instance, a cargo transportation network
uses different means of transportation. The loading and unloading of cargo at junction
points is costly and this cost may even outweigh the cost of carrying the cargo from one
point to another [148]. In energy distribution networks, reload costs can model the energy
losses that occur at the interfaces while transferring energy from one type of carrier to
another [148].

Recent works in the literature focused on numerous problems related to the reload cost
concept: the minimum reload cost cycle cover problem [150], the problems of finding a
path, trail or walk with minimum total reload cost between two given vertices [158], the
problem of finding a spanning tree that minimizes the sum of reload costs of all paths
between all pairs of vertices [151], various path, tour, and flow problems related to reload
costs [43], the minimum changeover cost arborescence problem [149, 160, 162, J13], and
problems related to finding a proper edge coloring of the graph so that the total reload
cost is minimized [161].



Finding a spanning tree with minimum reload cost diameter 171

The work in [241], which introduced the concept of reload cost, focused on the following
problem, called Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree
for short), and which is the one we study in this chapter: given an undirected graph
G = (V,E) with a (non necessarily proper) edge-coloring χ : E(G)→ X and a reload cost
function c : X2 → N0, find a spanning tree of G with minimum diameter with respect to
the reload costs (see Section 8.2 for the formal definitions).

This problem has important applications in communication networks, since forming a
spanning tree is crucial for broadcasting control traffic such as route update messages.
For instance, in a multi-hop cognitive radio network where a frequency is assigned to
each wireless link depending on availabilities of spectrum bands, delay-aware broadcasting
of control traffic necessitates the forming of a spanning tree by taking the delay arising
from frequency switching at every node into account. Cognitive nodes send various control
information messages to each other over this spanning tree. A spanning tree with minimum
reload cost diameter in this setting corresponds to a spanning tree in which the maximum
frequency switching delay between any two nodes on the tree is minimized. Since control
information is crucial and needs to be sent to all other nodes in a timely manner, ensuring
that the maximum delay is minimum is vital in a cognitive radio network.

Wirth and Steffan [241] proved that Diameter-Tree is inapproximable within a factor
better than 3 (in particular, it is NP-hard), even on graphs with maximum degree 5. They
also provided a polynomial-time exact algorithm for the special case where the maximum
degree is 3 and the reload costs satisfy the triangle inequality. Galbiati [148] showed
stronger hardness results for this problem, by proving that even on graphs with maximum
degree 4, the problem cannot be approximated within a factor better than 2 if the reload
costs do not satisfy the triangle inequality, and cannot be approximated within any factor
better than 5/3 if the reload costs satisfy the triangle inequality. The complexity of
Diameter-Tree (in the general case) on graphs with maximum degree 3 was left open.

Our results. In this chapter we initiate a systematic study of the complexity of the
Diameter-Tree problem, with special emphasis on its parameterized complexity for
several choices of the parameters. Namely, we consider any combination of the parameters
k (the cost of a solution), tw (the treewidth of the input graph), and ∆ (the maximum
degree of the input graph). We would like to note that these parameters have practical
importance in communication networks. Indeed, besides the natural parameter k, whose
relevance is clear, many networks that model real-life situations appear to have small
treewidth [175,192]. On the other hand, the degree of a node in a network is related to its
number of transceivers, which are costly devices in many different types of networks such
as optical networks [187]. For this reason, in practice the maximum degree of a network
usually takes small values.

Before elaborating on our results, a summary of them can be found in Table 8.1.

We first prove, by a reduction from 3-Sat, that Diameter-Tree is NP-hard on outer-
planar graphs (which have treewidth at most 2) with only one vertex of degree greater
than 3, even with three different costs that satisfy the triangle inequality, and k = 9. Note
that, in the case where the costs satisfy the triangle inequality, having only one vertex of
degree greater than 3 is best possible, as if all vertices have degree at most 3, the problem



172 Finding a spanning tree with minimum reload cost diameter

Problem Parameterized complexity with parameter Polynomial
k + tw k + ∆ tw + ∆ k + tw + ∆ cases

NPh for NPh for NPh for FPT in P on
Diameter-Tree k = 9, tw = 2 k = 0,∆ = 3 tw = 3,∆ = 3 (Thm 8.5) cacti

(Thm 8.1) (Thm 8.2) (Thm 8.3) (Thm 8.4)

Diameter-Tree XP (Thm 8.5)
with poly costs X X W[1]-hard X X

(Thm 8.6)

Table 8.1: Summary of our results, where k, tw,∆ denote the cost of the solution, the
treewidth, and the maximum degree of the input graph, respectively. NPh stands for
NP-hard. The symbol ‘X’ denotes that the result above still holds for polynomial costs.

can be solved in polynomial time [241]. Note also that the bound on the treewidth is best
possible as well, since the problem is trivially solvable on graphs of treewidth 1, i.e., on
forests.

Toward investigating the border of tractability of the problem with respect to treewidth,
we exhibit a polynomial-time algorithm on a relevant subclass of the graphs of treewidth
at most 2: cactus graphs. This algorithm is quite involved and, in a nutshell, processes in
a bottom-up manner the block tree of the given cactus graph, and uses at each step of the
processing an algorithm that solves 2-Sat as a subroutine.

Back to hardness results, we also prove, by a reduction from a restricted version of 3-Sat,
that Diameter-Tree is NP-hard on graphs with ∆ 6 3, even with only two different
costs, k = 0, and a bounded number of colors. In particular, this settles the complexity
of the problem on graphs with ∆ 6 3 in the general case where the triangle inequality is
not necessarily satisfied, which had been left open in previous work [148, 241]. Note that
∆ 6 3 is best possible, as Diameter-Tree can be easily solved on graphs with ∆ 6 2.

As our last NP-hardness reduction, we prove, by a reduction from Partition, that the
Diameter-Tree problem is NP-hard on planar graphs with tw 6 3 and ∆ 6 3.

The above hardness results imply that the Diameter-Tree problem is para-NP-hard for
any combination of two of the three parameters k, tw, and ∆. On the positive side, we
show that Diameter-Tree is FPT parameterized by the three of them, by using a (highly
nontrivial) dynamic programming algorithm on a tree-decomposition of the input graph.

Since our para-NP-hardness reduction with parameter tw+ ∆ is from Partition, which is
a typical example of a weakly NP-complete problem [154], a natural question is whether
Diameter-Tree, with parameter tw + ∆, is para-NP-hard, XP, W[1]-hard, or FPT when
the reload costs are polynomially bounded by the size of the input graph. We manage to
answer this question completely: we show that in this case the problem is in XP (hence
not para-NP-hard) and W[1]-hard parameterized by tw + ∆. The W[1]-hardness reduction
is from the Unary Bin Packing problem parameterized by the number of bins, proved
to be W[1]-hard by Jansen et al. [174].

Altogether, our results provide an accurate picture of the (parameterized) complexity of
the Diameter-Tree problem.



Finding a spanning tree with minimum reload cost diameter 173

Organization of the chapter. We start in Section 8.2 with some brief preliminaries
about graphs, the Diameter-Tree problem, and nice tree-decompositions that have not
been already given in Section 3. In Section 8.3 we provide the para-NP-hardness results. In
Section 8.4 we present the polynomial-time algorithm on cactus graphs, and in Section 8.5
we present the FPT algorithm on general graphs parameterized by k+tw+∆. In Section 8.6
we focus on the case where the reload costs are polynomially bounded. Finally, we conclude
the chapter in Section 8.7.

8.2 Preliminaries

Graphs and sets. Given a graph G and a set S ⊆ V (G), we define adjG(S) to be
the set of edges of G that intersect S. For a graph G and an edge e ∈ E(G), we let
G− e = (V (G), E(G) \ e). Given a graph G and a set S ⊆ V (G), we say that S is good for
G if each connected component of G contains at least one vertex of S. Given two integers
i and j with i 6 j, we denote by [i, j] the set of all integers k such that i 6 k 6 j. For an
integer i > 1, we denote by [i] the set of all integers k such that 1 6 k 6 i.

Reload costs and definition of the problem. For reload costs, we follow the notation
and terminology defined by [241]. We consider edge-colored graphs G = (V,E), where the
colors are taken from a finite set X and the coloring function is χ : E(G)→ X. The reload
costs are given by a nonnegative function c : X2 → N0, which we assume for simplicity to be
symmetric. The cost of traversing two incident edges e1, e2 is c(e1, e2) := c(χ(e1), χ(e2)).
By definition, reload costs at the endpoints of a path equal zero. Consequently, the reload
cost of a path with one edge also equals zero. The reload cost of a path P of length ` > 2
with edges e1, e2, . . . , e` is defined as c(P ) :=

∑`
i=2 c(ei−1, ei). The induced reload cost

distance function is given by distcG(u, v) = min{c(P ) | P is a path from u to v in G}. The
diameter of a tree T is diam(T ) := maxu,v∈V distcT (u, v), where for notational convenience
we assume that the edge-coloring function χ and the reload cost function c are clear from
the context.

The problem we study in this chapter can be formally defined as follows:

Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree)
Input: A graph G = (V,E) with an edge-coloring χ and a reload cost function c.
Output: A spanning tree T of G minimizing diam(T ).

If for every three distinct edges e1, e2, e3 of G incident to the same node, it holds that
c(e1, e3) 6 c(e1, e2) + c(e2, e3), we say that the reload cost function c satisfies the triangle
inequality. This assumption is sometimes used in practical applications [241].

Nice tree-decompositions. In this chapter, we denote a tree-decomposition of a graph
G by D = (Y,X ), where Y is a tree and X = {Xt | t ∈ V (Y )} is a collection of subsets of
V (G). The notion of a nice triple defined below is essentially the same as the one of nice
tree-decomposition in [96], which is the one we provided in Section 3.1.3.



174 Finding a spanning tree with minimum reload cost diameter

Let D = (Y,X ) be a tree-decomposition of G, r be a vertex of Y , and G = {Gt | t ∈ V (Y )}
be a collection of subgraphs of G, indexed by the vertices of Y . We say that the triple
(D, r,G) is nice if the following conditions hold:

• Xr = ∅ and Gr = G,

• each node of D has at most two children in Y ,

• for each leaf t ∈ V (Y ), Xt = ∅ and Gt = (∅, ∅). Such a t is called a leaf node,

• if t ∈ V (T ) has exactly one child t′, then either

◦ Xt = Xt′ ∪ {vinsert} for some vinsert 6∈ Xt′ and Gt = (V (Gt′)∪ {vinsert}, E(Gt′)).
The node t is called vertex-introduce node and the vertex vinsert is the insertion
vertex of Xt,

◦ Xt = Xt′ and Gt = (Gt′ , E(Gt′) ∪ {einsert}) where einsert is an edge of G with
endpoints in Xt. The node t is called edge-introduce node and the edge einsert

is the insertion edge of Xt, or

◦ Xt = Xt′ \ {vforget} for some vforget ∈ Xt′ and Gt = Gt′ . The node t is called
forget node and vforget is the forget vertex of Xt.

• if t ∈ V (Y ) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , and E(Gt′) ∩
E(Gt′′) = ∅. The node t is called a join node.

As already argued in [96,184], it is possible, given a tree-decomposition to transform it in
polynomial time to a new one D of the same width and construct a collection G such that
the triple (D, r,G) is nice.

Transfer triples and their fusion. Let (F,R, α) be a triple where F is a forest, R ⊆
V (F ), and α : R × RF → [0, k] ∪ {⊥}, where RF = V (F ) ∪ (E(F ) \ adjF (R)). Keep in
mind that RF contains all vertices and edges of F except from the edges that are incident
to vertices in R. We call (F,R, α) a transfer triple if, given a (v, a) ∈ R×RF , α(v, a) = ⊥
if and only if v and a belong in different connected components of F . The function α will
be used for indicating for each pair (v, a) the “cost of transfering” from v to a in F (α is
not necessarily a distance function).

Let (F1, R1, α1) and (F2, R2, α2) be two transfer triples where R = R1 = R2, E(F1) ∩
E(F2) = ∅, and such that F = F1 ∪ F2 is a forest. Let also β : adjF1

(R) × adjF2
(R) →

[0, k] ∪ {⊥}. We require a function α1⊕βα2 : R × RF → [0, k] ∪ {⊥} that builds the
transferring costs of moving in F by taking into account the corresponding transferring
costs in F1 and F2. The values of α1⊕βα2 are defined as follows:

Let (v, a) ∈ R×RF . Let P be the shortest path in F containing v and a and let V (P ) =
{v0, . . . , vr}, ordered in the way these vertices appear in P and assuming that v0 = v. To
simplify notation, we assume that {v0, v1} is an edge of F1 (otherwise, exchange the roles
of F1 and F2). Given i ∈ [r − 1], we define e−i (resp. e+

i ) as the edge incident to vi that
appears before (resp. after) vi when traversing P from v to a. We define the set of indices

I = {i | e−i and e+
i belong to different sets of {E(F1), E(F2)}}.



Finding a spanning tree with minimum reload cost diameter 175

Let I = {i1, . . . , iq}, where numbers are ordered in increasing order and we also set i0 = 0.
Then we set

α1 ⊕β α2(v, a) =
∑

h∈[0,b q−1
2
c]

α1(v2ih , v2ih+1) +
∑

h∈[0,b q−2
2
c]

α2(v2ih+1, v2ih+2)

+
∑

h∈[q]

β(e−ih , e
+
ih

) + α(q mod 2)+1(viq , a).

Throughout the chapter, we let n, ∆, and tw denote the number of vertices, the maxi-
mum degree, and the treewidth of the input graph, respectively. When we consider the
(parameterized) decision version of the Diameter-Tree problem, we also let k denote
the desired cost of a solution.

8.3 Para-NP-hardness results

We start with the para-NP-hardness result with parameter k + tw.

Theorem 8.1 The Diameter-Tree problem is NP-hard on outerplanar graphs with only
one vertex of degree greater than 3, even with three different costs that satisfy the triangle
inequality, and k = 9. Since outerplanar graphs have treewidth at most 2, in particular,
Diameter-Tree is para-NP-hard parameterized by tw and k.

Proof : We present a simple reduction from 3-Sat. Given a formula ϕ with n variables
and m clauses, we create an instance (G,χ, c) of Diameter-Tree as follows. We may
assume that there is no clause in ϕ that contains a literal and its negation. The graph
G contains a distinguished vertex r and, for each clause cj = (`1 ∨ `2 ∨ `3), we add a

clause gadget Cj consisting of three vertices vj`1 , v
j
`2
, vj`3 and five edges {r, vj`1}, {r, v

j
`2
},

{r, vj`3}, {v
j
`1
, vj`2}, and {vj`2 , v

j
`3
}. This completes the construction of G. Note that G does

not depend on the formula ϕ except for the number of clause gadgets, and that it is an
outerplanar graph with only one vertex of degree greater than 3; see Figure 8.1 for an
illustration.

Let us now define the coloring χ and the cost function c. For simplicity, we associate a
distinct color with each edge of G, and thus, with slight abuse of notation, it is enough to
describe the cost function c for every pair of incident edges of G, as we consider symmetric
cost functions. We will use just three different costs: 1, 5 and 10. We set

c(e1, e2) =





10 if e1 = {r, vj1`i1}, e2 = {r, vj2`i2} and `i1 = `i2 ,

5 if e1 = {r, vj1`i1}, e2 = {r, vj2`i2} and `i1 6= `i2 , and

1 otherwise.

Note that this cost function satisfies the triangle inequality since the reload costs between
edges incident to r are 5 and 10, and the reload costs between edges incident to other
vertices are 1.



176 Finding a spanning tree with minimum reload cost diameter

Cj

vj`1

vj`2

vj`3

r

Figure 8.1: Example of the graph G built in the reduction of Theorem 8.1.

We claim that ϕ is satisfiable if and only if G contains a spanning tree with diameter at
most 9. Since r is a cut vertex and every clause gadget is a connected component of G−r,
in every spanning tree, the vertices of Cj together with r induce a tree with four vertices.
Moreover the reload cost associated with a path from r to a leaf of this tree is always
at most 2. Therefore, the diameter of any spanning tree is at most 4 plus the maximum
reload cost incurred at r by a path of T .

Assume first that ϕ is satisfiable, fix a satisfying assignment ψ of ϕ, and let us construct
a spanning tree T of G with diameter at most 9. For each clause cj , the tree T j is the
tree spanning Cj and containing the edge between r and an arbitrarily chosen literal of cj
that is set to true by ψ. T is the union of all the trees Tj constructed in this way. The
reload cost incurred at r by any path of T traversing it is at most 5, since we never choose
a literal and its negation. Therefore, it holds that diam(T ) 6 9.

Conversely, let T be a spanning tree of G with diam(T ) 6 9. Then, the reload cost incurred
at r by any path traversing it is at most 5 since otherwise diam(T ) > 10. For every j ∈ [m],
let Tj be the subtree of T induced by Cj and let {r, vj`ij } be one of the edges incident to

r in Tj . We note that for any pair of clauses cj1 , cj2 we have `ij1 6= `ij2 , since otherwise
a path using these two edges would incur a cost of 10 at r. The variable in the literal `ij
is set by ψ so that `ij is true. All the other variables are set to an arbitrary value by ψ.
Note that ψ is well-defined, since we never encounter a literal and its negation during the
assignment process. It follows that ψ is a satisfying assignment of ϕ. 2

We proceed with the para-NP-hardness result with parameter k + ∆.

Theorem 8.2 The Diameter-Tree problem is NP-hard on graphs with ∆ 6 3, even
with two different costs, k = 0, and a bounded number of colors. In particular, it is
para-NP-hard parameterized by k and ∆.

Proof : We present a reduction from the restriction of 3-Sat to formulas where each
variable occurs in at most three clauses; this problem was proved to be NP-complete by
Tovey [236]. It is worth mentioning that one needs to allow for clauses of size two or
three, as if all clauses have size exactly three, then it turns out that all instances are
satisfiable [236].



Finding a spanning tree with minimum reload cost diameter 177

We may assume that each variable occurs at least once positively and at least once nega-
tively, as otherwise we may set such a variable x to the value that satisfies all clauses in
which it appears, and delete x together with those clauses from the formula. We may also
assume that each variable occurs exactly three times in the given formula ϕ. Indeed, let x
be a variable occurring exactly two times in the formula. We create a new variable y and
we add to ϕ two clauses (x ∨ y) and (y ∨ y). Let ϕ′ be the new formula. Clearly ϕ and
ϕ′ are equivalent, and both x and y occur three times in ϕ′. Applying these operations
exhaustively clearly results in an equivalent formula where each variable occurs exactly
three times. Summarizing, we may assume the following property:

z Each variable occurs exactly three times in the given formula ϕ of 3-Sat. Moreover,
each variable occurs at least once positively and at least once negatively in ϕ.

Given a formula ϕ with n variables and m clauses, we create an instance (G,χ, c) of
Diameter-Tree with ∆(G) 6 3 as follows. Let the variables in ϕ be x1, . . . , xn. For
every i ∈ [n], we add to G a variable gadget consisting of five vertices ui, vi, pi, ri, ni and
five edges {ui, vi}, {vi, pi}, {pi, ri}, {ri, ni}, and {ni, vi}. For every i ∈ [n − 1], we add
the edge {ui, ui+1}. For every j ∈ [m], the clause gadget in G consists of a single vertex
cj . We now proceed to explain how we connect the variable and the clause gadgets. For
each variable xi, we connect vertex pi (resp. ni) to one of the vertices corresponding to a
clause of ϕ in which xi appears positively (resp. negatively). Finally, we connect vertex
ri to the remaining clause in which xi appears (positively or negatively). Note that these
connections are well-defined because of property z. This completes the construction of
G, and note that it indeed holds that ∆(G) 6 3; see Figure 8.2(a) for an example of the
construction of G for a specific satisfiable formula ϕ with n = 4 and m = 5.

Let us now define the coloring χ and the cost function c. We use nine colors 1, 2, . . . , 9 asso-
ciated with the edges of G as follows. For i ∈ [n], we set χ({pi, ri}) = 1 and χ({ri, ni}) = 2,
and all edges incident to ui or vi have color 3. Finally, for j ∈ [m], we color the edges
containing cj with colors in {4, 5, 6, 7, 8, 9}, so that incident edges get different colors,
and edges corresponding to positive (resp. negative) occurrences get colors in {4, 5, 6}
(resp. {7, 8, 9}); note that such a coloring always exists as each clause contains at most
three variables; see Figure 8.2(b). We will use only two costs, namely 0 and 1, and recall
that we consider only symmetric cost functions. We set c(1, 2) = 1, c(1, i) = 1 for every
i ∈ {4, 5, 6}, c(2, i) = 1 for every i ∈ {7, 8, 9}, and c(i, j) = 1 for every distinct 4 6 i, j 6 9.
All other costs are set to 0.

We claim that ϕ is satisfiable if and only if G contains a spanning tree with diameter 0.
Assume first that ϕ is satisfiable, fix a satisfying assignment ψ of ϕ, and let us construct
a spanning tree T of G with diameter 0. For every i ∈ [n], tree T contains all the edges
containing vertex ui or vi. If variable xi is set to true by ψ, we include the edge {ri, ni} to
T , and otherwise, that is, if xi is set to false by ψ, we include the edge {pi, ri}. Finally, for
j ∈ [m], we add to T one of the edges containing cj that corresponds to a literal satisfying
that clause. It can be easily checked that T is a spanning tree of G with diameter 0; see
Figure 8.2(a) for an example.

Conversely, let T be a spanning tree of G with diameter 0. Since the cost associated with
any two distinct colors in {4, 5, 6, 7, 8, 9} is 1, it follows that, for j ∈ [m], vertex cj has



178 Finding a spanning tree with minimum reload cost diameter

p1 r1 n1

v1

u1

p2 r2 n2

v2 v3 v4

u2 u3 u4

p3 r3 n3 p4 r4 n4

c1 c2 c3 c4 c5

(a) (b)

ui

vi

pi ri ni

3

33

33

1 2

4,5,6
4,5,6
7,8,9

7,8,9

Figure 8.2: (a) Graph G described in the reduction of Theorem 8.2 for the formula ϕ =
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4). The vertices pi, ri, ni
corresponding to positive (resp. negative) occurrences are depicted with circles (resp.
squares). An assignment satisfying ϕ is given by x1 = x2 = 1 and x3 = x4 = 0, and
a solution spanning tree T with diameter 0 is emphasized with thicker edges. (b) The
(possible) colors associated with each edge of G are depicted in blue.

degree one in T . Therefore, the variable gadgets need to be connected in T via the vertices
ui, implying that all edges containing ui, for i ∈ [n], belong to T . For i ∈ [n], in order for
T to contain all four vertices vi, pi, ri, ni, by construction of G and since all clause vertices
have degree one in T , tree T necessarily contains exactly three out of the four edges of
the 4-cycle defined by vi, pi, ri, ni. Since c(1, 2) = 1 and diam(T ) = 0, the missing edge is
necessarily either {pi, ri} or {ri, ni}. We define an assignment ψ of the variables x1, . . . , xn
as follows: for i ∈ [n], if the edge {ri, ni} belongs to T , we set xi to true; otherwise, we
set xi to false. We claim that ψ satisfies ϕ. Indeed, let cj be a vertex in G corresponding
to an arbitrary clause of ϕ. Since cj has degree one in T , it is attached to exactly one of
the vertices pi, ri, ni for some i ∈ [n]. Suppose that the edge containing cj corresponds
to a positive occurrence of xi, the other case being symmetric. Then, by construction,
necessarily the edge containing cj is either {cj , pi} or {cj , ri}. In both cases, if the edge
{pi, ri} were in T , this edge together with {cj , pi} or {cj , ri} would incur a cost of 1 in
T , contradicting the hypothesis that diam(T ) = 0. Therefore, the edge {pi, ri} cannot be
in T , implying that the edge {ri, ni} must be in T . According to the definition of the
assignment ψ, this implies that variable xi is set to true in ψ, and therefore the clause
corresponding to cj is satisfied by variable xi. This concludes the proof. 2

Note that in the above reduction the cost function c does not satisfy the triangle inequality
at vertices pi or ni for i ∈ [n], and recall that this is unavoidable since otherwise the
problem would be polynomial [241]. It is worth mentioning that using the ideas in the
proof of [J13, Theorem 4] it can be proved that the Diameter-Tree problem is also
NP-hard on planar graphs with ∆ 6 4, k = 0, and a bounded number of colors; we omit
the details here.

Finally, we present the para-NP-hardness result with parameter tw + ∆.



Finding a spanning tree with minimum reload cost diameter 179

Theorem 8.3 The Diameter-Tree problem is NP-hard on planar graphs with tw 6 3
and ∆ 6 3. In particular, it is para-NP-hard parameterized by tw and ∆.

Proof : We present a reduction from the Partition problem, which is a typical example
of a weakly NP-complete problem [154]. An instance of Partition is a multiset S =
{a1, a2, . . . , an} of n positive integers, and the objective is to decide whether S can be
partitioned into two subsets S1 and S2 such that

∑
x∈S1

x =
∑

x∈S2
x = B

2 where B =∑
x∈S x.

Given an instance S = {a1, a2, . . . , an} of Partition, we create an instance (G,χ, c) of
Diameter-Tree as follows. The graph G contains a vertex r, called the root, and for
every integer ai where i ∈ [n], we add to G six vertices ui, u

′
i,mi,m

′
i, di, d

′
i and seven

edges {ui, u′i}, {mi,m
′
i}, {di, d′i}, {ui,mi}, {u′i,m′i}, {mi, di}, and {m′i, d′i}. We denote

by Hi the subgraph induced by these six vertices and seven edges. We add the edges
{r, u1}, {r, d1} and, for i ∈ [n − 1], we add the edges {u′i, ui+1} and {d′i, di+1}. Let G′

be the graph constructed so far. We then define G to be the graph obtained from two
disjoint copies of G′ by adding an edge between both roots. Note that G is a planar
graph with ∆(G) = 3 and tw(G) = 3. (The claimed bound on the treewidth can be
easily seen by building a path decomposition of G with consecutive bags of the form
{u′i−1, d

′
i−1, ui, di}, {ui, di,mi, u

′
i}, {di,mi, u

′
i,m

′
i}, {di, u′i,m′i, d′i}, . . ..)

r1 a1
a1

a1
a1

an
an

r2

u2u′2

d2d′2

m′
2 m2

an
an

a2
a2

0

0

0

0

00

0

0

B+1 B+1

B+1 B+1

0

0

00

0

0B+1B+1

H2

Pd

Pu

Figure 8.3: Graph G built in the reduction of Theorem 8.3, where the reload costs are
depicted in blue at the angle between the two corresponding edges. For better visibility,
not all costs and vertex labels are depicted. The typical shape of a solution spanning tree
is highlighted with thicker edges.

Let us now define the coloring χ and the cost function c. Again, for simplicity, we associate
a distinct color with each edge of G, and thus it is enough to describe the cost function
c for every pair of incident edges of G. We define the costs for one of the copies of G′,
and the same costs apply to the other copy. For every edge e being either {u′i, ui+1} or
{d′i, di+1}, for 1 6 i 6 n− 1, we set c(e, e′) = 0 for each of the four edges e′ incident with
e. For every edge e = {mi,m

′
i}, for 1 6 i 6 n, we set c({ui,mi}, e) = c({di,mi}, e) = ai

and c(e, {m′i, u′i}) = c(e, {m′i, d′i}) = 0. All costs associated with the two edges containing
r in one of the copies G′ are set to 0. For e = {r1, r2}, where r1 and r2 are the roots of
the two copies of G′, we set c(e, e′) = 0 for each of the four edges e′ incident to e. The
cost associated with any other pair of edges of G is equal to B + 1; see Figure 8.3 for an
illustration, where (some of) the reload costs are depicted in blue, and a typical solution
spanning tree of G is drawn with thicker edges.



180 Finding a spanning tree with minimum reload cost diameter

We claim that the instance S of Partition is a Yes-instance if and only if G has a
spanning tree with diameter at most B.

Assume first that S is a Yes-instance of Partition, and let S1, S2 ⊆ S be a solution. We
define a spanning tree T of G with diameter B as follows. We describe the subtree of T
restricted to one of the copies of G′, say T ′. The spanning tree T of G is defined by union of
two symmetric copies of T ′, one in each copy of G′, together with the edge {r1, r2}. Tree T ′

consists of the two edges {r, u1}, {r, d1} and two paths Pu, Pd (corresponding to the upper
and the lower path, respectively defined as follows; see Figure 8.3). For i ∈ [n − 1], the
path Pu (resp. Pd) contains the edge {u′i, ui+1} (resp. {d′i, di+1}), and if ai ∈ S1 we add
the three edges {ui,mi}, {mi,m

′
i}, {m′i, u′i} to Pu, and the edge {di, d′i} to Pd. Otherwise,

if ai ∈ S2, we add the edge {ui, u′i} to Pu and the three edges {di,mi}, {mi,m
′
i}, {m′i, d′i}

to Pd. Since
∑

x∈S1
x =

∑
x∈S2

x = B
2 , it can be easily checked that both paths Pu and

Pd have diameter B
2 in each of the two copies of G′, and therefore T is a spanning tree of

G with diameter B.

Conversely, let T be a spanning tree of G with diam(T ) 6 B. Let G1, G2 be the two copies
of G′ in G, and let r1, r2 be their respective roots. Since the edge {r1, r2} is a bridge of
G, it necessarily belongs to T . By the construction of G, the choice of the reload costs,
and since diam(T ) 6 B − 1, it can be verified that, for j ∈ {1, 2}, T ∩ Gj consists of

two paths P ju , P
j
d intersecting at the root ri. Furthermore, P ju (resp. P jd) contains the

edge {u′i, ui+1} (resp. {d′i, di+1}) of the corresponding copy of G′, and the intersection of

P ju (resp. P jd) with the subgraph Hi in the corresponding copy of G′ is given by either
the three edges {ui,mi}, {mi,m

′
i}, {m′i, u′i} (resp. {di,mi}, {mi,m

′
i}, {m′i, d′i}) or by the

edge {ui, u′i} (resp. {di, d′i}). Therefore, for j ∈ {1, 2} and x ∈ {u, d}, it holds that

djx := diam(P jx) =
∑

i∈Ijx ai, where Ijx is the set of indices i ∈ {1, . . . , n} such that the edge

{mi,m
′
i} belongs to path P jx . Note also that, for j ∈ {1, 2}, by construction we have that

dju + djd =
∑n

i=1 ai, implying in particular that max{dju, djd} > B
2 . On the other hand, by

the structure of T it holds that

B > diam(T ) > max{d1
u, d

1
d}+ max{d2

u, d
2
d} >

B

2
+
B

2
= B. (8.1)

Equation (8.1) implies, in particular, that d1
u = d1

d = B
2 . In other words,

∑
i∈I1u ai =∑

i∈I1d ai = B
2 , thus the sets I1

u, I
1
d define a solution of Partition. This completes the

proof. 2

8.4 A polynomial-time algorithm on cactus graphs

In this section we present a polynomial-time algorithm to solve the Diameter-Tree
problem on cactus graphs, equivalently called cacti. We first need some definitions.

A biconnected component, or block, of a graph is a maximal biconnected induced subgraph
of it. The block tree of a graph G is a tree T whose nodes are the cut vertices and the
blocks of G. Every cut vertex is adjacent in T to all the blocks that contain it. Two
blocks share at most one vertex. The block tree of a graph is unique and can be computed



Finding a spanning tree with minimum reload cost diameter 181

in polynomial time [106]. A graph is a cactus graph if every block of it is either a cycle
or a single edge. We term these blocks cycle blocks and edge blocks, respectively. It is
well-known that cacti have treewidth at most 2. Given a forest F and two vertices x and
y, we define costF (x, y) to be distcT (x, y) if x and y are in the same tree T of F and where c
is the given reload cost function, and ⊥ otherwise. Given a tree T and a vertex v ∈ V (T ),
we define the eccentricity of v in T to be maxv′∈V (T ) costT (v, v′).

We present a polynomial-time algorithm that solves the decision version of the problem,
which we call Diameter-Tree*: the input is an edge-colored graph G and an integer
k, and the objective is to decide whether the input graph G has a spanning tree with
reload cost diameter at most k. The algorithm to solve Diameter-Tree* uses dynamic
programming on the block tree of the input graph.

As we aim at a strongly polynomial-time algorithm to solve Diameter-Tree, we cannot
afford to solve the decision version for all values of k. To overcome this problem, we perform
a double binary search on the possible solution values and two appropriate eccentricities,
resulting (skipping many technical details) in an extra factor of (log opt)2 in the running
time of the algorithm, where opt is the diameter of a minimum cost spanning tree. This
yields a polynomial-time algorithm solving Diameter-Tree on cactus graphs.

Roughly speaking, the algorithm first fixes an arbitrary non-cut vertex r of G and the
block Br that contains it. Then it processes the block tree of G in a bottom-up manner
starting from its leaves, proceeding towards Br while maintaining partial solutions for each
block. At each step of the processing, it uses an algorithm that solves an instance of the
2-Sat problem as a subroutine. The intuition behind the instances of 2-Sat created by
the algorithm is the following.

Suppose that we are dealing with a cycle block B of the block tree of G (the case of an
edge block being easier). Note that any spanning tree of G contains all edges of B except
one. Let GB be the graph processed so far (including B). For each potential partial
solution Q in GB, we associate, with each edge e of B, a variable that indicates that e is
the non-picked edge by the solution in B. Now, for any two such variables corresponding
to intersecting blocks, we add to the formula of 2-Sat essentially two types of clauses:
the first set of clauses, namely φ1, guarantees that the non-picked edges (corresponding to
the variables set to true in the eventual assignment) indeed define a spanning tree of GB,
while the second one, namely φ2, forces this solution to have diameter and eccentricity
not exceeding the given budget k. The fact the G is a cactus allows to prove that these
constraints containing only two variables are enough to compute an optimal solution in
GB.

Theorem 8.4 The Diameter-Tree problem can be solved in polynomial time on cacti.

Proof : We start with a few more definitions needed in the algorithm. Given a graph G,
we denote by S(G) the set of spanning trees of G, and by B(G) the set of blocks of G. We
omit G from the notation if no ambiguity arises. We assume without loss of generality that
G is connected. For a block B, we denote by C(B) the set of blocks that are immediate
descendants of B in the block tree. With a slight abuse (since we ignore the cut vertices
in the block tree), we will refer to them as the children of B. The parent of a block B



182 Finding a spanning tree with minimum reload cost diameter

is the first block after B on the path from B to Br in the block tree. We denote by GB
the subgraph of G induced by the union of all descendants B (including B itself). The
anchor a(B) of a block B is the cut vertex separating B from its parent if B 6= Br, and r
if B = Br.

Let B be a cycle block, e = {x, y}, and assume, without loss of generality, that y 6= a(B).
Clearly, the graph GB − e is connected. Moreover, a(B) is a cut vertex of GB − e unless
x = a(B). For z ∈ {x, y} we define Sz,eB as the set of vertices that are reachable from
z in GB − e without traversing a(B). See Figure 8.4 for an illustration. We denote the
subgraph of GB − e induced by Sz,eB , as Gz,eB . Note that z and a(B) are in Sz,eB and if
x = a(B) then Sx,eB = {a(B)}. Since the degree of a(B) in GB − e is at most two, a
spanning tree T of GB − e is a union of two spanning trees, a tree T [Sx,eB ] spanning Gx,eB
and a tree T [Sy,eB ] spanning Gy,eB . Moreover, T [Sx,eB ] and T [Sy,eB ] intersect only at a(B).

b

r

x y

a(B)

e

Sx,eB c© Julien Baste

Figure 8.4: A cactus with 8 blocks, 5 cycle blocks, and 3 edge blocks. The vertices inside
the dotted rectangle are the vertices of Sx,eB and the bold path corresponds to a possible
Rx,eB .

We proceed with the description of the algorithm. At every block B, we compute a function
λB : E(B) → S(GB) ∪ {⊥} of partial solutions. If B is an edge block consisting of the
edge e, then λB(e) is:

• a spanning tree of GB,

• of diameter at most k

• that minimizes the eccentricity of a(B),

if such a tree exists, and ⊥ otherwise.

If B is a cycle block and e = {x, y} an edge of B, then λB(e) is:

• a spanning tree T of GB − e,

• of diameter at most k



Finding a spanning tree with minimum reload cost diameter 183

• that minimizes the eccentricities of a(B) in both T [Sx,eB ] and T [Sy,eB ]

if such a tree exists, and ⊥ otherwise. Note that, as Gx,eB and Gy,eB have only the vertex
a(B) in common, minimizing the eccentricities of a(B) in T [Sx,eB ] and minimizing the
eccentricities of a(B) in T [Sy,eB ] are two independent objectives.

If for some block B we have λB(e) = ⊥ for every edge e of B, then GB (and therefore
G as well) does not contain a spanning tree of diameter at most k. In this case the
algorithm stops and returns No. Otherwise, the processing continues until finally Br is
processed successfully and the algorithm returns Yes, since there exists e ∈ E(Br) such
that λBr(e) 6= ⊥ which constitutes a spanning tree of G with diameter at most k.

Given a cycle block B, an edge e = {x, y} of B, a subgraph T of GB, and two integers i
and j, we say that T satisfies the (e, i, j)-condition if:

• T is a tree, of diameter at most k, that does not contain e,

• the eccentricity of a(B) in T [Sx,eB ] is at most i, and

• the eccentricity of a(B) in T [Sy,eB ] is at most j.

Given an edge block B, a subgraph T of GB, and an integer i, we say that T satisfies the
(i)-condition if:

• T is a tree of diameter at most k and

• the eccentricity of a(B) in T is at most i.

Let us fix a block B, and an edge e of E(B). In the sequel our goal is to describe how to
compute λB(e). We can assume that for every child C of B, the function λC has already
been computed and C contains at least one edge e′ such that λC(e′) 6= ⊥, since otherwise
the algorithm would have stopped.

We define T e to be the tree obtained by taking the union of all the following:

• the graph B − e if B is a cycle block,

• the graph B if B is an edge block, and

• λC(eC) for every child C of B that is an edge block containing only the edge eC .

For every child C of B that is a cycle block, for every edge e′ of C such that λC(e′) 6= ⊥
and for x′ ∈ e′ , the tree Rx

′,e′

C is λC(e′)[Sx
′,e′

B ]. Note that, given a child C of B that is a
cycle block, and three vertices v, v′, v′′ of V (C) such that v 6= v′′, v′ 6= a(C), and {v, v′}
and {v′, v′′} are in E(C), if R

v,{v,v′}
C and R

v′,{v′,v′′}
C are defined, then R

v,{v,v′}
C is a subgraph

of R
v′,{v′,v′′}
C . We define RB = {Rx′,e′C | C ∈ C(B) is a cycle block, e′ ∈ E(C), λC(e′) 6=

⊥, x′ ∈ e′}.
For Q ⊆ RB we denote by T eQ the graph obtained by taking the union of T e and Q. If there
exists R ∈ RB such that Q = {R}, we write T eR instead of T eQ. We define closeRB

(Q) to
be the set of elements of RB that are subgraphs of T eQ. Note that T eQ = T e

closeRB
(Q).



184 Finding a spanning tree with minimum reload cost diameter

If B is a cycle block, we define for each i, j ∈ [0, k] the set R(e,i,j)
B = {R ∈ RB |

T eR satisfies the (e, i, j)-condition}. If B is an edge block, we define for each i ∈ [0, k]

the set R(i)
B = {R ∈ RB | T eR satisfies the (i)-condition}.

Note that, if B is a cycle block (resp. an edge block), then for each i, j ∈ [0, k] and for

each R1, R2 ∈ RB such that R2 is a subtree of R1, then if R2 6∈ R(e,i,j)
B (resp. R2 6∈ R(i)

B )

, we have R1 6∈ R(e,i,j)
B (resp. R1 6∈ R(i)

B ).

We associate a boolean variable v(R) = vx
′,e′

C with each R = Rx
′,e′

C ∈ RB. With a slight
abuse of notation, we say that a set Q ⊆ RB satisfies a formula φ over these variables if
φ is satisfied when each variable of {v(R) | R ∈ Q} is set to true and each variable of
{v(R) | R ∈ RB \ Q} is set to false simultaneously. In the following we are going to build
three formulas φ0, φ1, and φ2, and if Q ⊆ RB satisfies φ0 ∧ φ1 ∧ φ2 then this implies that
T eQ is a correct value for λB(e).

Along with the description, the reader is referred to Figure 8.5 to get some intuition about
the formulas φ0, φ1, and φ2. In this figure, we have a cycle block B with two children C1

and C2. As we will see later, when computing λB(e) in this example, we have:

φ0 = (v(R
v′,{v′,v′′}
C1

)⇒ v(R
v,{v,v′}
C1

)) ∧ (v(R
v′′,{v′′,v}
C1

)⇒ v(R
v′,{v′,v′′}
C1

)) ∧
(v(R

v′′,{v′′,v′}
C1

)⇒ v(R
v,{v,v′′}
C1

)) ∧ (v(R
v′,{v′,v}
C1

)⇒ v(R
v′′,{v′′,v′′}
C1

)) ∧
(v(R

w′,{w′,w′′}
C2

)⇒ v(R
w,{w,w′}
C2

)) ∧ (v(R
w′′,{w′′,w}
C2

)⇒ v(R
w′,{w′,w′′}
C2

)) ∧
(v(R

w′′,{w′′,w′}
C2

)⇒ v(R
w,{w,w′′}
C2

)) ∧ (v(R
w′,{w′,w}
C2

)⇒ v(R
w′′,{w′′,w′′}
C2

)),

φ1 = (v(R
v′,{v′,v′′}
C1

) ∨ v(R
v′,{v′,v}
C1

)) ∧ (v(R
v′,{v′,v′′}
C1

) ∨ v(R
v′,{v′,v}
C1

)) ∧

(v(R
v′′,{v′′,v′}
C1

) ∨ v(R
v′′,{v′′,v}
C1

)) ∧ (v(R
v′′,{v′′,v′}
C1

) ∨ v(R
v′′,{v′′,v}
C1

)) ∧

(w(R
w′,{w′,w′′}
C2

) ∨w(R
w′,{w′,w}
C2

)) ∧ (w(R
w′,{w′,w′′}
C2

) ∨w(R
w′,{w′,w}
C2

)) ∧

(w(R
w′′,{w′′,w′}
C2

) ∨w(R
w′′,{w′′,w}
C2

)) ∧ (w(R
w′′,{w′′,w′}
C2

) ∨w(R
w′′,{w′′,w}
C2

)), and

for every two vertices of V (C1) ∪ V (C2), say v′ and w′′, the clause v(R
v′,{v′,v′′}
C1

) ∨
v(R

w′′,{w′′,w′}
C2

) is a clause of φ2 if and only if the path defined by v′, v, w,w′′ has di-
ameter greater than k. In the general case, the clauses deal with T e

{Rv′,{v′,v′′}
C1

,R
w′′,{w′′,w′}
C2

}
instead of the path v′, v, w,w′′, but the main idea behind the clauses is the same.

We construct a 2-Sat formula φ0 such that for each R1, R2 ∈ RB where R2 is a subgraph
of R1, φ0 contains the clause v(R1) ⇒ v(R2). It is easy to show that given Q ⊆ RB, Q
satisfies φ0 if and only if Q = closeRB

(Q).

We construct a 2-Sat formula φ1 as follows. For every child C of B that is a cycle
block, and every two consecutive edges e1 = {v1, v2} and e2 = {v2, v3} of C such that



Finding a spanning tree with minimum reload cost diameter 185

B

C1 C2

u = a(B)

wv

w′w′′v′ v′′

e

c© Julien Baste

Figure 8.5: Example of a cycle block B with two children C1 and C2.

a(C) /∈ {v1, v2} and Rv2,e1C , Rv2,e2C ∈ RB, we add to φ1 two clauses vv2,e1C ∨ vv2,e2C and

vv2,e1C ∨ vv2,e2C . With this definition of φ1, we now state the following lemma.

Lemma 8.1 Let Q be a subset of RB such that Q satisfies φ0. Q satisfies φ1 if and only
if T eQ is a spanning tree of GB.

Proof : Let Q ⊆ RB. First assume that T eQ is a spanning tree of GB. Let C ∈ C(B) be
a cycle block, and let e1 = {v1, v2} and e2 = {v2, v3} be two consecutive edges of C such
that e1 6= e2, v1 6= a(C), and v2 6= a(C). As T eQ is connected, the clause vv2,e1C ∨ vv2,e2C is

satisfied. As T eQ does not contain any cycle, the clause vv2,e1C ∨ vv2,e2C is satisfied.

Assume now that Q satisfies φ1, and let z be a vertex of GB. If z ∈ V (B), then there is a
path from z to a(B) in T e and hence also in T eQ. Otherwise, let Cz ∈ C(B) be the block
such that z ∈ V (GCz), and let s(z) be the only vertex of V (Cz) such that s(z) 6= a(Cz)
and each path in GB from a(B) to z contains s(z). Note that if z ∈ V (Cz), then s(z) = z.
If Cz is an edge block, then z ∈ V (T e); therefore, there is a path from a(B) to z in T eQ.
Otherwise, if Cz is a cycle block, then the condition vv2,e1C ∨vv2,e2C , with v2 = s(z), ensures
that z ∈ T eQ and that there is a path in T eQ from a(B) to z. Thus, T eQ is connected and
V (T eQ) = V (GB). We need to show that T eQ does not contain any cycle. By construction
of T eQ, if it contains a cycle, this cycle should be C where C ∈ C(B). The condition

vv2,e1C ∨ vv2,e2C ensures that C is not a subgraph of T eQ. 2

We build a formula φ2 over the variables {v(R) | R ∈ R(e,k,k)
B }. For each R1, R2 ∈ R(e,k,k)

B ,

R1 6= R2, if T e{R1,R2} has diameter greater than k, then we add the clause v(R1) ∨ v(R2)
to φ2. With this definition of φ2, we now state the following lemma.

Lemma 8.2 Let B be a cycle block (resp. an edge block), i and j be two integers of [0, k],

and Q be a subset of R(e,i,j)
B (resp. of R(i)

B ) such that Q satisfies φ0 and φ1. Q satisfies
φ2 and T e satisfies the (e, i, j)-condition (resp. the (i)-condition) if and only if T eQ is a
spanning tree of GB that satisfies the (e, i, j)-condition (resp. the (i)-condition).

Proof : Assume that B is a cycle block. Let i, j be two integers in [0, k] and let Q ⊆
R(e,i,j)
B .

First assume that T eQ is a spanning tree of GB that satisfies the (e, i, j)-condition. This
directly implies that T e also satisfies the (e, i, j)-condition. It remains to show that Q
satisfies φ2. For this, assume that there exist R1 and R2 in Q such that T e{R1,R2} has



186 Finding a spanning tree with minimum reload cost diameter

diameter more than k. Since T e{R1,R2} is a subtree of T eQ, this implies that T eQ also has

diameter more than k, which is a contradiction because T eQ satisfies the (e, i, j)-condition.

Assume now that Q satisfies φ2 and T e satisfies the (e, i, j)-condition. As Q satisfies φ1, we

know by Lemma 8.1 that T eQ is a spanning tree of GB. As Q ⊆ R(e,i,j)
B and T e satisfies the

(e, i, j)-condition, then the eccentricity of a(B) in T eQ[Sx,eB ] is at most i, and the eccentricity
of a(B) in T eQ[Sy,eB ] is at most j. Indeed, let z ∈ Sx,eB . If z ∈ V (B) then, as T e satisfies the
(e, i, j)-condition, we have that costT e

Q
(a(b), z) 6 i If z 6∈ V (B) then, as T eQ is a spanning

tree of GB, we have that there exists R ∈ Q such that z ∈ V (R). By definition of R(e,i,j)
B ,

we obtain that costT e
Q

(a(b), z) 6 i The same argument applies if z ∈ Sy,eB . It remains to
show that T eQ is of diameter at most k. Let z and z′ be two vertices of T eQ. If both z and z′

are in V (B), then as T e satisfies the (e, i, j)-condition, this implies that costT e
Q

(z, z′) 6 k.
If z ∈ V (B) and z′ 6∈ V (B) then, as T eQ is a spanning tree of GB, there exists R′ ∈ Q such

that z′ ∈ V (R′). As R′ ∈ R(e,i,j)
B , costT e

Q
(z, z′) 6 k. Otherwise, if both z and z′ are not

in V (B), since T eQ is a spanning tree of GB, there exist R,R′ ∈ Q such that z ∈ V (R) and

z′ ∈ V (R′). If R = R′, then as R′ ∈ R(e,i,j)
B , costT e

Q
(z, z′) 6 k. Otherwise, as Q satisfies

φ2, then T e{R,R′} has diameter at most k; therefore, costT e
Q

(z, z′) 6 k.

The same arguments apply if B is an edge block. 2

Lemma 8.3 If B is a cycle block (resp. an edge block) and if there exists a spanning tree
T̂B of that satisfies the (e, i, j)-condition (resp. (i)-condition) for some i, j ∈ [0, k], then

there exists Q ⊆ R(e,i,j)
B (resp. Q ⊆ R(i)

B ) that satisfies φ0, φ1, and φ2.

Proof : For readability, we consider the case where B is an edge block. Let x = a(B).
Assume that there exists T̂B, a spanning tree of GB, that satisfies the (i)-condition for

some i ∈ [0, k]. We define Q = closeRB
({Rx′,e′C | C ∈ C(B), C is a cycle block, e′ ∈

E(C), e′ 6∈ E(T̂B[V (C)]), x′ ∈ e′}) and we claim that Q satisfies φ0, φ1, and φ2. By
definition of closeRB

, Q satisfies φ0. It is not difficult to see that T eQ is a spanning tree
and so, by Lemma 8.1, Q satisfies φ1. Let z be a vertex of V (GB)\V (B), and let C ∈ C(B)
such that z ∈ V (GC). The path in T̂B and the path in T eQ from a(B) to z use exactly

the same edges of C. This implies that costT e
Q

(a(B), z) 6 i. Otherwise T̂B[V (GC)] would
have been a better value for λC(e′) for the only compatible edge e′ ∈ E(C). With the
same arguments we show that T eQ has diameter at most k. This implies that T eQ satisfies

the (i)-condition, and so Q ⊆ R(i)
B and Q satisfies φ2.

The same arguments also work if B is a cycle block but we should take care about the
part that is in Sx,eB and the part that is in Sy,eB separately. 2

We now have all the elements to compute the value λB(e). We assume that B is a cycle

block (resp. an edge block). If there is no Q ⊆ R(e,k,k)
B (resp. Q ⊆ R(k)

B ) that satisfies φ0,
φ1, and φ2, or T e does not satisfy the (e, k, k)-condition (resp. (k)-condition), then we set
λB(e) = ⊥. Otherwise, we aim at computing two integers i0 and j0 that are the smallest

i and j in [0, k] such that there exists Q ⊆ R(e,i,j)
B (resp. Q ⊆ R(i)

B ) that satisfies φ0, φ1,
and φ2 and such that T e satisfies the (e, i, j)-condition (resp. (i)-condition). In order to



Finding a spanning tree with minimum reload cost diameter 187

compute i0 and j0, we first fix j to be k and do a binary search on i, between 0 and k, to find

the smallest value i0 such that there exists Q ⊆ R(e,i0,k)
B (resp. Q ⊆ R(i0)

B ) that satisfies φ0,
φ1, and φ2 and such that T e satisfies the (e, i0, k)-condition (resp. (i0)-condition). We fix
this value of i0 and we do a second binary search, this time on j, between 0 and k, to find

the smallest value j0 such that there exists Q ⊆ R(e,i0,j0)
B (resp. Q ⊆ R(i0)

B ) that satisfies
φ0, φ1, and φ2 and such that T e satisfies the (e, i0, j0)-condition (resp. (i0)-condition). We

fix this value of j0 and we also fix Q ⊆ R(e,i0,j0)
B (resp. Q ⊆ R(i0)

B ) that satisfies φ0, φ1,
and φ2. We set λB(e) = T eQ. Using Lemma 8.1 and Lemma 8.2, we know that the graph
λB(e) is a spanning tree of GB that satisfies the (e, i0, j0)-condition (resp. (i0)-condition).
Moreover, using Lemma 8.3, we know that there is no spanning subtree of GB that satisfies
the (e, i1, j1)-condition (resp. (i1)-condition) with i1 < i0 or j1 < j0 (resp. i1 < i0). This
finishes the description of the algorithm.

Let us now discuss about the running time of the algorithm. At each step, given a cycle
block (resp. an edge block) B and e ∈ E(B), for each i, j ∈ [0, k], we can check if
T e satisfies the (e, i, j)-condition (resp. the (i)-condition) in time O(n2). Moreover, the

number of elements in RB is linear in n and for each i, j ∈ [0, k], R(e,i,j)
B can be computed

in time O(n2). As RB contains at most O(n) elements, then the 2-Sat formulas φ0, φ1,
and φ2 contain at most O(n2) clauses. We can check for each of the O(n2) possible clauses
if it is in φ0, φ1, or φ2 in time O(n). Hence, we can compute φ0, φ1 and φ2 in time O(n3).
As they contain at most O(n2) clauses, we can solve them in time O(n2). Since for each
block B and each edge e ∈ E(B), we perform at most two (independent) binary searches
to find i0 and j0, we can compute λB(e) in time O(n3 · log k). Because there is a linear
number of values λB(e) to compute, we obtain an algorithm that solves Diameter-Tree*
in time O(n4 · log k). Using again a binary search on k between 0 and 2dlog opte, and the
previous algorithm that solves Diameter-Tree* as a subroutine, we obtain an algorithm
that solves Diameter-Tree in time O(n4 · (log opt)2) where opt is the diameter of the
solution. 2

8.5 FPT algorithm parameterized by k + tw + ∆

In this section we prove that the Diameter-Tree problem is FPT on general graphs
parameterized by k, tw, and ∆. The proof is based on standard, but nontrivial, dynamic
programming on graphs of bounded treewidth. It should be mentioned that we can assume
that a tree-decomposition of the input graph G of width O(tw) is given together with the
input. Indeed, by using for instance the algorithm of Bodlaender et al. [62], we can
compute in time 2O(tw) ·n a tree-decomposition of G of width at most 5tw. Note that this
running time is clearly dominated by the running time stated in Theorem 8.5. Recall also
that, by [96, 184], it is possible, given a tree-decomposition to transform it in polynomial
time to a new one D of the same width and construct a collection G such that the triple
(D, r,G) is nice.

Theorem 8.5 The Diameter-Tree problem can be solved in time (k∆·tw ·∆ · tw)O(tw) ·
nO(1). In particular, it is FPT parameterized by k, tw, and ∆.



188 Finding a spanning tree with minimum reload cost diameter

Proof : Before we start the description of the dynamic programming, we need some
definitions. Let F be a forest and let S be a set of vertices in F that is good for G. We
define Reduce(F, S) as the forest F ′ that is obtained from F by repetitively applying the
following operations to vertices that are not in NF [S] as long as this is possible:

• removing a vertex of degree 1 and

• dissolving a vertex of degree 2.

Suppose now that Reduce(F, S) = F ′. We define the associated reduce function ϕ : V (F )→
V (F ′)∪E(F ′) as follows. For every vertex z ∈ V (F ), we define Kz to be the set of vertices
x of V (F ′) such that there exists a path in F from z to x that does not use any vertex
of V (F ′) \ {x}. If Kz contains only one element x, then we define ϕ(z) = x, otherwise
we define ϕ(z) = Kz. To show that ϕ is well-defined, we claim that 1 6 |Kz| 6 2 and
if |Kz| = 2 then Kz ∈ E(F ′). Indeed, since each connected component of F contains an
element of S, we have that |Kz| > 1. Assume that Kz contains two distinct vertices x1

and x2. By definition, we know that x1 and x2 are in the same connected component of
F and also of F ′. Let Pi be the path from z to xi, i ∈ {1, 2}, in F and let P be the path
from x1 to x2 in F [V (P1) ∪ V (P2)]. By definition of x1 and x2, V (P ) ∩ V (F ′) = {x1, x2}.
Moreover, since F is a forest, then P is the unique path from x1 to x2 in F . Let assume
that {x1, x2} is not an edge of F ′ and let x3 be a vertex of F ′ on the path from x1 to x2

in F ′. Then x3 should be in P . This contradicts the fact that V (P ) ∩ V (F ′) = {x1, x2}.
As F ′ is a forest, this also implies that |Kz| 6 2.

We now proceed with the dynamic programming algorithm that solves Diameter-Tree*,
the decision version of Diameter-Tree. Let (G,χ, c, k) be an instance of Diameter-
Tree*. Consider a nice triple (D, r,G) where D is a tree-decomposition D = (Y,X = {Xt |
t ∈ V (Y )}) of G with width at most tw and G = {Gt | t ∈ V (Y )}. For each t ∈ V (Y ) we
set wt = |Xt| and Vt = V (Gt). We also refer to the vertices of Xt as t-terminals and to
the edges that are incident to vertices in Xt as t-terminal edges. We provide a table Rt
that the dynamic programming algorithm computes for each node of D. For this, we need
first the notion of a t-pair, that is a pair (F, α) where:

• F is a forest such that

1. Xt is good for F ,

2. Xt ⊆ V (F ),

3. NF (Xt) ⊆ NG(Xt),

4. |V (F ) \NF [Xt]| 6 wt − 2, and

5. |{e ∈ E(F ) | e ∩Xt = ∅}| 6 2wt − 3,

• α : Xt ×XF
t → [0, k] ∪ {⊥},

We call the vertices in V (F ) \NF [Xt] external vertices of F and the edges of {e ∈ E(F ) |
e ∩Xt = ∅} external edges of F .



Finding a spanning tree with minimum reload cost diameter 189

We need the function βt :
(adjG(Xt)

2

)
→ [0, k] ∪ {⊥} so that, for each e1, e2 ∈ adjG(Xt),

if there exists x ∈ Xt such that e1 ∩ e2 = {x}, then βt(e1, e2) = c(e1, e2), otherwise
βt(e1, e2) = ⊥.

Let (F, α) be a t-pair. Recall that XF
t contains all t-terminals and all non-t-terminal

edges of F . Given a t-pair (F, α) as above we say that it is admissible if for every (a, a′) ∈
XF
t ×XF

t one of the following holds:

• there is no path between a and a′ in F containing a vertex in Xt,

• one, say a, of a, a′′ is a vertex in Xt and α(a, a′) 6 k,

• some internal vertex b of the path P between a and a′ in F belongs in Xt and
αt(b, a) + βt(e

−, e+) + αt(b, a
′) 6 k, where e+, e− are the two edges in P that are

incident to b.

Intuitively, the admissibility of a t-pair (F, α) assures that the transferring cost, indicated
by α, between any two external elements is bounded by k.

It is now time to give the precise definition of the table Rt of our dynamic programming
algorithm. A pair (F, α) belongs in Rt if G contains a spanning tree T̂ where diam(T ) 6 k
and the forest F̂ = T̂ [Vt] (i.e. the restriction of T̂ to the part of the graph that has been
processed so far) satisfies the following properties:

• Reduce(F̂ ,Xt) = F , with the reduce function ϕ,

• for each x ∈ Xt and y ∈ XF
t , α(x, y) = ⊥ if and only if x and y are in two

different connected components in F and if α(x, y) 6= ⊥, then for each z ∈ ϕ−1(y),
costF̂ (x, z) 6= ⊥ and α(x, y) > costF̂ (x, z).

Notice that each (F, α) as above is a t-pair. Indeed, Conditions 1–3 follow by the fact
that T̂ is a spanning tree of G and therefore F̂ is a spanning forest of GT . Conditions 4
and 5 follow by the fact that the internal vertices (resp. edges) of a tree with no vertices
of degree 2 are at most two less than the number of its leaves (resp. at most twice the
number of its leaves minus three). Moreover, the values of α are bounded by k because the
diameter of T̂ is at most k and therefore the same holds for all the connected components
of F̂ . Notice that, for the same reason, all pairs in Rt must be admissible.

In the above definition, the external vertices and edges of F correspond to the parts of F̂
that have been “compressed” during the reduction operation and the function α stores the
transfer costs between those parts and the terminals. In this way, the trees in the t-pairs
in Rt “represent” the restriction of all possible solutions in Gt. Moreover, the values of α
indicate how these partial solutions interact with the t-terminals.

Our next concern is to bound the size of Rt.

Claim 8.1 For every t ∈ V (Y ), it holds that |Rt| 6 kO(∆·tw2) · (∆ · tw)O(tw).



190 Finding a spanning tree with minimum reload cost diameter

Proof : As we impose N [Xt] ⊆ V (F ), we have at most 2∆·tw choices for the set {e ∈
E(F ) | e ∩Xt 6= ∅} and at most (∆ · tw)O(tw) choices for the other edges or vertices. So
the number of forest we take into consideration in Rt is at most 2∆·tw · (∆ · tw)O(tw). As
the number of vertices and the number of edges of F is upper bounded by O(∆ · tw), the
number of function α is at most kO(∆·tw2). So |Rt| 6 kO(∆·tw2) · (∆ · tw)O(tw) and the claim
holds. 2

Clearly, (G,χ, c, k) is a Yes-instance if and only if Rr 6= ∅. We now proceed with the
description of how to compute the set Rt for every node t ∈ T . For this, we will assume
inductively that, for every descendent t′ of t, the set Rt′ has already been computed. We
distinguish several cases depending on the type of node t:

• If t is a leaf node. Then Gt = {∅, ∅} and Rt = {((∅, ∅),∅)}.

• If t is an vertex-introduce node. Let v be the insertion vertex of Xt and let t′ be the
child of t. Then

Rt =
{(

(V (F ′) ∪ {v}, E(F ′)), α
)
| ∃(F ′, α′) ∈ Rt′ :

α = α′ ∪
{(

(v, v), 0
)}
∪
{(

(v, a),⊥
)
| a ∈ XF ′

t \ {v}
}
.

Notice that at this point v is just an isolated vertex of Gt. This vertex is added in
F and α is updated with the corresponding “void” transfer costs.

• If t is an edge-introduce node. Let e = {x, y} be the insertion edge of Xt and let t′ be
the child of t. We define F ′′ = (Xt, {e}) and we set up α′′ : Xt×XF ′′

t → [0, k]∪{⊥}
(notice that XF ′′

t = Xt) so that α′′(x, y) = α′′(y, x) = 0 and is ⊥ for all other pairs
of Xt ×Xt. Then

Rt = Rt′ ∪ {(F, α) | (F, α) is admissible, F is a forest, and there exists a pair

(F ′, α′) ∈ Rt′ such that F = F ′ ∪ F ′′ and α = α′ ⊕βt α′′}.

In the above case, the single edge graph F ′′ is defined and the F of each new t-pair
is its union with F ′. Similarly, the function α′′ encodes the trivial transfer costs in
F ′′. Also, α is updated so to include the fusion of the transfer costs of α and α′′.

• If t is an forget node. Let v be the forget vertex and let t′ be the child of t. Then
Rt contains every t-pair (F, α) such that there exists (F ′, α′) ∈ Rt′ where:

◦ if t is not the root of Y , then the connected component of F ′ containing v also
contains an other element v′ ∈ Xt (this is necessary as Xt should always be
good for F ),

◦ F = Reduce(F ′, Xt), with associated reduce function ϕ,

◦ we denote by Z the set of every edge and every vertex that is in F ′ but not
in F . Moreover, if ϕ(v) is a vertex, then we further set Z ← Z ∪ {ϕ(v)}.
Notice also that if z ∈ Z, then ϕ(z) = ϕ(v). Then α = α′|Xt×(XF

t \{ϕ(v)}) ∪{(
(x, ϕ(v)),maxy∈Z α′(x, y)

)
| x ∈ Xt

}
.



Finding a spanning tree with minimum reload cost diameter 191

Notice that F is further reduced because v has been “forgotten” in Xt. This may
change the status of v as follows: either v is not any more in F or v is still in F but
it is not a t-terminal. In the first case ϕ(v) is either a vertex or an edge of F and
in the second ϕ(v) = v. In any case we should update the values of α(x, φ(v)) for
every x ∈ Xt to the maximum transition cost (with respect to α′) from x to some
element of Z.

• If t is an join node. Let t′ and t′′ be the children of t. We define

Rt = Rt′ ∪ {(F, α) | (F, α) is admissible, F is a forest, and there exist two

pairs (F ′, α′) ∈ Rt′ and (F ′′, α′′) ∈ Rt′′ such

that F = F ′ ∪ F ′′ and α = α′ ⊕βt α′′}.

The above case is very similar to the case of the edge-introduce node. The only
difference is that now F ′′ is now taken from Rt′′ .

Taking into account Claim 8.1 on the bound of the size of Rt, it is easy to verify that, in
each of the above cases, Rt can be computed in kO(∆·tw2) · (∆ · tw)O(tw) steps. So we can
solve our problem in time kO(∆·tw2) · (∆ · tw)O(tw) · n, and the theorem follows. 2

8.6 Polynomially bounded costs

So far, we have completely characterized the parameterized complexity of the Diameter-
Tree problem for any combination of the three parameters k, tw, and ∆. In this section
we focus on the special case when the maximum cost value is polynomially bounded by n.
The following corollary is an immediate consequence of Theorem 8.5.

Corollary 8.1 If the maximum cost value is polynomially bounded by n, the Diameter-
Tree problem is in XP parameterized by tw and ∆.

From Corollary 8.1, a natural question is whether the Diameter-Tree problem is FPT
or W[1]-hard parameterized by tw and ∆, in the case where the maximum cost value is
polynomially bounded by n. The next theorem provides an answer to this question.

Theorem 8.6 When the maximum cost value is polynomially bounded by n, the
Diameter-Tree problem is W[1]-hard parameterized by tw and ∆.

Proof : We present a parameterized reduction from the Bin Packing problem pa-
rameterized by the number of bins. In Bin Packing, we are given n integer item sizes
a1, . . . , an and an integer capacity B, and the objective is to partition the items into a
minimum number of bins with capacity B. Jansen et al. [174] proved that Bin Packing
is W[1]-hard parameterized by the number of bins in the solution, even when all item sizes
are bounded by a polynomial of the input size. Equivalently, this version of the problem
corresponds to the case where the item sizes are given in unary encoding; this is why it is
called Unary Bin Packing in [174].



192 Finding a spanning tree with minimum reload cost diameter

Given an instance ({a1, a2, . . . , an}, B, k) of Unary Bin Packing, where k is the number
of bins in the solution and where we can assume that k > 2, we create an instance
(G,χ, c) of Diameter-Tree as follows. The graph G contains a vertex r and, for i ∈ [n]
and j ∈ [k], we add to G vertices vi, `

i
j , r

i
j and edges {r, `1j}, {vi, `ij}, {vi, rij}, and {`ij , rij}.

Finally, for i ∈ [n − 1] and j ∈ [k], we add the edge {rij , `i+1
j }. Let G′ be the graph

constructed so far; see Figure 8.6 for an illustration.

v2 vi vn

r

`i1

`i2

`ik

ri1

ri2

rik

`11

`12

`1k

`21

`22

`2k

`n1

`n2

`nk

rn1

rn2

rnk

r21

r22

r2k

r11

r12

r1k

v1

Figure 8.6: Graph G′ built in the reduction of Theorem 8.6. Reload costs are not depicted.

Similarly to the proof of Theorem 8.3, we define G to be the graph obtained by tak-
ing two disjoint copies of G′ and identifying vertex r of both copies. Note that G
can be clearly built in polynomial time, and that tw(G) 6 k + 1 and ∆(G) = 2k
(since we assume k > 2). Therefore, tw(G) + ∆(G) is indeed bounded by a func-
tion of k, as required. (Again, the claimed bound on the treewidth can be eas-
ily seen by building a path decomposition of G with consecutive bags of the form
{vi, `i1, `i2, . . . , `ik, ri1}, {vi, `i1, `i2, . . . , `ik−1, r

i
1, r

i
2}, {vi, `i1, `i2, . . . , `ik−2, r

i
1, r

i
2, r

i
3}, . . ..)

Let us now define the coloring χ and the cost function c. Once more, for simplicity, we
associate a distinct color with each edge of G, and thus it is enough to describe the cost
function c for every pair of incident edges of G. The cost function is symmetric for both
copies of G′, so we just focus on one copy. For i ∈ [n], let e1, e2 be two distinct edges
containing vertex vi. We set c(e1, e2) = 2B + 1 unless e1 = {vi, `ij} and e2 = {vi, rij} for
some j ∈ [k], in which case we set c(e1, e2) = ai. The cost associated with any other pair
of edges of G is set to 0. Note that, as ({a1, a2, . . . , an}, B, k) is an instance of Unary Bin
Packing, the reload costs of the instance (G,χ, c) of Diameter-Tree are polynomially
bounded by |V (G)|.
We claim that ({a1, a2, . . . , an}, B, k) is a Yes-instance of Unary Bin Packing if and
only if G has a spanning tree with diameter at most 2B.

Assume first that ({a1, a2, . . . , an}, B, k) is a Yes-instance of Unary Bin Packing, and
let S1, . . . , Sk be the k subsets of {1, . . . , n} defining the k bins in the solution. We define a
spanning tree T of G with diam(T ) 6 2B as follows. For each of the two copies of G′, tree
T contains, for i ∈ [n − 1] and j ∈ [k], edges {r, `1j} and {rij , `i+1

j }. For i ∈ [n − 1], if the

item ai belongs to the set Sj , we add to T the two edges {vi, `ij} and {vi, rij}; otherwise we

add to T the edge {`ij , rij}. Since the total item size of each bin in the solution of Unary
Bin Packing is at most B, it can be easily checked that T is a spanning tree of G with
diam(T ) 6 2B.

Conversely, let T be a spanning tree of G with diam(T ) 6 2B, and we proceed to define a



Finding a spanning tree with minimum reload cost diameter 193

solution S1, . . . , Sk of Unary Bin Packing. Let T1 and T2 be the restriction of T to the
two copies of G′. By the choice of the reload costs and since diam(T ) 6 2B, for every i ∈ [n]
and every x ∈ {1, 2}, tree Tx contains the two edges {vi, `ij} and {vi, rij} for some j ∈ [k],
and none of the other edges incident with vertex vi. Therefore, for every x ∈ {1, 2}, tree Tx
consists of k paths sharing vertex r. This implies that diam(T ) > 1

2diam(T1) + 1
2diam(T2),

and since diam(T ) 6 2B, it follows that there exists x ∈ {1, 2} such that diam(Tx) 6 B.
Assume without loss of generality that x = 1, i.e., that diam(T1) 6 B. We define the bins
S1, . . . , Sk as follows. For every i ∈ [n], if T1 contains the two edges {vi, `ij} and {vi, rij},
we add item ai to the bin Sj . Let us verify that this defines a solution of Unary Bin
Packing. Indeed, assume for contradiction that for some j ∈ [k], the total item size in
bin Sj exceeds B. As bin Sj corresponds to one of the k paths in tree T1, the diameter
of this path would also exceed B, contradicting the fact that diam(T1) 6 B. The theorem
follows. 2

8.7 Concluding remarks

We provided an accurate picture of the (parameterized) complexity of the Diameter-
Tree problem for any combination of the parameters k, tw, and ∆, distinguishing whether
the reload costs are polynomial or not. Some questions still remain open. First of all, in
the hardness result of Theorem 8.3, we already mentioned that the bound ∆ 6 3 is tight,
but the bound tw 6 3 might be improved to tw 6 2. A relevant question is whether the
problem admits polynomial kernels parameterized by k+ tw + ∆ (recall that it is FPT by
Theorem 8.5). Theorem 8.6 motivates the following question: when all reload costs are
bounded by a constant, is the Diameter-Tree problem FPT parameterized by tw + ∆?
It also makes sense to consider the color-degree as a parameter (cf. [160]). Finally, we
may consider other relevant width parameters, such as pathwidth (note that the hardness
results of Theorems 8.1, 8.3, and 8.6 also hold for pathwidth), cliquewidth, treedepth, or
tree-cutwidth.





Chapter 9

Further research

In a near future, I plan to continue working on parameterized complexity, with special
emphasis on efficient FPT algorithms and kernelization. I would also like to pursue with
the combinatorial problems on which I have been working recently.

At the end of chapters 5-6-7-8 a number of open problems related to the topic of each
chapter have been already stated; see sections 5.7-6.7-7.4-8.7, respectively.

These are some other specific open problems or research avenues that I encountered during
the projects in which I have been working in the last years, and that I would really like
to solve, or at least to study in detail:

1. In [J6] we investigated the role of planarity in connectivity problems parameterized
by treewidth. One notorious problem remains open: can Planar Disjoint Paths
be solved in single-exponential time parameterized by treewidth? On general graphs,
we know [228] that the problem can be solved in time 2O(tw log tw) · nO(1), and that
this running time is tight under the ETH [198]. Nevertheless, its time complexity on
planar graphs is still unknown.

2. In [C27] we studied the complexity of the F-Deletion problem parameterized by
treewidth. Determining the tight complexity for all families F is an ambitious and
fascinating research project. The following two questions may be easier to solve, but
still quite challenging:

• We do not know whether there exists some family F for which F-Deletion
cannot be solved, under the ETH, in time 2poly(tw) ·nO(1). The recent results of
Kociumaka and Pilipczuk [185] may shed some light in this direction, probably
toward a negative answer.

• On the other hand, the case where F contains a planar graph is extremely
interesting in its own. We know by [C27] that, in that case, the problem can
always be solved in time 2O(tw log tw) · nO(1), and in some cases it can be solved
in time 2O(tw) ·nO(1). We suspect that this latter case holds if only if F contains
one of the graphs P2, P3, P4, C3, C4, or K1,3. We are currently working on
trying to prove this conjecture, which does not look like an easy task.

3. In one of my recent articles [C28], we studied how one relevant structural graph
parameters, namely the treedepth, can be used to obtain polynomial kernels on dense
graphs for classical graph problems such as Vertex Cover or Dominating Set.
Two natural research directions appear from this work:

195



196 Further research

• Are there natural width parameters that allow for meta-kernelization results on
dense graphs? Here, meta-kernelization refers to a result that guarantees the
existence of particular types of kernels for a whole class of problems satisfying
certain properties.

• In the particular case of treedepth, and as a follow-up of [C28], which problems
admit polynomial kernels parameterized by the size of a treedepth modulator?
Recall that a treedepth modulator of a graph is vertex set whose removal results
in a graph of bounded treedepth.

4. The following question is simple to state, but probably difficult to answer, as it
has been left as an open problem in [89, C34]: is the Minimum Colored Cut
problem NP-complete? In this problem, we are given an edge-colored graph, and
the objective is to find an edge cut using the minimum number of colors. Without
colors, the problem is well-known to be solvable in polynomial time by the maximum
flow-minimum cut duality [106], but its complexity in edge-colored graphs remains
open.

5. Recall that a graph is (r, `) if it admits an (r, `)-partition, that is, a partition of its
vertex set into r independent sets and ` cliques. Also, a graph is well-covered if every
maximal independent set is also maximum. A graph is (r, `)-well-covered if it is both
(r, `) and well-covered. In [C22] we managed to classify the complexity of deciding
whether a graph given with an (r, `)-partition is well-covered for all values of r and
`, except for ` = 0 and r > 3. In particular, given a tripartite graph G together with
a tripartition of V (G), is it NP-complete to determine whether G is well-covered?

6. Switching to combinatorial questions, we proved in [C25] that the number Tn,k of
labeled graphs on n vertices and treewidth at most k satisfies

(
c · k 2kn

log k

)n
2−

k(k+3)
2 k−2k−2 6 Tn,k 6

(
k 2kn

)n
2−

k(k+1)
2 k−k,

for k > 1 and some explicit absolute constant c > 0. Closing this gap remains open.

We strongly believe, but have not been able to prove yet, that there exist a constant
d and a function f , with k−2k−2 6 f(k) 6 k−k for every positive integer k, such that

Tn,k > (d · k · 2k · n)n · 2−
k(k+1)

2 · f(k).

7. Finally, concerning the Erdős-Pósa property for graph minors, we know that when
H is a planar graph, the gap for the Erdős-Pósa property for H-models satisfies
f(k) = O(k · logO(1) k) [80] and that, if H contains a cycle, it holds that f(k) =
Ω(k · log k) [128]. We recently proved in [S35] that f(k) = Θ(k · log k) when H is a
wheel, and we conjecture that this is the right gap for every planar graph H. Some
new techniques and ideas seem to be needed in order to solve this conjecture.



Bibliography

Personal Bibliography

International Journals

[J1] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Faster parameterized
algorithms for minor containment. Theoretical Computer Science, 412(50):7018–
7028, 2011.

[J2] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Fast minor testing in
planar graphs. Algorithmica, 64(1):69–84, 2012.

[J3] J. Baste, F. Beggas, H. Kheddouci, and I. Sau. On the parameterized complexity of
the edge monitoring problem. Information Processing Letters, 121:39–44, 2017.

[J4] J. Baste, L. Faria, S. Klein, and I. Sau. Parameterized Complexity Dichotomy for
(r, `)-Vertex Deletion. Theory of Computing Systems, 61(3):777–794, 2017.

[J5] J. Baste, C. Paul, I. Sau, and C. Scornavacca. Efficient FPT algorithms for (strict)
compatibility of unrooted phylogenetic trees. Bulletin of Mathematical Biology,
79(4):920–938, 2017.

[J6] J. Baste and I. Sau. The role of planarity in connectivity problems parameterized
by treewidth. Theoretical Computer Science, 570:1–14, 2015.

[J7] N. Bousquet, D. Gonçalves, G. B. Mertzios, C. Paul, I. Sau, and S. Thomassé.
Parameterized domination in circle graphs. Theory of Computing Systems, 54(1):45–
72, 2014.

[J8] D. Chatzidimitriou, J. Raymond, I. Sau, and D. M. Thilikos. Minors in graphs of
large θr-girth. European Journal of Combinatorics, 65:106–121, 2017.

[J9] N. Cohen, D. Gonçalves, E. J. Kim, C. Paul, I. Sau, D. M. Thilikos, and M. Weller.
A polynomial-time algorithm for outerplanar diameter improvement. Journal of
Computer and System Sciences, 89:315–327, 2017.

[J10] L. Faria, S. Klein, I. Sau, and R. Sucupira. Improved kernels for Signed Max Cut pa-
rameterized above lower bound on (r, `)-graphs. Discrete Mathematics & Theoretical
Computer Science, 19(1), 2017.

[J11] V. Garnero, C. Paul, I. Sau, and D. M. Thilikos. Explicit linear kernels via dynamic
programming. SIAM Journal on Discrete Mathematics, 29(4):1864–1894, 2015.

[J12] V. Garnero, I. Sau, and D. M. Thilikos. A linear kernel for planar red-blue domi-
nating set. Discrete Applied Mathematics, 217:536–547, 2017.

[J13] D. Gözüpek, S. Özkan, C. Paul, I. Sau, and M. Shalom. Parameterized complexity of
the MINCCA problem on graphs of bounded decomposability. Theoretical Computer

197



198 Bibliography

Science, 690:91–103, 2017.

[J14] G. Joret, C. Paul, I. Sau, S. Saurabh, and S. Thomassé. Hitting and harvesting
pumpkins. SIAM Journal on Discrete Mathematics, 28(3):1363–1390, 2014.

[J15] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar. Lin-
ear kernels and single-exponential algorithms via protrusion decompositions. ACM
Transactions on Algorithms, 12(2):21:1–21:41, 2016.

[J16] E. J. Kim, C. Paul, I. Sau, and D. M. Thilikos. Parameterized algorithms for min-
max multiway cut and list digraph homomorphism. Journal of Computer and System
Sciences, 86:191–206, 2017.

[J17] G. B. Mertzios, I. Sau, M. Shalom, and S. Zaks. Placing regenerators in optical net-
works to satisfy multiple sets of requests. IEEE/ACM Transactions on Networking,
20(6):1870–1879, 2012.

[J18] L. P. Montejano and I. Sau. On the complexity of computing the k-restricted edge-
connectivity of a graph. Theoretical Computer Science, 662:31–39, 2017.

[J19] J. Raymond, I. Sau, and D. M. Thilikos. An edge variant of the Erdős-Pósa property.
Discrete Mathematics, 339(8):2027–2035, 2016.

[J20] J. Rué, I. Sau, and D. M. Thilikos. Asymptotic enumeration of non-crossing parti-
tions on surfaces. Discrete Mathematics, 313(5-6):635–649, 2013.

[J21] J. Rué, I. Sau, and D. M. Thilikos. Dynamic programming for graphs on surfaces.
ACM Transactions on Algorithms, 10(2):8:1–8:26, 2014.

International Conferences (not yet appeared in journal)

[C22] S. R. Alves, K. K. Dabrowski, L. Faria, S. Klein, I. Sau, and U. dos Santos Souza. On
the (parameterized) complexity of recognizing well-covered (r, `)-graphs. In Proc. of
the 10th International Conference on Combinatorial Optimization and Applications
(COCOA), volume 10043 of LNCS, pages 423–437, 2016.

[C23] J. Araújo, J. Baste, and I. Sau. Ruling out FPT algorithms for Weighted Coloring on
forests. In Proc. of the IX Latin and American Algorithms, Graphs and Optimization
Symposium (LAGOS), volume 62 of ENDM, pages 195–200, 2017.

[C24] J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D. M. Thilikos. Parameter-
ized complexity of finding a spanning tree with minimum reload cost diameter. In
Proc. of the 12th International Symposium on Parameterized and Exact Computa-
tion (IPEC), 2017. To appear in LIPIcs.

[C25] J. Baste, M. Noy, and I. Sau. On the number of labeled graphs of bounded treewidth.
In Proc. of the 43rd International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 10520 of LNCS, pages 88–99, 2017.

[C26] J. Baste, D. Rautenbach, and I. Sau. Uniquely restricted matchings and edge col-
orings. In Proc. of the 43rd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), volume 10520 of LNCS, pages 100–112, 2017.



Bibliography 199

[C27] J. Baste, I. Sau, and D. M. Thilikos. Optimal algorithms for hitting (topological) mi-
nors on graphs of bounded treewidth. In Proc. of the 12th International Symposium
on Parameterized and Exact Computation (IPEC), 2017. To appear in LIPIcs.

[C28] M. Bougeret and I. Sau. How much does a treedepth modulator help to obtain poly-
nomial kernels beyond sparse graphs? In Proc. of the 12th International Symposium
on Parameterized and Exact Computation (IPEC), 2017. To appear in LIPIcs.

[C29] D. Chatzidimitriou, J. Raymond, I. Sau, and D. M. Thilikos. An O(log OPT)-
approximation for covering/packing minor models of θr. In Proc. of the 13th In-
ternational Workshop on Approximation and Online Algorithms (WAOA), volume
9499 of LNCS, pages 122–132, 2015.

[C30] N. Cohen, F. Havet, D. Mazauric, I. Sau, and R. Watrigant. Complexity dichotomies
for the Minimum F-Overlay problem. In Proc. of the of the 28th International
Workshop on Combinatorial Algorithms (IWOCA), 2017. To appear in LNCS.

[C31] E. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos. An FPT 2-approximation
for tree-cut decomposition. In Proc. of the 13th International Workshop on Ap-
proximation and Online Algorithms (WAOA), volume 9499 of LNCS, pages 35–46,
2015.

[C32] H. Perret du Cray and I. Sau. Improved FPT algorithms for weighted independent
set in bull-free graphs. In Proc. of the 9th International Symposium on Parameterized
and Exact Computation (IPEC), volume 8894 of LNCS, pages 282–293, 2014.

[C33] J. Rué, I. Sau, and D. M. Thilikos. Dynamic Programming for H-minor-free Graphs
(Extended Abstract). In Proc. of the 18th Annual International Computing and
Combinatorics Conference (COCOON), volume 7434 of LNCS, pages 86–97, 2012.

[C34] R. Sucupira, L. Faria, S. Klein, I. Sau, and U. S. Souza. Maximum cuts in edge-
colored graphs. In Proc. of the IX Latin and American Algorithms, Graphs and
Optimization Symposium (LAGOS), volume 62 of ENDM, pages 87–92, 2017.

Submitted for Publication

[S35] P. Aboulker, S. Fiorini, T. Huynh, G. Joret, J.-F. Raymond, and I. Sau. A tight
Erdős-Pósa function for wheel minors. CoRR, abs/1710.06282, 2017. Manuscript
submitted for publication.

[S36] J. Araújo, V. A. Campos, A. K. Maia, I. Sau, and A. Silva. On the complexity of
finding internally vertex-disjoint long directed paths. CoRR, abs/1706.09066, 2017.
Manuscript submitted for publication.

[S37] V. Garnero, C. Paul, I. Sau, and D. M. Thilikos. Explicit linear kernels for packing
problems. CoRR, abs/1610.06131, 2016. Manuscript submitted for publication.

[S38] V. Garnero and I. Sau. A linear kernel for planar total dominating set. CoRR,
abs/1211.0978, 2012. Manuscript submitted for publication.



200 Bibliography

General Bibliography

[39] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth, and
well-quasiordering. In Proc. of Graph Structure Theory, Contemporary Mathematics
147, pages 539–564. American Mathematical Society, 1991.

[40] S. Agarwal and S. De. Dynamic spectrum access for energy-constrained CR: single
channel versus switched multichannel. IET Communications, 10(7):761–769, 2016.

[41] J. Alber, M. Fellows, and R. Niedermeier. Polynomial-Time Data Reduction for
Dominating Set. Journal of the ACM, 51(3):363–384, 2004.

[42] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–856,
1995.

[43] E. Amaldi, G. Galbiati, and F. Maffioli. On minimum reload cost paths, tours, and
flows. Networks, 57(3):254–260, 2011.

[44] J. Araújo, N. Nisse, and S. Pérennes. Weighted coloring in trees. SIAM Journal on
Discrete Mathematics, 28(4):2029–2041, 2014.

[45] S. Arkoulis, E. Anifantis, V. Karyotis, S. Papavassiliou, and N. Mitrou. On the
optimal, fair and channel-aware cognitive radio network reconfiguration. Computer
Networks, 57(8):1739–1757, 2013.

[46] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of
graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

[47] J. Battle, F. Harary, Y. Kadama, and J. Youngs. Additivity of the genus of a graph.
Bulletin of the American Mathematical Society, 68:565–568, 1962.

[48] S. Bayhan and F. Alagoz. Scheduling in centralized cognitive radio networks for
energy efficiency. IEEE Transactions on Vehicular Technology, 62(2):582–595, 2013.

[49] S. Bayhan, S. Eryigit, F. Alagoz, and T. Tugcu. Low complexity uplink schedulers for
energy-efficient cognitive radio networks. IEEE Wireless Communications Letters,
2(3):363–366, 2013.

[50] L. W. Beineke and R. E. Pippert. The number of labeled k-dimensional trees. Journal
of Combinatorial Theory, 6(2):200–205, 1969.

[51] A. Benhocine and A. P. Wojda. On the existence of specified cycles in a tournament.
Journal of Graph Theory, 7(4):469–473, 1983.

[52] U. Bertelé and F. Brioschi. Nonserial Dynamic Programming. Academic Press,
ISBN 0-12-093450-7, pp. 37–38, 1972.

[53] A. P. Bianzino, C. Chaudet, D. Rossi, and J.-L. Rougier. A survey of green net-
working research. IEEE Communications Surveys & Tutorials, 14(1):3–20, 2012.

[54] M. Bodirsky, O. Giménez, M. Kang, and M. Noy. Enumeration and limit laws for
series-parallel graphs. European Journal of Combinatorics, 28(8):2091–2105, 2007.

[55] H. Bodlaender and T. Kloks. Only few graphs have bounded treewidth. Technical



Bibliography 201

Report RUU-CS-92-35, Utrecht University. Department of Computer Science, 1992.

[56] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In
Proc. of the 15th International Colloquium on Automata, Languages and Program-
ming (ICALP), volume 317 of LNCS, pages 105–118, 1988.

[57] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21,
1993.

[58] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[59] H. L. Bodlaender. Kernelization: New Upper and Lower Bound Techniques. In
Proc. of the 4th International Workshop on Parameterized and Exact Computation
(IWPEC), volume 5917 of LNCS, pages 17–37, 2009.

[60] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single
exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

[61] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–
434, 2009.

[62] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and
M. Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016.

[63] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (Meta) Kernelization. Journal of the ACM, 63(5):44:1–44:69, 2016.

[64] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower bounds by
cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014.

[65] H. L. Bodlaender and J. Nederlof. Subexponential time algorithms for finding small
tree and path decompositions. In Proc. of the 23rd Annual European Symposium on
Algorithms (ESA), volume 9294 of LNCS, pages 179–190, 2015.

[66] H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden. Subexponential Time
Algorithms for Embedding H-Minor Free Graphs. In Proc. of the 43rd International
Colloquium on Automata, Languages, and Programming (ICALP), volume 55 of
LIPIcs, pages 9:1–9:14, 2016.

[67] H. L. Bodlaender and E. Penninkx. A linear kernel for Planar Feedback Vertex Set. In
Proc. of the 3rd International Workshop on Parameterized and Exact Computation
(IWPEC), volume 5018 of LNCS, pages 160–171, 2008.

[68] H. L. Bodlaender, E. Penninkx, and R. B. Tan. A linear kernel for the k-Disjoint
Cycle problem on planar graphs. In Proc. of the 19th International Symposium on
Algorithms and Computation (ISAAC), volume 5369 of LNCS, pages 306–317, 2008.

[69] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and
disjoint paths. In Proc. of the 17th Annual European Symposium on Algorithms



202 Bibliography

(ESA), volume 5757 of LNCS, pages 635–646, 2009.

[70] H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algorithms for graphs
of small treewidth. Information and Computation, 167(2):86–119, 2001.

[71] B. Bollobás and A. Thomason. Proof of a conjecture of Mader, Erdős and Hajnal on
topological complete subgraphs. European Journal of Combinatorics, 19(8):883–887,
1998.

[72] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic Generation of Linear-
Time Algorithms from Predicate Calculus Descriptions of Problems on Recursively
Constructed Graph Families. Algorithmica, 7(1):555–581, 1992.

[73] A. Brandstädt. Partitions of graphs into one or two independent sets and cliques.
Discrete Mathematics, 152(1-3):47–54, 1996.

[74] J. R. Büchi. On a Decision Method in Restricted Second-Order Arithmetic. In Proc.
of International Congress on Logic, Methodology, and Philosophy of Science, pages
1–11, 1962.

[75] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58:171–176, 1996.

[76] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes of parameterized
tractability. Annals of Pure and Applied Logic, 84(1):119–138, 1997.

[77] Y. Cao. Linear recognition of almost interval graphs. In Proc. of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–1115, 2016.

[78] Y. Cao and D. Marx. Interval Deletion Is Fixed-Parameter Tractable. ACM Trans-
actions on Algorithms, 11(3):1–35, 2015.

[79] A. Celik and A. E. Kamal. Green cooperative spectrum sensing and scheduling in
heterogeneous cognitive radio networks. IEEE Transactions on Cognitive Commu-
nications and Networking, 2(3):238–248, 2016.

[80] C. Chekuri and J. Chuzhoy. Large-treewidth graph decompositions and applications.
In Proc. of the 45th annual ACM Symposium on Theory of Computing, pages 291–
300, 2013.

[81] C. Chekuri and J. Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal
of the ACM, 63(5):40:1–40:65, 2016.

[82] J. Chen, H. Fernau, I. Kanj, and G. Xia. Parametric duality and kernelization: lower
bounds and upper bounds on kernel size. SIAM Journal on Computing, 37:1077–
1106, 2007.

[83] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms for
feedback vertex set problems. Journal of Computer and System Sciences, 74(7):1188–
1198, 2008.

[84] J. Chen, I. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010.

[85] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk. Designing



Bibliography 203

FPT algorithms for cut problems using randomized contractions. SIAM Journal on
Computing, 45(4):1171–1229, 2016.

[86] M. Chudnovsky. The structure of bull-free graphs I - Three-edge-paths with centers
and anticenters. Journal of Combinatorial Theory, Series B, 102(1):233–251, 2012.

[87] M. Chudnovsky. The structure of bull-free graphs II and III - A summary. Journal
of Combinatorial Theory, Series B, 102(1):252–282, 2012.

[88] N. Cohen, F. Havet, W. Lochet, and N. Nisse. Subdivisions of oriented cycles in
digraphs with large chromatic number. CoRR, abs/1605.07762, 2016.

[89] D. Coudert, P. Datta, S. Pérennes, H. Rivano, and M. Voge. Shared risk resource
group complexity and approximability issues. Parallel Processing Letters, 17(2):169–
184, 2007.

[90] B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Information and Computation, 85(1):12–75, 1990.

[91] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic:
A Language Theoretic Approach. Number 138 in Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 2012.

[92] R. Crowston, G. Gutin, M. Jones, and G. Muciaccia. Maximum balanced subgraph
problem parameterized above lower bound. Theoretical Computer Science, 513:53–
64, 2013.

[93] R. Crowston, M. Jones, and M. Mnich. Max-Cut Parameterized Above the Edwards-
Erdős Bound. Algorithmica, 72(3):734–757, 2015.

[94] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[95] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Minimum
bisection is fixed parameter tractable. In Proc. of the 46th ACM Symposium on
Theory of Computing (STOC), pages 323–332, 2014.

[96] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single ex-
ponential time. In Proc. of the 52nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 150–159, 2011.

[97] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. An improved FPT
algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica,
64(1):170–188, 2012.

[98] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In Proc. of the
22nd IEEE Symposium on Logic in Computer Science (LICS), pages 270–279, 2007.

[99] B. de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht
University, 1997.

[100] F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and K. Stevens.
An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem. The-



204 Bibliography

ory of Computing Systems, 41(3):479–492, 2007.

[101] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. Journal of the ACM, 61(4):23:1–23:27,
2014.

[102] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Fixed-parameter
algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions
on Algorithms, 1(1):33–47, 2005.

[103] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponen-
tial parameterized algorithms on bounded-genus graphs and h-minor-free graphs.
Journal of the ACM, 52(6):866–893, 2005.

[104] E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with ap-
plications through bidimensionality. Combinatorica, 28(1):19–36, 2008.

[105] C. Desset, N. Ahmed, and A. Dejonghe. Energy savings for wireless terminals
through smart vertical handover. In Proc. of IEEE International Conference on
Communications, pages 1–5, 2009.

[106] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[107] M. J. Dinneen. Too many minor order obstructions. Journal of Universal Computer
Science, 3(11):1199–1206, 1997.

[108] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and
ids. In Proc. of the 36th International Colloquium on Automata, Languages and
Programming (ICALP), volume 5555 of LNCS, pages 378–389, 2009.

[109] D. Dong, X. Liao, Y. Liu, C. Shen, and X. Wang. Edge self-monitoring for wireless
sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(3):514–
527, 2011.

[110] F. Dorn. Planar subgraph isomorphism revisited. In Proc. of the 27th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS), volume 5
of LIPIcs, pages 263–274, 2010.

[111] F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic program-
ming inH-minor-free graphs. Journal of Computer and System Sciences, 78(5):1606–
1622, 2012.

[112] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–
810, 2010.

[113] R. G. Downey and M. R. Fellows. Fixed-Parameter Tractability and Completeness
I: Basic Results. SIAM Journal on Computing, 24(4):873–921, 1995.

[114] R. G. Downey and M. R. Fellows. Fixed-Parameter Tractability and Completeness
II: On Completeness for W[1]. Theoretical Computer Science, 141(1&2):109–131,
1995.



Bibliography 205

[115] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013.

[116] R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A framework
for systematically confronting computational intractability. In Proc. of a DIMACS
Workshop, volume 49 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 49–100, 1999.

[117] M. Drmota and E. Y. Jin. An asymptotic analysis of labeled and unlabeled k-trees.
Algorithmica, 75(4):579–605, 2016.

[118] C. S. Edwards. Some extremal properties of bipartite subgraphs. Canadian Journal
of Mathematics, 25:475–485, 1973.

[119] C. S. Edwards. An improved lower bound for the number of edges in a largest
bipartite subgraph. Recent Advances in Graph Theory, pages 167–181, 1975.

[120] P. Erdős and L. Pósa. On independent circuits contained in a graph. Canadian
Journal of Mathematics, 17:347–352, 1965.

[121] S. Eryigit, S. Bayhan, and T. Tugcu. Channel switching cost aware and energy-
efficient cooperative sensing scheduling for cognitive radio networks. In Proc. of
IEEE International Conference on Communications (ICC), pages 2633–2638, 2013.

[122] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for
minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–657,
2008.

[123] M. R. Fellows. Surfing with rod. In Computability and Complexity - Essays Dedicated
to Rodney G. Downey on the Occasion of His 60th Birthday, volume 10010 of LNCS,
pages 9–18, 2017.

[124] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM, 35:727–739, 1988.

[125] M. R. Fellows and M. A. Langston. An Analogue of the Myhill-Nerode Theorem
and Its Use in Computing Finite-Basis Characterizations (Extended Abstract). In
Proc. of the 30th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 520–525, 1989.

[126] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of
polynomial-time algorithms. Journal of Computer and System Sciences, 49(3):769–
779, 1994.

[127] S. Fiorini and A. Herinckx. A tighter Erdős-Pósa function for long cycles. Journal
of Graph Theory, 77(2):111–116, 2014.

[128] S. Fiorini, G. Joret, and D. R. Wood. Excluded forest minors and the Erdős-Pósa
property. Combinatorics, Probability and Computing, 22(5):700–721, 2013.

[129] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

[130] M. Flammini, A. Marchetti-Spaccamela, G. Monaco, L. Moscardelli, and S. Zaks.



206 Bibliography

On the complexity of the regenerator placement problem in optical networks.
IEEE/ACM Transactions on Networking, 19(2):498–511, 2011.

[131] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006.

[132] D. Foata. Enumerating k-trees. Discrete Mathematics, 1(2):181–186, 1971.

[133] F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (con-
nected) dominating set on graphs with excluded topological subgraphs. In Proc.
of the 30th International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 20 of LIPIcs, pages 92–103, 2013.

[134] F. V. Fomin, P. A. Golovach, and D. M. Thilikos. Contraction obstructions for
treewidth. Journal of Combinatorial Theory, Series B, 101(5):302–314, 2011.

[135] F. V. Fomin, D. Lokshtanov, N. Misra, G. Philip, and S. Saurabh. Hitting forbidden
minors: Approximation and kernelization. SIAM Journal on Discrete Mathematics,
30(1):383–410, 2016.

[136] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Nearly optimal FPT algo-
rithms for Planar-F-Deletion. Unpublished manuscript, 2011.

[137] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-Deletion: Approx-
imation, Kernelization and Optimal FPT Algorithms. In Proc. of the 53rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012.

[138] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms.
Journal of the ACM, 63(4):29:1–29:60, 2016.

[139] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and EP-
TAS. In Proc. of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 748–759, 2011.

[140] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality
and kernels. In Proc. of the 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 503–510, 2010.

[141] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for
(connected) dominating set on H-minor-free graphs. In Proc. of the 23rd ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 82–93, 2012.

[142] F. V. Fomin, S. Oum, and D. M. Thilikos. Rank-width and tree-width of H-minor-
free graphs. European Journal of Combinatorics, 31(7):1617–1628, 2010.

[143] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. Journal of Computer and System Sciences, 77(1):91–106, 2011.

[144] M. Frick and M. Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of Pure and Applied Logic, 130(1–3):3–31, 2004.

[145] A. Gainer-Dewar. Γ-species and the enumeration of k-trees. Electronic Journal of
Combinatorics, 19(4):P45, 2012.



Bibliography 207

[146] A. Gainer-Dewar and I. M. Gessel. Counting unlabeled k-trees. Journal of Combi-
natorial Theory, Series A, 126:177–193, 2014.

[147] J. Gajarský, P. Hlinený, J. Obdrzálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. S.
Villaamil, and S. Sikdar. Kernelization using structural parameters on sparse graph
classes. Journal of Computer and System Sciences, 84:219–242, 2017.

[148] G. Galbiati. The complexity of a minimum reload cost diameter problem. Discrete
Applied Mathematics, 156(18):3494–3497, 2008.

[149] G. Galbiati, S. Gualandi, and F. Maffioli. On minimum changeover cost arbores-
cences. In Proc. of the 10th International Symposium on Experimental Algorithms
(SEA), volume 6630 of LNCS, pages 112–123, 2011.

[150] G. Galbiati, S. Gualandi, and F. Maffioli. On minimum reload cost cycle cover.
Discrete Applied Mathematics, 164:112–120, 2014.

[151] I. Gamvros, L. Gouveia, and S. Raghavan. Reload cost trees and network design.
Networks, 59(4):365–379, 2012.

[152] R. Ganian, F. Slivovsky, and S. Szeider. Meta-kernelization with structural param-
eters. Journal of Computer and System Sciences, 82(2):333–346, 2016.

[153] Y. Gao. Treewidth of Erdős-Rényi random graphs, random intersection graphs, and
scale-free random graphs. Discrete Applied Mathematics, 160(4-5):566–578, 2012.

[154] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco, 1979.

[155] E. Ghosh, S. Kolay, M. Kumar, P. Misra, F. Panolan, A. Rai, and M. S. Ramanu-
jan. Faster parameterized algorithms for deletion to split graphs. Algorithmica,
71(4):989–1006, 2015.

[156] A. C. Giannopoulou, B. M. P. Jansen, D. Lokshtanov, and S. Saurabh. Uniform ker-
nelization complexity of hitting forbidden minors. ACM Transaction on Algorithms,
13(3):35:1–35:35, 2017.

[157] M. C. Golumbic, T. Hirst, and M. Lewenstein. Uniquely restricted matchings. Al-
gorithmica, 31:139–154, 2001.

[158] L. Gourvès, A. Lyra, C. Martinhon, and J. Monnot. The minimum reload s−t path,
trail and walk problems. Discrete Applied Mathematics, 158(13):1404–1417, 2010.

[159] D. Gözüpek, S. Buhari, and F. Alagöz. A spectrum switching delay-aware scheduling
algorithm for centralized cognitive radio networks. IEEE Transactions on Mobile
Computing, 12(7):1270–1280, 2013.

[160] D. Gözüpek, H. Shachnai, M. Shalom, and S. Zaks. Constructing minimum
changeover cost arborescenses in bounded treewidth graphs. Theoretical Computer
Science, 621:22–36, 2016.

[161] D. Gözüpek and M. Shalom. Edge coloring with minimum reload/changeover costs.
In Proc. of the 13th Cologne Twente Workshop on Graphs and Combinatorial Opti-
mization (CTW), pages 205–208, 2015.



208 Bibliography

[162] D. Gözüpek, M. Shalom, A. Voloshin, and S. Zaks. On the complexity of constructing
minimum changeover cost arborescences. Theoretical Computer Science, 540:40–52,
2014.

[163] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015.

[164] D. J. Guan and X. Zhu. A coloring problem for weighted graphs. Information
Processing Letters, 61(2):77–81, 1997.

[165] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal
of Computing and System Sciences, 72(8):1386–1396, 2006.

[166] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar
graphs. In Proc. of the 34th International Colloquium on Automata, Languages and
Programming (ICALP), volume 4596 of LNCS, pages 375–386, 2007.

[167] J. Guo, R. Niedermeier, and S. Wernicke. Fixed-parameter tractability results for
full-degree spanning tree and its dual. Networks, 56(2):116–130, 2010.

[168] R. Halin. s-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[169] I. V. Hicks. Branch decompositions and minor containment. Networks, 43(1):1–9,
2004.

[170] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[171] B. M. P. Jansen and H. L. Bodlaender. Vertex cover kernelization revisited - upper
and lower bounds for a refined parameter. Theory of Computing Systems, 53(2):263–
299, 2013.

[172] B. M. P. Jansen, D. Lokshtanov, and S. Saurabh. A near-optimal planarization algo-
rithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014.

[173] B. M. P. Jansen and J. J. H. M. Wulms. Lower bounds for protrusion replacement
by counting equivalence classes. In Proc. of the 11th International Symposium on
Parameterized and Exact Computation (IPEC), volume 63 of LIPIcs, pages 17:1–
17:12, 2016.

[174] K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with fixed number of
bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.

[175] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

[176] I. A. Kanj, M. J. Pelsmajer, M. Schaefer, and G. Xia. On the Induced Matching
problem. Journal of Computer and System Sciences, 77(6):1058–1070, 2011.

[177] K. Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. of
the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 639–648, 2009.

[178] K. Kawarabayashi and Y. Kobayashi. Linear min-max relation between the treewidth



Bibliography 209

of H-minor-free graphs and its largest grid. In Proc. of the 29th International Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 14 of LIPIcs,
pages 278–289, 2012.

[179] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.

[180] K. Kawarabayashi and M. Thorup. The Minimum k-way Cut of Bounded Size is
Fixed-Parameter Tractable. In Proc. of the 52nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 160–169, 2011.

[181] J. M. Keil. The complexity of domination problems in circle graphs. Discrete Applied
Mathematics, 42(1):51–63, 1993.

[182] E. J. Kim, C. Paul, and G. Philip. A single-exponential FPT algorithm for the
K4-minor cover problem. Journal of Computer and System Sciences, 81(1):186–207,
2015.

[183] R. Kim, S.-J. Kim, J. Ma, and B. Park. Cycles with two blocks in k-chromatic
digraphs. CoRR, abs/1610.05839, 2016.

[184] T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994.

[185] T. Kociumaka and M. Pilipczuk. Deleting vertices to graphs of bounded genus.
CoRR, abs/1706.04065, 2017.

[186] J. Komlós and E. Szemerédi. Topological cliques in graphs II. Combinatorics,
Probability and Computing, 5(01):79–90, 1996.

[187] V. R. Konda and T. Y. Chow. Algorithm for traffic grooming in optical networks
to minimize the number of transceivers. In Proc. of IEEE Workshop on High Per-
formance Switching and Routing, pages 218–221, 2001.

[188] S. Kreutzer. Algorithmic meta-theorems. Electronic Colloquium on Computational
Complexity, 16:147, 2009.

[189] S. Kreutzer and S. Tazari. On brambles, grid-like minors, and parameterized in-
tractability of monadic second-order logic. In Proc. of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 354–364, 2010.

[190] D. Kühn and D. Osthus. Minors in graphs of large girth. Random Structutres &
Algorithms, 22(2):213–225, 2003.

[191] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Matematicae, 15(1):271–283, 1930.

[192] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological), 50:157–224, 1988.

[193] A. Leaf and P. D. Seymour. Tree-width and planar minors. Journal of Combinatorial
Theory, Series B, 111:38–53, 2015.

[194] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties



210 Bibliography

is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

[195] D. Lokshtanov. Wheel-free deletion is W [2]-hard. In Proc. of the 3rd Interna-
tional Workshop on Parameterized and Exact Computation (IWPEC), pages 141–
147, 2008.

[196] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In Proc. of the 22nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 777–789, 2011.

[197] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized
problems. In Proc. of the 22nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 760–776, 2011.

[198] D. Lokshtanov, D. Marx, S. Saurabh, et al. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, (105):41–72, 2011.

[199] D. Lokshtanov, M. Mnich, and S. Saurabh. A linear kernel for planar connected
dominating set. Theoretical Computer Science, 23(412):2536–2543, 2011.

[200] D. Lokshtanov, M. Mnich, and S. Saurabh. A linear kernel for Planar Connected
Dominating Set. Theoretical Computer Science, 412(23):2536–2543, 2011.

[201] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh.
Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):15, 2014.

[202] D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler parameterized algorithm for
OCT. In Proc. of the 20th International Workshop on Combinatorial Algorithms
(IWOCA), volume 5874 of LNCS, pages 380–384, 2009.

[203] D. Marx. Chordal Deletion is fixed-parameter tractable. Algorithmica, 57(4):747–
768, 2010.

[204] D. Marx, B. O’sullivan, and I. Razgon. Finding small separators in linear time via
treewidth reduction. ACM Transactions on Algorithms, 9(4):30:1–30:35, 2013.

[205] D. Marx and I. Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3–4):807–822, 2012.

[206] S. Mishra. On the maximum uniquely restricted matching for bipartite graphs.
Electronic Notes in Discrete Mathematics, 37:345–350, 2011.

[207] D. Mitsche and G. Perarnau. On the treewidth and related parameters of random
geometric graphs. In Proc. of the 29th International Symposium on Theoretical
Aspects of Computer Science, (STACS), volume 14 of LIPIcs, pages 408–419, 2012.

[208] B. Mohar. An obstruction to embedding graphs on surfaces. Discrete Mathematics,
78(1–2):135–142, 1989.

[209] J. W. Moon. The number of labeled k-trees. Journal of Combinatorial Theory,
6(2):196–199, 1969.

[210] H. Moser and S. Sikdar. The parameterized complexity of the Induced Matching
problem. Discrete Applied Mathematics, 157(4):715–727, 2009.



Bibliography 211

[211] A. Nerode. Linear Automaton Transformations. Proceedings of the American Math-
ematical Society, 9:541–544, 1958.

[212] J. Nesetril and P. Ossona De Mendez. Sparsity: Graphs, Structures, and Algorithms.
Springer, 2012.

[213] J. Nešetřil and P. O. de Mendez. On nowhere dense graphs. European Journal of
Combinatorics, 32(4):600–617, 2011.

[214] R. Niedermeier. Invitation to fixed parameter algorithms, volume 31. Oxford Uni-
versity Press, 2006.

[215] J. Něsětril and P. Ossona de Mendez. Grad and classes with bounded expansion I.
Decompositions. European Journal of Combinatorics, 29(3), 2008.

[216] D. Osthus, H. J. Prömel, and A. Taraz. On random planar graphs, the number of
planar graphs and their triangulations. Journal of Combinatorial Theory, Series B,
88(1):119–134, 2003.

[217] G. Philip, V. Raman, and Y. Villanger. A quartic kernel for Pathwidth-One Vertex
Deletion. In Proc. of the 36th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), volume 6410 of LNCS, pages 196–207, 2010.

[218] M. Pilipczuk. A tight lower bound for vertex planarization on graphs of bounded
treewidth. Discrete Applied Mathematics, 231:211–216, 2017.

[219] A. Rafiey. Single Exponential FPT Algorithm for Interval Vertex Deletion and
Interval Completion Problem. CoRR, abs/1211.4629, 2012.

[220] A. Rai, M. S. Ramanujan, and S. Saurabh. A parameterized algorithm for mixed-
cut. In Proc. of the 12th Latin American Symposium on Theoretical Informatics
(LATIN), volume 9644 of LNCS, pages 672–685, 2016.

[221] B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

[222] N. Robertson and P. D. Seymour. Graph Minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7:309–322, 1986.

[223] N. Robertson and P. D. Seymour. Graph Minors. V. Excluding a planar graph.
Journal of Combinatorial Theory, Series B, 41:92–114, 1986.

[224] N. Robertson and P. D. Seymour. Graph Minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52:153–190, 1991.

[225] N. Robertson and P. D. Seymour. Graph Minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1994.

[226] N. Robertson and P. D. Seymour. Graph Minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63:65–110, 1995.

[227] N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92:325–357, 2004.

[228] P. Scheffler. A practical linear time algorithm for disjoint paths in graphs with



212 Bibliography

bounded tree-width. Fachbereich 3 Mathematik, Tech. Report 396/1994, FU Berlin,
1994.

[229] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

[230] N. Shami and M. Rasti. A joint multi-channel assignment and power control scheme
for energy efficiency in cognitive radio networks. In Proc. of IEEE Wireless Com-
munications and Networking Conference (WCNC), pages 1–6, 2016.

[231] L. Takács. On the number of distinct forests. SIAM Journal on Discrete Mathemat-
ics, 3(4):574–581, 1990.

[232] A. Takahashi, S. Ueno, and Y. Kajitani. Minimal acyclic forbidden minors for the
family of graphs with bounded path-width. Discrete Mathematics, 127(1-3):293–304,
1994.

[233] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-width.
Theoretical Computer Science, 137(2):253–268, 1995.

[234] A. Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory, Series B, 81(2):318–338, 2001.

[235] S. Thomassé, N. Trotignon, and K. Vuskovic. A polynomial Turing-kernel for
weighted independent set in bull-free graphs. Algorithmica, 77(3):619–641, 2017.

[236] C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8:85–89, 1984.

[237] B. van Antwerpen-de Fluiter. Algorithms for graphs of small treewidth. PhD thesis,
Utrecht University, 1997.

[238] R. van Bevern, R. G. Downey, M. R. Fellows, S. Gaspers, and F. A. Rosamond.
Myhill-nerode methods for hypergraphs. Algorithmica, 73(4):696–729, 2015.

[239] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[240] K. Wagner. Graphentheorie. In B. J. Hochschultaschenbucher, Mannheim, volume
248/248a, 1970.

[241] H.-C. Wirth and J. Steffan. Reload cost problems: minimum diameter spanning
tree. Discrete Applied Mathematics, 113(1):73–85, 2001.

[242] P. Wollan. The structure of graphs not admitting a fixed immersion. Journal of
Combinatorial Theory Series B, 110:47–66, 2015.

[243] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal of
Applied Mathematics, 38(3):364–372, 1980.

[244] C.-K. Yap. Some consequences of non-uniform conditions on uniform classes. The-
oretical Computer Science, 26:287–300, 1983.


	Résumé et projet de recherche
	Introduction
	Contextualization
	Scientific collaborations
	Organization of the manuscript

	Curriculum vitae
	Education and positions
	Full list of publications
	Supervised students
	Awards, grants, scholarships, and projects
	Teaching activity
	Committees and administrative duties
	Research visits
	Research talks
	Journal and conference refereeing

	Preliminaries
	Graphs
	Basic notation
	Graph minors
	Treewidth
	(Counting) Monadic Second Order Logic

	Parameterized complexity
	Some classical problems

	Summary of my contributions
	FPT algorithms
	Kernelization
	Combinatorial results
	Problems arising from applications

	Linear kernels and single-exponential algorithms via protrusion decompositions
	Introduction
	Protrusions, t-boundaried graphs, and finite integer index
	Constructing protrusion decompositions
	Linear kernels on graphs excluding a topological minor
	Proof of Theorem 5.1
	Problems affected by our result
	A comparison with earlier results
	The limits of our approach
	An illustrative example: Edge Dominating Set

	Single-exponential algorithm for Planar-F-Deletion
	Analysis of the bag marking algorithm
	Branching step and linear protrusion decomposition
	Solving Planar-F-Deletion with a linear protrusion decomposition
	Proof of Theorem 5.2

	Some deferred results
	Edge modification problems are not minor-closed
	Disconnected planar obstructions
	Disconnected Planar-F-Deletion has not finite integer index
	MSO formula for topological minor containment

	Concluding remarks

	Explicit linear kernels via dynamic programming
	Introduction
	Preliminaries
	An explicit protrusion replacer
	Encoders
	Equivalence relations and representatives
	Explicit protrusion replacer

	An explicit linear kernel for r-Dominating Set
	Description of the encoder
	Construction of the kernel

	An explicit linear kernel for r-Scattered Set
	Description of the encoder
	Construction of the kernel

	An explicit linear kernel for Planar-F-Deletion
	The encoder for F-Deletion and the index of G,t
	Construction of the kernel on H-minor-free graphs
	Linear kernels on H-topological-minor-free graphs

	Concluding remarks

	On the number of labeled graphs of bounded treewidth
	Introduction
	The construction
	Notation and definitions
	Description of the construction
	Bounding the treewidth

	Proof of the main result
	Number of constructible triples (, f, N)
	Bounding the number of duplicates
	Choosing the parameter s

	Concluding remarks

	Finding a spanning tree with minimum reload cost diameter
	Introduction
	Preliminaries
	Para-NP-hardness results
	A polynomial-time algorithm on cactus graphs
	FPT algorithm parameterized by k + tw + 
	Polynomially bounded costs
	Concluding remarks

	Further research
	Bibliography

