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Overview

Overview

@ Given some input drawn randomly according to some probability
distribution, with some additional planted substructure.

@ Goal: Without knowledge of this substructure, reconstruct the structure.

@ Spectral methods: capture the input in matrix form, apply
eigenvalue/eigenvector techniques to find the structure

Substructures considered here:
e Clique
@ k-Partition



The hidden clique problem

The hidden clique problem

o Given a graph G €,.ar. G(n, p) with 0 < p < 1 together with a randomly
chosen set of k vertices forming a clique (k and p might or might not be
known as input).

o Goal: Find the clique in polynomial time (whp), without knowing these k
vertices.

v

e In G(n,p), the maximum clique size w(G) is ©(log n).

e In G(n, p), all vertex degrees are whp in the interval (n— 1)p+ Cy/nlogn
for some C > 0 sufficiently large.

<

o If k < w(G), one cannot hope to find the planted clique.

e If k > C’\/nlogn for some C' > 0, then the vertices of the clique are
whp the k vertices of highest degree.
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The hidden clique problem

The hidden clique problem

Can one find a planted clique of size k = 0o(1/nlog n) in polynomial time in
Geg(n, })?

Theorem (Alon, Krivelevich, Sudakov 98)

There exists a polynomial time algorithm for finding a clique of size

k = ©(v/n).

o Based on spectral methods: capture input graph in matrix form and use
eigenvalues, eigenvectors



The hidden clique problem

Background on spectral methods

Definition

Let M € R™" a real, symmetric matrix. Define the operator norm (2-norm) of
M as
[M|> = max |Mx|».
[x]2=1

Letting the eigenvalues be A1(M) > ... > Ap(M), we have

[Ml2 = max{|Ai], [An|}-

@ How to bound |M|> for a random matrix?

Let M € R™" now a real, symmetric matrix, where for i < j, all Mj are i.i.d.
random variables with E(Mj;) = 0, o(Mj;) = 1 and all entries bounded from
above by K in absolute value for some constant K > 0.




The hidden clique problem

Background on spectral methods

How to bound |M|z for a random matrix?
. . T
Lower bound: find particular vector X € R” and calculate XXT"f’(X.

Usually more interested in upper bound

@ Method 1: maximal e—net argument

Definition

Y is a maximal e-net of the sphere S if for any X,y € X, |[x — y|> > ¢, and
moreover ¥ is maximal with respect to set inclusion.
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The hidden clique problem

Background on spectral methods

How to bound |M|z for a random matrix?
. . T
Lower bound: find particular vector X € R” and calculate XXTA;’(X.

Usually more interested in upper bound

@ Method 1: maximal e—net argument

Definition

Y is a maximal e-net of the sphere S if for any X,y € X, |[x — y|> > ¢, and
moreover ¥ is maximal with respect to set inclusion.

P(|M|2 > Av/n) < Ce™*". J




The hidden clique problem

Background on spectral methods

Alternative for an upper bound on |M|2 for a random matrix M
@ Method 2: trace method

Compute trace of a high even power of the adjacency matrix. Use the fact that
tr(M) = 3>, M = 3_; \i(M). For a high even power, \i(M) ~ >~ X\i(M).




The hidden clique problem

Background on spectral methods

Alternative for an upper bound on |M|2 for a random matrix M
@ Method 2: trace method

Compute trace of a high even power of the adjacency matrix. Use the fact that
tr(M) =%, Mij = >"; \i(M). For a high even power, A1(M) ~ >, \i(M).

E(|M|k) S Ck/2nk/2+1,
where Cy /5 is the k/2-th Catalan number.
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The hidden clique problem

Background on spectral methods

[Ml2 < (2+ o(1))v/n.

Application for random graphs: given G € G(n, %), write A(G) = P+ M, where
Pj = % for i # j, and O otherwise. M is a random matrix satisfying the above
properties.

o M(P)=(n—1)1,Xe(P) = ... = |Mn(P)| =

o Using X1(P) + An(M) < A1(G) < A1(P) + An(
M(G) = (n—1)3(1 +o(1)).

o A2(G) < A2(P) + A(M) = (2 + o(1))v/n.

1
B
M),




The hidden clique problem

The hidden clique problem (cont'd)

Adding a hidden clique of size kK = Q(y/n) makes X2(G) bigger:

Proposition (Alon,Krivelevich,Sudakov 98)

Assume w.l.o.g. that vertices 1,. .., k are forced to be a planted clique. Define
zZeER"aszi=n—k for1 < i< Kk and z; = —k for i > K. There exists a
vector § with |5]3 < é|z|§ so that z — § is collinear with the second
eigenvector V> of A(G), with corresponding eigenvalue

k n k n
E_\/;SAZ(G)SE_ 2

In particular, when k > 104/n, Xz is much bigger than \; for i > 3.
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The hidden clique problem

The hidden clique problem (cont'd)

Algorithm (Alon,Krivelevich,Sudakov 98)

Input: A graph G € G(n, %) with a planted clique of size k > 10v/n

@ Find the second eigenvector v, of the adjacency matrix of G

@ Sort the vertices of V by decreasing order of the absolute values of their
coordinates in Vo. Let W be the first k vertices.

@ Postprocess: Let Q C V be the set of all vertices with at least % vertices
in W
Output: The subset Q C V.




The hidden clique problem

Between hidden clique and planted partitions

o Easy extension: Plant a denser subgraph instead of a clique

o If more planted (big) cliques of different sizes are added, look at more
eigenvectors and apply the previous algorithm iteratively

o What if all (some) cliques have the same size? A partition into cliques?

"”

o Eigenvectors corresponding to cliques of different cliques are not " robust
to perturbations anymore

Although eigenvectors are not robust, eigenspaces are robust. Assuming a
partition of G into s planted cliques, define the projector P = "7 | viv/,
where v; is the i-th eigenvector of G. P is stable.
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Planted partitions

Planted partitions - intuition

o Graph withn=28,s=2
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Planted partitions

Planted partitions - intuition

@ Projector P of 'perfect’ graph with s = 2 (Values scaled by factor 10):
25 25 25 25 0 0 0 0
2.5 2.5 2.5 2.5 0 0 0 0
25 2.5 2.5 25 0 0 0 0
2.5 2.5 2.5 2.5 0 0 0 0
25 2.5 2.5 2.5
2.5 2.5 2.5 2.5
25 2.5 2.5 2.5
2.5 2.5 2.5 2.5

o O O o
o O O o
o O O o
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Planted partitions

Planted partitions - intuition

o Graph withn=28,s=2

8
N
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Planted partitions - intuition

@ Adjacency matrix A of previous graph:

O OO OO+~ +— O

1

O O OO+ oo

OO OOk OO

O -+ OO0 O+~ O

H O+ O OOOOo

H O O OO OO

Planted partitions

=~ O O o =+ O OO

o R H EH OOOOoO
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Planted partitions

Planted partitions - intuition

@ Projector P(A) =: P of previous graph with s = 2 (Values scaled by factor 10):
[ 20 21 21 24 -06 -06 09 —03]
2.1 2.2 2.2 25 —-04 -04 10 -0.1
2.1 2.2 2.2 25 -04 -04 10 -0A1
2.4 2.5 2.5 3.0 0.0 0.0 1.5 0.5
-06 -04 -04 00 2.7 2.7 1.4 3.1
-06 -04 -04 00 2.7 2.7 1.4 3.1
0.9 1.0 1.0 1.5 1.4 1.4 1.4 1.8

| -03 -01 -01 05 3.1 3.1 1.8 3.7




Planted partitions

Planted partitions - the related classical s-partition problem

@ The classical s-Partition-Problem: Given some graph G, partition V(G)
into S sets of equal size, s.t. number of edges between sets is minimized

Applications: Parallel scheduling, mesh partitioning, clustering

S-Partition-Problem is NP-hard (even for s = 2)

Here: Planted partition problem
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Planted partitions

Planted partitions - the model (McSherry '01)

e A distribution G(¢, p, q)
o ¢: V — {1,...,s}; include edge {v,w} € E, v # w, independently from
other edges with probability:

) if = ’
Fliv.w} € £) :{ o o) 2 ow).

where p > q
o For fixed p,q, p > q, the problem is more difficult if s is bigger

o Problem: Given G drawn from G(¢, p, q) distribution, find a partition é
such that ¢(v)=¢(w) iff ¢(v)=¢(w), Vv, w € V.



Planted partitions

Planted partitions - the model

@ Planted Partition Model: see e.g. Frieze, McDiarmid (1996)
@ Algorithms for Planted Partition Model

e Spectral approach: McSherry (2001)
o Nonspectral approach: Shamir, Tsur (2002)

@ Both reconstruct up to O(1/n/log n) partition classes

Can we reconstruct ©(y/n) partition classes, matching the ©(1/n) bound for
one clique?

partial solution to this ...



Planted partitions

Planted partitions - the model

@ Problem: Given G drawn from G(¢,p, q) distribution, find a partition ¢
such that ¢(v)=¢(w) iff ¢(v)=¢(w), Yv,w € V.

@ Measures of success
o Goal 1: Perfect reconstruction
o Every vertex is correctly classified
e Goal 2: Good reconstruction

o Allows some misclassified vertices

N
N
o



Planted partitions

Planted partitions - the model

@ How do we count the number of misclassifications?
o Given planted partitions V4,...,Vs, 'produced’ pa_rtitions_\71, ..., Vs, define
a bipartite graph B with vertex set {Vy,..., Vs, Vq,..., Vs}, and weighted
edge wj between V; and V; with weight |V; N V|
o Let M be a maximum weight matching on B

o Number of misclassifications: Y 7 , |Vj| - 2 jyem Wi



Planted partitions

Planted partitions - the model

Example: misclassifications on graph with s =3

C1 perfect partitions c2 C3

D1 produced partitions D2 D3

Maximum weight matching
C1 C2 C3

4 3 0

D1 D2 3



Planted partitions

Planted partitions - results

Theorem (Giesen, M.)
o For fixed p and q, with p > q, and large n, we can whp

(i) reconstruct in polynomial time up to s partitions correctly, for s < c%.
(i) in polynomial time bound the number of misclassifications by ¢s\/n, for
some ¢ > 0, for s < ¢//n.
(iii) ifs > %, then the planted S-partition is not a minimum partition
anymore.




Planted partitions

Planted partitions - algorithm and analysis

Outline of the simplest algorithm - for item (ii)

©000

©

INPUT: Adjacency matrix A of a graph from G(¢, p, q)

Estimate S := number of partitions

Compute projector P onto S largest eigenvectors of A.

Compute vectors ¢; € {0,1}" of each column of P:

Ci(j) = 1 iff j-th entry of P; among n/s largest entries

(Basically) put i and j in the same partition C; if the Hamming Distance
between ¢; and ¢; is small



Planted partitions

Planted partitions - algorithm and analysis

@ Compare projector with 'perfect’ projector

o ‘Perfect’ projector has (after permutation) blockdiagonal structure
o Subspace of 'perfect’ projector = space of all piecewise constant vectors
(vectors constant on each partition class)

@ Want indicator vectors for reconstruction

@ Indicator vectors = special type of piecewise constant vectors v



Planted partitions

Planted partitions - algorithm and analysis

@ Let v be an indicator vector found. Matrix perturbation theory guarantees:

Eigenspace of 2 largest eigenvectors

Pv

Small angle between v and Pv
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Planted partitions

Planted partitions - algorithm and analysis

Theorem (Stewart)

Let M and M two symmetric matrices € R™" and let P (and P, respectively)
be the projection matrices onto the space anned by the eigenvectors
corresponding to the k largest eigenvectors of M (M, respectively). Then

2|M — M|,

|P_ ﬁ"Z S ~ )
A (M) = Ay (M)| — 2|M — M2

if [A(M) = Aey1(M)| > 4|M — M|,

@ Projectors are close in norm if corresponding matrices have small norm
difference and spectral gap is high



Planted partitions

Planted partitions - algorithm and analysis

Remarks about improved algorithm for correct reconstruction (item (i))
@ partition input matrix into several parts

@ boost algorithm by pruning already reconstructed parts

Remarks about lower bound on non-reconstructability (item (jii))

@ Non-spectral. Compute probability of existence of smaller s-partition than
the planted one (second moment method)



Summary

RENEIS

@ Spectral methods work well, give best known bounds for (planted)
partition problems

o Does an angle-based approach of the s largest eigenvectors give the same
bounds? Seems to perform as well as projector ...

A_|1 1 1 10000
"o 0o 0o 0 1111

31/32



Summary

Open questions

@ In reconstruction problems less theoretical work about different matrices
(Laplacian, normalized Laplacian). Do similar bounds hold?

@ Can one find ©(y/n) planted partitions?

e Can one find cliques of size k = 0(v/n)? Major drawback: The 2-norm is
a very global measure, and hard to use algorithmically (in the analysis of
an algorithm)
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