Graph Partition Reconstruction

A survey on spectral methods

Dieter Mitsche

JCALM 2011

(日) (四) (王) (王) (王)

Overview

Model

- Given some input drawn randomly according to some probability distribution, with some additional **planted** substructure.
- Goal: Without knowledge of this substructure, reconstruct the structure.
- Spectral methods: capture the input in matrix form, apply eigenvalue/eigenvector techniques to find the structure

Substructures considered here:

- Clique
- k-Partition

The hidden clique problem

Definition

- Given a graph G ∈_{u.a.r.} G(n, p) with 0
- Goal: Find the clique in polynomial time (whp), without knowing these k vertices.

Fact

- In $\mathcal{G}(n,p)$, the maximum clique size $\omega(G)$ is $\Theta(\log n)$.
- In $\mathcal{G}(n,p)$, all vertex degrees are whp in the interval $(n-1)p \pm C\sqrt{n\log n}$ for some C > 0 sufficiently large.
- If $k < \omega(G)$, one cannot hope to find the planted clique.
- If k > C' √n log n for some C' > 0, then the vertices of the clique are whp the k vertices of highest degree.

(ロ) (同) (E) (E) (E)

4/32

The hidden clique problem

Question

Can one find a planted clique of size $k = o(\sqrt{n \log n})$ in polynomial time in $G \in \mathcal{G}(n, \frac{1}{2})$?

Theorem (Alon, Krivelevich, Sudakov 98)

There exists a polynomial time algorithm for finding a clique of size $k = \Theta(\sqrt{n})$.

 Based on spectral methods: capture input graph in matrix form and use eigenvalues, eigenvectors

Definition

Let $M \in \mathbb{R}^{n imes n}$ a real, symmetric matrix. Define the operator norm (2-norm) of M as

$$|M|_2 = \max_{|x|_2=1} |Mx|_2.$$

Letting the eigenvalues be $\lambda_1(M) \ge \ldots \ge \lambda_n(M)$, we have

$$|\boldsymbol{M}|_2 = \max\{|\lambda_1|, |\lambda_n|\}.$$

• How to bound $|M|_2$ for a random matrix?

Model

Let $M \in \mathbb{R}^{n \times n}$ now a real, symmetric matrix, where for $i \leq j$, all M_{ij} are i.i.d. random variables with $\mathbb{E}(M_{ij}) = 0$, $\sigma(M_{ij}) = 1$ and all entries bounded from above by K in absolute value for some constant K > 0.

```
How to bound |M|_2 for a random matrix?
```

```
Lower bound: find particular vector x \in \mathbb{R}^n and calculate \frac{x^T M x}{x^T x}.
```

Usually more interested in upper bound

• Method 1: maximal ϵ -net argument

Definition

 Σ is a **maximal** ϵ -net of the sphere S if for any $x, y \in \Sigma, |x - y|_2 \ge \epsilon$, and moreover Σ is maximal with respect to set inclusion.

How to bound $|M|_2$ for a random matrix?

Lower bound: find particular vector $x \in \mathbb{R}^n$ and calculate $\frac{x^T M x}{x^T x}$.

Usually more interested in upper bound

• Method 1: maximal ϵ -net argument

Definition

 Σ is a **maximal** ϵ -net of the sphere S if for any $x, y \in \Sigma, |x - y|_2 \ge \epsilon$, and moreover Σ is maximal with respect to set inclusion.

$$\mathbb{P}(|M|_2 > A\sqrt{n}) \leq Ce^{-cAn}.$$

・ロ 、 < 部 、 < 注 、 < 注 、 注 、 う Q (や 7/32

Background on spectral methods

Alternative for an upper bound on $|M|_2$ for a random matrix M

Method 2: trace method

Idea

Compute trace of a high even power of the adjacency matrix. Use the fact that $tr(M) = \sum_{i} M_{ii} = \sum_{i} \lambda_i(M)$. For a high even power, $\lambda_1(M) \sim \sum_{i} \lambda_i(M)$.

・ロン ・日ン ・ビン・ ビン・ 日

9/32

Background on spectral methods

Alternative for an upper bound on $|M|_2$ for a random matrix M

Method 2: trace method

Idea

Compute trace of a high even power of the adjacency matrix. Use the fact that $tr(M) = \sum_{i} M_{ii} = \sum_{i} \lambda_i(M)$. For a high even power, $\lambda_1(M) \sim \sum_{i} \lambda_i(M)$.

$$\mathbb{E}(|\boldsymbol{M}|^{k}) \leq C_{k/2} n^{k/2+1},$$

where $C_{k/2}$ is the k/2-th Catalan number.

Theorem

$|M|_2 \leq (2 + o(1))\sqrt{n}.$

Application for random graphs: given $G \in \mathcal{G}(n, \frac{1}{2})$, write A(G) = P + M, where $P_{ij} = \frac{1}{2}$ for $i \neq j$, and 0 otherwise. *M* is a random matrix satisfying the above properties.

Fact

•
$$\lambda_1(P) = (n-1)\frac{1}{2}, |\lambda_2(P)| = \ldots = |\lambda_n(P)| = \frac{1}{2}.$$

- Using $\lambda_1(P) + \lambda_n(M) \le \lambda_1(G) \le \lambda_1(P) + \lambda_n(M)$, $\lambda_1(G) = (n-1)\frac{1}{2}(1+o(1))$.
- $\lambda_2(G) \leq \lambda_2(P) + \lambda_1(M) = (2 + o(1))\sqrt{n}$.

The hidden clique problem (cont'd)

Adding a hidden clique of size $k = \Omega(\sqrt{n})$ makes $\lambda_2(G)$ bigger:

Proposition (Alon, Krivelevich, Sudakov 98)

Assume w.l.o.g. that vertices $1, \ldots, k$ are forced to be a planted clique. Define $z \in \mathbb{R}^n$ as $z_i = n - k$ for $1 \le i \le k$ and $z_i = -k$ for i > k. There exists a vector δ with $|\delta|_2^2 \le \frac{1}{60} |z|_2^2$ so that $z - \delta$ is collinear with the second eigenvector v_2 of A(G), with corresponding eigenvalue

$$rac{k}{2}-\sqrt{rac{n}{2}}\leq\lambda_2(G)\leqrac{k}{2}-\sqrt{rac{n}{2}}.$$

In particular, when $k \ge 10\sqrt{n}$, λ_2 is much bigger than λ_i for $i \ge 3$.

・ロット (日) (日) (日) (日)

12/32

The hidden clique problem (cont'd)

Algorithm (Alon, Krivelevich, Sudakov 98)

Input: A graph $G \in G(n, \frac{1}{2})$ with a planted clique of size $k \ge 10\sqrt{n}$

- Find the second eigenvector v_2 of the adjacency matrix of G
- Sort the vertices of V by decreasing order of the absolute values of their coordinates in v_2 . Let W be the first k vertices.
- Postprocess: Let $Q \subseteq V$ be the set of all vertices with at least $\frac{3k}{4}$ vertices in W

Output: The subset $Q \subseteq V$.

Between hidden clique and planted partitions

- Easy extension: Plant a denser subgraph instead of a clique
- If more planted (big) cliques of different sizes are added, look at more eigenvectors and apply the previous algorithm iteratively
- What if all (some) cliques have the same size? A partition into cliques?
- Eigenvectors corresponding to cliques of different cliques are not "robust" to perturbations anymore

Idea

Although eigenvectors are not robust, eigenspaces are robust. Assuming a partition of *G* into *s* planted cliques, define the **projector** $P = \sum_{i=1}^{s} v_i v_i^T$, where v_i is the *i*-th eigenvector of *G*. *P* is stable.

Planted partitions - intuition

• Graph with n = 8, s = 2

Planted partitions - intuition

• Projector P of 'perfect' graph with s = 2 (Values scaled by factor 10):

	2.5	2.5	2.5	2.5	0	0	0	0
	2.5	2.5	2.5	2.5	0	0	0	0
	2.5	2.5	2.5	2.5	0	0	0	0
D	2.5	2.5	2.5	2.5	0	0	0	0
r –	0	0	0	0	2.5	2.5	2.5	2.5
	0	0	0	0	2.5	2.5	2.5	2.5
	0	0	0	0	2.5	2.5	2.5	2.5
	0	0	0	0	2.5	2.5	2.5	2.5

Planted partitions - intuition

• Graph with n = 8, s = 2

ヘロン 人間と 人間と 人間と

æ

17/32

Planted partitions - intuition

Adjacency matrix A of previous graph:

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

18 / 32

Planted partitions - intuition

• Projector P(A) =: P of previous graph with s = 2 (Values scaled by factor 10):

	2.0	2.1	2.1	2.4	-0.6	-0.6	0.9	-0.3
	2.1	2.2	2.2	2.5	-0.4	-0.4	1.0	-0.1
	2.1	2.2	2.2	2.5	-0.4	-0.4	1.0	-0.1
D	2.4	2.5	2.5	3.0	0.0	0.0	1.5	0.5
Γ –	-0.6	-0.4	-0.4	0.0	2.7	2.7	1.4	3.1
	-0.6	-0.4	-0.4	0.0	2.7	2.7	1.4	3.1
	0.9	1.0	1.0	1.5	1.4	1.4	1.4	1.8
	-0.3	-0.1	-0.1	0.5	3.1	3.1	1.8	3.7

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

19/32

Planted partitions - the related classical *s*-partition problem

- The classical s-Partition-Problem: Given some graph G, partition V(G) into s sets of equal size, s.t. number of edges between sets is minimized
- Applications: Parallel scheduling, mesh partitioning, clustering
- *s*-Partition-Problem is NP-hard (even for s = 2)
- Here: Planted partition problem

Planted partitions - the model (McSherry '01)

- A distribution $\mathcal{G}(\phi, p, q)$
 - $\phi: V \to \{1, ..., s\}$; include edge $\{v, w\} \in E, v \neq w$, independently from other edges with probability:

$$\mathbb{P}(\{v,w\} \in E) = \begin{cases} p, & \text{if } \phi(v) = \phi(w), \\ q, & \text{if } \phi(v) \neq \phi(w), \end{cases}$$

where p > q

- For fixed p, q, p > q, the problem is more difficult if s is bigger
- Problem: Given G drawn from G(φ, p, q) distribution, find a partition φ
 such that φ(v)=φ(w) iff φ(v)=φ(w), ∀v, w ∈ V.

Planted partitions - the model

- Planted Partition Model: see e.g. Frieze, McDiarmid (1996)
- Algorithms for Planted Partition Model
 - Spectral approach: McSherry (2001)
 - Nonspectral approach: Shamir, Tsur (2002)
- Both reconstruct up to $O(\sqrt{n/\log n})$ partition classes

Question

Can we reconstruct $\Theta(\sqrt{n})$ partition classes, matching the $\Theta(\sqrt{n})$ bound for one clique?

partial solution to this ...

イロト (四) (日) (日) (日) (日) (日)

Planted partitions - the model

Problem: Given G drawn from G(φ, p, q) distribution, find a partition φ
 such that φ(v)=φ(w) iff φ(v)=φ(w), ∀v, w ∈ V.

• Measures of success

- Goal 1: Perfect reconstruction
 - Every vertex is correctly classified
- Goal 2: Good reconstruction
 - Allows some misclassified vertices

Planted partitions - the model

- How do we count the number of misclassifications?
 - Given planted partitions V_1, \ldots, V_s , 'produced' partitions $\overline{V}_1, \ldots, \overline{V}_s$, define a bipartite graph B with vertex set $\{V_1, \ldots, V_s, \overline{V}_1, \ldots, \overline{V}_s\}$, and weighted edge w_{ij} between V_i and \overline{V}_i with weight $|V_i \cap \overline{V}_i|$
 - Let *M* be a maximum weight matching on *B*
- Number of misclassifications: $\sum_{i=1}^{s} |V_i| \sum_{(i,j) \in M} W_{ij}$

Planted partitions - the model

Example: misclassifications on graph with s = 3

Maximum weight matching

・ロン ・日ン ・ビン・ ビン・ 日

Planted partitions - results

Theorem (Giesen, M.)

- For fixed p and q, with p > q, and large n, we can whp
 - (i) reconstruct in polynomial time up to *s* partitions correctly, for $s \le c \frac{\sqrt{n}}{\log \log n}$.
 - (ii) in polynomial time bound the number of misclassifications by $CS\sqrt{n}$, for some c > 0, for $s \le c'\sqrt{n}$.
 - (iii) if $s \ge \frac{cn}{\log n}$, then the planted s-partition is not a minimum partition anymore.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

26 / 32

Planted partitions - algorithm and analysis

Outline of the simplest algorithm - for item (ii)

- **INPUT**: Adjacency matrix A of a graph from $\mathcal{G}(\phi, p, q)$
- **2** Estimate s := number of partitions
- Sompute projector P onto s largest eigenvectors of A.
- Ocompute vectors c_i ∈ {0, 1}ⁿ of each column of P: c_i(j) = 1 iff j-th entry of P_i among n/s largest entries
- **(Basically)** put *i* and *j* in the same partition C_{ℓ} if the Hamming Distance between c_i and c_j is small

イロン 不良 とくほど 不良 とうほう

27 / 32

Planted partitions - algorithm and analysis

- Compare projector with 'perfect' projector
 - 'Perfect' projector has (after permutation) blockdiagonal structure
 - Subspace of 'perfect' projector = space of all piecewise constant vectors (vectors constant on each partition class)
- Want indicator vectors for reconstruction
- Indicator vectors = special type of piecewise constant vectors v

Planted partitions - algorithm and analysis

• Let v be an indicator vector found. Matrix perturbation theory guarantees:

Eigenspace of 2 largest eigenvectors

Small angle between v and Pv

(日) (四) (王) (王) (王)

29 / 32

Planted partitions - algorithm and analysis

Theorem (Stewart)

Let M and \hat{M} two symmetric matrices $\in \mathbb{R}^{n \times n}$ and let P (and \hat{P} , respectively) be the projection matrices onto the space anned by the eigenvectors corresponding to the k largest eigenvectors of M (\hat{M} , respectively). Then

$$|P - \hat{P}|_2 \leq rac{2|M - \hat{M}|_2}{|\lambda_k(M) - \lambda_{k+1}(M)| - 2|M - \hat{M}|_2}$$

 $if |\lambda_k(\boldsymbol{M}) - \lambda_{k+1}(\boldsymbol{M})| > 4|\boldsymbol{M} - \hat{\boldsymbol{M}}|_2.$

• Projectors are close in norm if corresponding matrices have small norm difference and spectral gap is high

◆□ → ◆□ → ◆注 → ◆注 → □ □

30 / 32

Planted partitions - algorithm and analysis

Remarks about improved algorithm for correct reconstruction (item (i))

- partition input matrix into several parts
- boost algorithm by pruning already reconstructed parts

Remarks about lower bound on non-reconstructability (item (iii))

• Non-spectral. Compute probability of existence of smaller *s*-partition than the planted one (second moment method)

	r	L.	ı.	u	u

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

31 / 32

Remarks

- Spectral methods work well, give best known bounds for (planted) partition problems
- Does an angle-based approach of the *s* largest eigenvectors give the same bounds? Seems to perform as well as projector ...

32 / 32

Open questions

- In reconstruction problems less theoretical work about different matrices (Laplacian, normalized Laplacian). Do similar bounds hold?
- Can one find $\Theta(\sqrt{n})$ planted partitions?
- Can one find cliques of size $k = o(\sqrt{n})$? Major drawback: The 2-norm is a very global measure, and hard to use algorithmically (in the analysis of an algorithm)