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Universitat politècnica de Catalunya

Barcelona, Catalonia

8 de juny de 2011

1 Spectral graph theory

For some background, see [1, 25, 12].

Problem 1.1 Let λ1 ≥ λ2 ≥ · · ·λn the (adjacency matrix) eigenvalues of a graph G. It
is known that the size of the largest coclique (independent set of vertices) of G satisfies the
bound

α(G) ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.

Find similar bounds for the k-independence number αk, k ≥ 1; that is, the maximum
number of vertices which are mutually at distance greater than k (so, α1 = α).

Problem 1.2 Prove or disprove that, given any graph G = (V,E), we can find a matrix
M with entries Muv = 0 when uv ̸∈ E such that the above upper bound is sharp.

Problem 1.3 For a partition P of the vertex set V , let B be the weight- (or pseudo-
)quotient matrix of A. We already know that when the interlacing evB ⊂ evA is tight
then P is weight- (or pseudo-)regular. Look for an “iff”result.

Problem 1.4 Some spectral characterizations (such as the spectral excess theorem for
diameter three or the upper bound for the diameter) have been obtained by using either of
the techniques, eigenvalue interlacing and orthogonal polynomials+orthogonal projections.
Thus, we could try to put it all in a common general framework (or, at least, find some
interesting relationships between both techniques). Probably, Problems 1.3 and 1.4 are
related since someway in both cases we are trying to generalize the conditions (some kind
of relationship between evB and evA?) for having a weight-regular partition.
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Problem 1.5 Study some possible generalizations of the Hoffman polynomial [26]: A
graph G = (V,E) with adjacency matrix A has a (weight-)regular partition iff there exists
one (or more) polynomial(s) that, when applied to A, gives matrices with blocks being
multiple of the all-1 matrix J (with appropriate size), as it happens in the case of connected
regular (or general) graphs and biregular graphs.

2 Distance-regular graphs

Problem 2.1 (Problem 3 (BCC18.3)) Strongly distance-regular graphs. Proposed by M.
A. Fiol. For the definition of a distance-regular graph and related concepts, we refer to
Brouwer et al. [3]. A graph G with diameter d is called strongly distance-regular if G is
distance-regular and the distance-d graph Gd (in which vertices are adjacent if they have
distance d in G) is strongly regular. Examples include [13, 14]:

1. Any strongly regular graph.

2. Any distance-regular graph with d = 3 and third-largest eigenvalue −1;

3. Any antipodal distance-regular graph.

Problem: Prove or disprove that these examples exhaust all possibilities.

Problem 2.2 Both the intersection parameters pkij and the Krein parameters qkij are

known to be nonnegative. Is this also true for the preintersection parameters ξkij and

the preKrein parameters ζkij?

3 Almost distance-regular graphs

For concepts and notation, see [7, 8].

It would also be interesting to find examples of m-partially distance-regular graphs
with m equal (or close) to d − 2 that are not distance-regular (for all d), is these exist.
More specifically, we pose the following problem.

Problem 3.1 Determine the smallest m = mpdr(d) such that every m-partially distance-
regular graph with d+ 1 distinct eigenvalues is distance-regular.

There are examples of (D − 1)-walk-regular graphs with diameter D that are not
distance-regular, for small D. For larger D, we do not have such examples however, so
the question arises if these exist at all.
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Problem 3.2 (a) Determine the smallest m = mwr,D(D) such that every m-walk-
regular graph with diameter D is distance-regular.

(b) Determine the smallest m = mwr,d(d) such that every m-walk-regular graph with
d+ 1 distinct eigenvalues is distance-regular.

Problem 3.3 Define and study the different concepts of almost distance-regularity for
“almost distance-biregular graphs”. (It is known that if a graph G is distance-regular
around each of its vertices, then it is either distance-regular or distance-biregular.)

Let G be a graph with diameter D and d+ 1 distinct eigenvalues. Let us consider the
adjacency algebra

A = span{I,A,A2, . . . ,Ad} = span{E0,E1,E2, . . . ,Ed}

and the distance algebra
D = span{I,A,A2, . . . ,AD}.

Let us consider the following two families of orthogonal polynomials:

• The predistance polynomials p0, p1, . . . , pd such that

⟨pi, pj⟩△ =
1

n

d∑
l=0

mlpi(λl)pj(λl) = δijni = δijpi(λ0).

• The preidempotent polynomials q0, q1, . . . , qd such that

⟨qi, qj⟩N =
1

n

d∑
l=0

nlqi(λl)qj(λl) = δijmi = δijqi(λ0).

related by the equality
qj(λi)

pi(λj)
=

mj

ni
=

qj(λ0)

pi(λ0)
.

In this framework, we know that G is i-punctually distance-regular iff any of the
following conditions hold

• Ai ∈ A

• pi(A) ∈ D

• Ai = pi(A)

Conjecture 3.4 A graph G is j-punctually eigenspace-distance-regular iff any of the fol-
lowing conditions hold
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• Ej ∈ D

• qj [A] ∈ A

• Ej = qj [A]

where f [A] = 1
n

∑d
i=0 f(λi)Ai for any given polynomial f .

4 Edge-distance-regular graphs

For preliminary studies, see [19, 6].

The edge-distance-regular graphs are distance-regular around each of their edges and
with the same intersection numbers for each edge. That is, a similar condition that for
distance-regular graphs but ‘seen’ from the edges instead that from the vertices.

Problem 4.1 Find examples/families of edge-distance-regular graphs not being distance-
regular.

Problem 4.2 Extend the results/concepts in [7] on almost distance-regular graphs to
the case of (almost) edge-distance-regularity. Study new concepts, such as almost edge-
distance-regular graphs, edge-walk-regular graphs, etc.

In general, try to do the same for most of the known results on distance-regular graphs.
For instance:

Problem 4.3 Prove that, for a fixed degree, there are finitely many edge-distance-regular
graphs. (In the case of distance-regular graphs, this corresponds to the Itho conjecture that
was recently proved (the work is still in revision)).

Problem 4.4 Prove or disprove that an edge-distance-regular graph has maximum edge-
and/or vertex-connectivity. The same problem for superconnectivity. (In the case of
distance-regular graphs, this was a conjecture of Brouwer, now a theorem recently proved).

Problem 4.5 Godsil and Shawe-Taylor [24] proved that every distance-regularised graph
is either distance-regular or distance-biregular. Prove or disprove that every edge-distance-
regularized graphs is edge-distance-regular.

Problem 4.6 Find an infinite family of edge-distance-regular graphs not being edge-tran-
sitive. In the case of non-vertex-transitive distance-regular graphs, one such a family was
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recently found by Van Dam and Koolen [11]. This is the first known family of non-vertex-
transitive distance-regular graphs with unbounded diameter, and it was found by applying
the spectral excess theorem for distance-regular graphs [17, 10, 20].

Problem 4.7 Find the analogue of association schemes for the case of edge-distance-
regular graphs.

Problem 4.8 Fins the relationship between edge-distance-regularity in combinatorial sense
and in algebraic sense (Terwilliger-like algebras). For the case of distance-regularity, see
[5].

5 Bidirectional digraphs

Given a digraph G = (V,A), with the standard distant function dist(·, ·) = distG(·, ·), we
can consider the following new concepts:

• The bidirectional distance between vertices u, v ∈ V is defined as

dist∗(u, v) = min{dist(u, v),dist(v, u)} = min{distG(u, v),distG(u, v)}.

Notice that, contrarily to dist, the bidirectional distance dist∗ is a metric.

• The bidirectional eccentricity of a vertex u ∈ V is

ecc∗(u) = max{dist∗(u, v) : v ∈ V }.

• The bidirectional diameter of G is

D∗ = max{ecc∗(u) : u ∈ V } = max{dist∗(u, v) : u, v ∈ V }.

• The bidirectional radius of G is

r∗ = min{ecc∗(u) : u ∈ V }.

Problem 5.1 For which values of δ and d there exists a δ-regular digraph G with bidirec-
tional diameter D∗ = d with exactly a bidirectional d-walk between every pair of vertices.
In other words, find solutions of the matrix equation

Ad + (A⊤)d = J ,

where A is the adjacency matrix of G satisfying Aδ = δA.

Problem 5.2 Similar problem for the matrix equation (looking for bidirectional Moore
digraphs)

I +A+A⊤ + · · ·+Ad + (A⊤)d = J .
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6 Notation

Symbol Definition

ai Intersection number pi1,i
αi Preintersection number ξi1,i
a(ℓ) Number of crossed walks of length ℓ rooted at any vertex

a
(ℓ)
h Number of walks of length ℓ between any pair of vertices at distance h

a
(ℓ)
u Number of crossed walks of length ℓ rooted at vertex u

a
(ℓ)
uv (u, v)-entry of Aℓ or number of ℓ-walks between vertices u and v

a
(ℓ)
h Mean number of ℓ-walks over all pairs of vertices at distance h

A Adjacency matrix of graph G
Ai Adjacency matrix of graph Gi or distance-i matrix of graph G

Ãi Orthogonal projection of Ai onto A
Auv (u, v)-entry of matrix A
A = A(G) Adjacency or Bose-Mesner algebra of graph G
bi Intersection number pi1,i+1

βi Preintersection number ξi1,i+1

Bi i-th graph of an association scheme

C Set of the numbers a
(ℓ)
uv for 0 ≤ ℓ ≤ d

ci Intersection number pi1,i−1

d+ 1 Number of different eigenvalues of adjacency matrix A
D = D(G) Diameter of a graph G
D = D(G) Vector space with basis the set of distance matrices of G
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Symbol Definition

dist(u, v) Distance between vertices u and v
δ Degree of (regular) graph G
δi Degree of (regular) graph Gi

δ(u) Degree of vertex u

δi Average degree of graph Gi

δij Kronecker delta
eu Canonical vector of Rn representing vertex u
e+ 1 Number of graphs is an association scheme
E = E(G) Edge set of a graph G
Ei Idempotent of A corresponding to the orthogonal projection onto Ei
Ei Eigenspace of eigenvalue λi

ecc(u) eccentricity of vertex u
ηi Coefficient of xi in a generic polynomial
evG = evA Set of different eigenvalues of graph G
g Girth of graph G
G Graph
Gi Distance-i graph of G
γi Preintersection number ξi1,i−1

Γi(u) Set of vertices at distance i from vertex u
h Parameter for h-punctually distance-polynomial graph

Parameter for h-punctually distance-regular graph
Parameter for h-punctually walk-regular graph
Parameter for h-punctually spectrum-regular graph

h, i, j, k Distances between vertices (0 ≤ h, i, j, k ≤ D)
Indexes of distance polynomials
Parameters of the intersection numbers

H Hoffman polynomial
i, j, k, l Indexes of eigenvalues, eigenspaces, idempotents (0 ≤ i, j, k, l ≤ d)

Indexes of predistance polynomials
Parameters of preintersection numbers

I Set of indexes i ∈ {0, 1, . . . , d} for which qh(λi) = 0
I Identity matrix
j All-1 vector
J All-1 matrix
ξkij Preintersection number for 0 ≤ i, j, k ≤ d

l + 1 Number of eigenvalues λi such that qh(λi) = 0
ℓ Length of a walk
λ Number of common neighbors of any two vertices of a graph G
λmi
i Eigenvalue of adjacency matrix A with multiplicity mi = m(λi)

λ∗
i Lagrange interpolating polynomial giving the idempotent Ei = λ∗

i (A)
m Parameter for m-walk-regular graph

Parameter for m-partially distance-polynomial graph
Parameter for m-partially distance-regular graph
Parameter for m-partially walk-regular graph
Parameter for m-partially spectrum-regular graph7



Symbol Definition

mu(λi) u-local multiplicity of λi

mhi Crossed local multiplicity of λi for any pair of vertices at distance h
mhi Mean crossed local multiplicity of λi over all pairs of vertices at distance h
muv(λi) Crossed uv-local multiplicity of λi

O 0-matrix
0 0-vector
pi Predistance polynomial with degree i of graph G

Distance polynomial with degree i of graph G

p̂i(A) Orthogonal projection of pi(A) onto D
pkij Intersection number for 0 ≤ i, j, k ≤ D

ϕi Product of all the terms λi − λj for all j ̸= i
πi Product of all the terms |λi − λj | for all j ̸= i
Rd[x] Vector space of real polynomials with degree at most d
Ri Relation of an association scheme
Sk Sum of distance matrices up to Ak

spG = spA Spectrum of the adjacency matrix of graph G
sum Sum of all entries of a matrix
T Vector space A+D
trA Trace of matrix A
u, v, w, . . . Generic vertices
V = V (G) Vertex set of a graph G
Z Minimal polynomial of adjacency matrix A

◦ Schur or Hadamard component-wise product of matrices
∼ Adjacency between vertices
⟨p, q⟩ Scalar product of polynomials p and q in Rd(x), defined as ⟨p(A), q(A)⟩
⟨P ,Q⟩ Scalar product of matrices P ,Q ∈ T , defined as 1

n tr(PQ) = 1
n sum(P ◦Q)
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