
Theoretical Computer Science 410 (2009) 3751–3760

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Hardness and approximation of traffic groomingI,II

Omid Amini a, Stéphane Pérennes b, Ignasi Sau b,c,∗
aMax-Planck-Institut für Informatik, Saarbrücken, Germany
bMascotte joint Project of I3S (CNRS/UNSA) and INRIA - Sophia-Antipolis, France
c Graph Theory and Combinatorics Group at Applied Mathematics IV Department of UPC - Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 28 November 2008
Received in revised form 21 April 2009
Accepted 28 April 2009
Communicated by D. Peleg

Keywords:
Traffic grooming
Optical networks
SONET ADM
Approximation algorithms
Apx-hardness
PTAS

a b s t r a c t

Traffic grooming is a central problem in optical networks. It refers to packing low rate
signals into higher speed streams, in order to improve bandwidth utilization and reduce
network cost. In WDM networks, the most accepted criterion is to minimize the number
of electronic terminations, namely the number of SONET Add–Drop Multiplexers (ADMs).
In this article we focus on ring and path topologies. On the one hand, we provide an
inapproximability result for Traffic Grooming for fixed values of the grooming factor g ,
answering affirmatively the conjecture of Chow and Lin [T. Chow, P. Lin, The ring grooming
problem, Networks 44 (2004), 194–202]. More precisely, we prove that Ring Traffic
Grooming for fixed g ≥ 1 and Path Traffic Grooming for fixed g ≥ 2 are Apx-complete.
That is, they do not accept a PTAS unless P = NP. Both results rely on the fact that finding
the maximum number of edge-disjoint triangles in a tripartite graph (and more generally
cycles of length 2g + 1 in a (2g + 1)-partite graph of girth 2g + 1) is Apx-complete.
On the other hand, we provide a polynomial-time approximation algorithm for Ring

and Path Traffic Grooming, based on a greedy cover algorithm, with an approximation
ratio independent of g . Namely, the approximation guarantee is O(n1/3 log2 n) for any
g ≥ 1, n being the size of the network. This is useful in practical applications, since in
backbonenetworks the grooming factor is usually greater than the network size. Finally,we
improve this approximation ratio under some extra assumptions about the request graph.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Background and Problem Definition

Optical wavelength divisionmultiplexing (WDM) is today themost promising technology to accommodate the explosive
growth of Internet and telecommunication traffic in wide-area, metro-area, and local-area networks. Using WDM, the
potential bandwidth of 50 THz of a fiber can be divided into multiple non-overlapping wavelength or frequency channels.
Since currently the commercially available optical fibers can support over a hundred frequency channels, such a channel has
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Fig. 1. Two valid partitions of K5 when g = 2, using different number of ADMs.

over one gigabit-per-second transmission speed. However, the network is usually required to support traffic connections at
rates that are lower than the full wavelength capacity. In order to save equipment cost and improve network performance,
it turns out to be very important to aggregate themultiple low-speed traffic connections, namely requests, into higher speed
streams. Traffic grooming is the term used to carry out this aggregation, while optimizing the equipment cost. In WDM
optical networks the most accepted criterion is to minimize the number of electronic terminations, which is unanimously
considered as the dominant cost, rather than the number of wavelengths.
SONET ring is themost widely used optical network infrastructure today. In these networks, a communication between a

pair of nodes is done via a lightpath, and each lightpath uses an Add–Drop Multiplexer (ADM), i.e. an electronic termination,
at each of its two endpoints. If each request uses 1/g of the capacity of a wavelength, g is said to be the grooming factor.
The problem is equivalent to assigning a wavelength to each request in such a way that for any wavelength and any link of
the network, there can be at most g requests using this link on this wavelength. The aim is to minimize the total number
of ADMs. In the graph-theoretical approach that we use, the set of requests is modeled by a graph R, and each vertex in
the subgraph of R corresponding to a wavelength represents an ADM. The problem, in the case where the communication
network is a ring, can be formally stated as follows:

Ring Traffic Grooming
Input: A cycle Cn on n vertices (network), a graph R (set of requests) on vertices of Cn, and a grooming factor g .
Output: Find for each edge r = {x, y} of R, a path P(r) in Cn between x and y, and a partition of the edges of R into subgraphs
Rω , 1 ≤ ω ≤ W , such that for each edge e in E(Cn) and for all ω, the number of paths P(r) using e, r being an edge of Rω , is
at most g .
Objective:Minimize

∑W
ω=1 |V (Rω)|.

The number of paths P(r) using an edge e ∈ E(Cn) in a given subgraph Rω is known as the load of e in Rω . That is, the load
of the edges in any subgraph of the partition of E(R) can be atmost g . The statement of Path Traffic Grooming is analogous,
replacing cycle Cn with path Pn. To fix ideas, consider a ring on five nodes and the complete graph of Fig. 1 as request graph,
and let g = 2. We exhibit two valid solutions of the problem, both using two subgraphs (i.e. two wavelengths). The lower
solution is better because it uses 9 vertices instead of 10.

Previous work and our contribution

The notion of traffic grooming was introduced in [16] for the ring topology. Since then, traffic grooming has been widely
studied in the literature (cf. [12,24,28] for some surveys). The problem has been proved to be NP-hard for ring networks
and general g [7]. Many heuristics have been done [11], but exact solutions have been found only for certain values of g and
for the uniform all-to-all traffic case in unidirectional ring [4], bidirectional ring [5], and path topologies [3]. Recently exact
solutions have been also given in the unidirectional ring when the request graph has bounded degree [25]. On the other
hand, there was no result on the inapproximability of the problem for fixed g ≥ 1. In [8] the authors conjecture that Traffic
Grooming isMax SNP-hard (or equivalently, Apx-hard, modulo PTAS-reductions) for any fixed value of the grooming factor.
We answer affirmatively to this question in Theorem 3.1, providing the first hardness result for the Ring Traffic Grooming
problem for fixed values of the grooming factor g .
Considering g as part of the input, in [19] it was proved that Path Traffic Grooming does not accept a constant-factor

approximation unless P = NP. For fixed values of g , Path Traffic Groomingwas proved to be in P for g = 1 [3], but the com-
plexity for fixed g ≥ 2has been anopenquestion for awhile. Recently, it has beenproved in [26] thatPathTrafficGrooming
for fixed g > 1 is NP-hard for bounded number of wavelengths. Our method permits us to improve this result in Section 3,
by proving the Apx-hardness of Path Traffic Grooming for any fixed g > 1 and unbounded number of wavelengths. In
particular, this extends the NP-hardness result of [26] to the case where the number of wavelengths is not bounded.
The main ingredient of our approach is the proof of the Apx-completeness (given in Section 2) of the problem of finding

the maximum number of edge-disjoint triangles in a tripartite graph with bounded degree B: Maximum B-Bounded Edge
Covering by Triangles (MECT-B for short). The proof is obtained by L-reduction from Maximum Bounded Covering by 3-
Sets, which was proved to be MAX SNP-complete in [21]. A simple modification of this technique permits us to prove the
Apx-completeness of finding the maximum number of edge-disjoint odd cycles of given length in a graph. This latter claim
is then used to extend our results to arbitrary values of g , see Sections 2 and 3.
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The design of approximation algorithms for Traffic Grooming is the topic of the second part of this paper. We present
the results for the ring topology, but the same algorithmworks also for the path topology. Aswe show in Section 3, it is trivial
to obtain aO(

√
g)-approximation with running time polynomial in g and n. For g = 1, the best algorithm in rings achieves

an approximation ratio of 10/7 [13]. For general g , the best approximation algorithm [15] achieves an approximation factor
of O(log g), but the problem is that the running time is exponential in g (that is, ng ). Since in practical applications SONET
WDM rings are widely used as backbone optical networks [12,24], the grooming factor is usually greater than the size of
the network, i.e. g ≥ n. For those networks, the running time of this algorithm becomes exponential in n. Thus, it turns
out to be important to find good approximation algorithms with running time polynomial in both n and g . In Section 4 we
provide such an approximation algorithm, considering g as part of the input. Our algorithm finds a solution of Ring Traffic
Grooming that approximates the optimal value within a factor O(n1/3 log2 n) for any g ≥ 1. To the best of our knowledge,
this is the first polynomial-time approximation algorithm for the Ring Traffic Grooming problem with an approximation
ratio which does not depend on g . Although the performance of this algorithm seems not to be very good at first sight, in fact
we conjecture that for the general instance of the problem it is not possible to get rid of a factor nδ , for some constant δ > 0.
Finally, we show that the general scheme of the algorithm yields a O(log2 n)-approximation if the request graph excludes
a fixed graph as minor, for example if R is planar or of bounded genus. The main theoretical contribution of the second part
of this paper is to relate the Traffic Grooming problem to the Dense k-Subgraph problem [14]. We conclude by proposing
some further research directions to better understand the complexity of Traffic Grooming.

Notation. We use standard graph theoretical terminology (cf. for instance [10]), and we consider simple undirected graphs
without loops or multiple edges. Given a graph G = (V , E), and the edge between the vertices u and v is denoted
{u, v}. A graph on n vertices is called complete if it contains an edge between each pair of vertices, and is denoted Kn.
The complete graph on three vertices is known as the triangle. The path on n vertices v0, . . . , vn−1 with the n − 1 edges
{v0, v1}, {v1, v2}, . . . , {vn−2, vn−1} is denoted Pn. The cycle on n vertices obtained from Pn by adding the edge {vn−1, v0} is
denoted Cn. A graph G is k-partite if V (G) can be partitioned into k classes V0, . . . , Vk−1 such that there are only edges be-
tween classes Vi and Vj with i 6= j. The 2-partite (resp. 3-partite) graphs are known as bipartite (resp. tripartite). The density
ρ of a graph G = (V , E) is its edges-to-vertices ratio, that is ρ(G) = |E(G)|

|V (G)| .

2. Apx-completeness ofMECT-B

In complexity theory, the class Apx (Approximable) stands for all NP-hard optimization problems that can be approxi-
mated within a constant factor. The subclass PTAS (Polynomial-Time Approximation Scheme) contains the problems that
can be approximated in polynomial timewithin a ratio 1+ε for all constants ε > 0. Intuitively, these problems are the easi-
est ones among allNP-hard problems. For example, the Traveling Salesman Problem in the Euclidean plane accepts a PTAS.
Since, assuming P 6= NP, there is a strict inclusion of PTAS into Apx (for instance,Minimum Vertex Cover ∈ Apx \ PTAS), an
Apx-hardness result for a problem implies the non-existence of a PTAS.
The problem of finding the maximum number of node or edge-disjoint cycles in an undirected graph G has several

applications, for instance in computational biology [2]. It is often the case that both the maximum degree of G and the
length of the cycles to be found are bounded by a constant. In this section we are interested in the following problem:

Maximum B-Bounded Edge Covering by Triangles (MECT-B)
Input: An undirected graph Gwith maximum degree at most B.
Objective: Find the maximum number of edge-disjoint triangles in G.

MECT-B is long known to be NP-hard [18], and the Apx-hardness when requiring node-disjoint triangles was proved
in [21]. Following the ideas of [21], in [6] it was proved thatMECT-5 is Apx-hard for general graphs and NP-hard for planar
graphs. Finally, in [23]MECT-B was studied from a parameterized view, considering the number of edge-disjoint triangles
as the parameter. Namely, is was proved thatMECT-B is Fixed Parameter Tractable (FPT) by achieving a linear kernel.
In this article we prove that MECT-B remains Apx-hard for tripartite graphs. For convenience, we prove the Max SNP-

hardness ofMECT-B, which is known to be the same as theApx-hardnessmodulo PTAS-reductions.MECT-B is trivially inApx,
since a simple greedy algorithm provides a 3-approximation. The best approximation guarantee forMECT-B is a (3/2+ ε)-
approximation algorithm for any ε > 0 [20]. We need to introduce two problems to be used in the proof of Theorem 2.1:
Maximum Bounded Covering by 3-Sets (Max 3SC-B for short): Given a collection of 3-subsets of a given set, each element
appearing in at most B subsets, find the maximum number of disjoint subsets; and Maximum Bounded Independent Set
(Indep. Set-B for short): Given a graph of maximum degree≤ B, find a maximum independent set.

Theorem 2.1. MECT-B, B ≥ 10, is Apx-complete for tripartite graphs.

Proof. L-reduction fromMax 3SC-B and L-reduction to Indep. Set-B.
We define h : MECT-B → Indep. Set - (3/2(B− 2)) as follows: given a graph G as instance I of MECT-B, we define the
following instance h(I) of Indep. Set - (3/2(B-2)): the graph h(G) contains a node vT for every triangle T in G. There is an
edge {vT0 , vT1} in h(G) if and only if T0 and T1 share an edge in G. Given a solution A of h(I), we define a solution Sh(A) of I by
taking the triangles corresponding to nodes in A. It is easily verified that (h, Sh) is an L-reduction.
We define f :Max 3SC-B→MECT-(3B+1) in the following way: suppose that we are given as instance I , a collection C of

3-element subsets of a set X such that every element of X belongs to at most Bmembers of C . The problem for I consists in
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Fig. 2. Gadget Gi used in the reduction of the proof of Theorem 2.1.

finding themaximal numberOPT (I) of disjoint subsets in C .We construct an instance f (I) ofMECT-(3B+ 1), i.e. we construct
a graph G = (V , E) in which we ask for the maximum number OPT (f (I)) of edge-disjoint triangles. Let C = {c1, . . . , cr},
with |ci| = 3. The local replacement f substitutes for each element ci = {x, y, z} ∈ C , the graph Gi = (Vi, Ei) depicted in
Fig. 2.
To avoid confusion, note by t any element in ci, i.e. t ∈ {x, y, z}. Note that, for each element t , the nodes t[0] and t[1],

and the edge {t[0], t[1]} (corresponding to the thick edges in Fig. 2) appear only once in G, regardless of the number of
occurrences of t . On the other hand, we add 9 new vertices ai[j], 1 ≤ j ≤ 9 for each subset ci, 1 ≤ i ≤ |C |. More precisely,
G = (V , E) = ∪|C |i=1Gi, where V =

⋃
t∈X {t[i] : i = 0, 1} ∪

⋃|C |
i=1{ai[j] : 1 ≤ j ≤ 9} and E =

⋃|C |
i=1 Ei.

Given a solution A of f (I) of size s2, wemodify it in polynomial time to another equal or better solution A′ in the following
way: in eachGi, if the three triangles covering the edges {x[0], x[1]}, {y[0], y[1]}, and {z[0], z[1]} (numbered 1, 7, 13 in Fig. 2)
belong to A, we choose the seven odd triangles of Gi to belong to A′. If not, we take the six even triangles. Let s′2 ≥ s2 be the
size of A′. Then, we define a solution Sf (A) of I by choosing the subset ci to be in Sf (A) if and only if A′ contains exactly 7
triangles in Gi. We claim that the pair (f , Sf ) is an L-reduction: in each Gi there are 13 different triangles, numbered from 1 to
13 in Fig. 2. The only way to choose 7 edge-disjoint triangles in Gi is by taking all the odd triangles, and thus by covering the
three edges {x[0], x[1]}, {y[0], y[1]}, and {z[0], z[1]}. All other choices of triangles yield at most 6 edge-disjoint triangles.
The key observation is that we are able to choose 7 triangles exactly OPT (I) times. Indeed, each time we choose 7 triangles
we cover the edges corresponding to 3 elements of ci, and since the number of disjoint ci’s in C is OPT (I), this can be done
exactly OPT (I) times. On the other hand, one can easily see that OPT (I) ≥ |C |3B . Hence:

OPT (f (I)) = 7 · OPT (I)+ 6(|C | − OPT (I)) ≤ OPT (I)+ 18B · OPT (I)
= (18B+ 1)OPT (I).

To conclude, note that if the solution Sf (A) of I has size s1, we have OPT (I) − s1 ≤ OPT (f (I)) − s2. To see this, we observe
that OPT (f (I)) = 6r + OPT (I), and also s′2 = 6r + s1, and so OPT (f (I))− OPT (I) = s1 − s

′

2 ≤ s1 − s2.
Both (f , Sf ) and (h, Sh) are L-reductions and MAX 3SC-B, B ≥ 3 and Indep. Set-B, B ≥ 5 are Max SNP-complete [21].

Thus, MECT-B, B ≥ 10 is Max SNP-complete. Finally, note that the graph G = (V , E) used in the proof is tripartite, where
the vertex sets V0, V1, V2 defining the tripartition are:

V0 =
|X |⋃
t∈X

t[0] ∪
|C |⋃
i=1

{ai[2], ai[5]}, V1 =
|C |⋃
i=1

{ai[j] : j = 1, 4, 7, 8, 9},

V2 =
|X |⋃
i=1

t[1] ∪
|C |⋃
t∈X

{ai[3], ai[6]}. �

The proof of the Apx-hardness ofMECT-B of Theorem 2.1 can be extended to obtain theApx-completeness of the problem
of finding the maximum number of edge-disjoint cycles of length 2g + 1 for any fixed g ≥ 1, as stated in the following
theorem.
Theorem 2.2. Let G be the class of (2g + 1)-partite graphs G of girth 2g + 1, consisting of (2g + 1) parts A0, . . . , A2g such that
the only edges are between Ai and Ai+1 (mod 2g + 1), i = 0, . . . , 2g, and such that all the graphs induced by V (G) \ Ai in G, for
all i = 0, . . . , 2g, form a forest. Then the problem of finding the maximum number of edge-disjoint C2g+1’s is Apx-complete in G.
Proof. First, note that a greedy algorithm provides a constant-factor approximation with factor 2g + 1, so the problem is
in Apx. Consider the gadget of the proof of Theorem 2.1 (see Fig. 2). We modify this gadget in such a way that the same
proof holds for C2g+1’s instead of C3’s (triangles), and such that all the conditions of the theorem are verified. Given g > 1,
we add a chain of 4g + 1 triangles between any pair of triangles corresponding to thick edges (that is, between the edges
corresponding to elements of X). Then we add g − 1 inner points to all the edges going from up to down in the triangles. An
example if shown in Fig. 3.
It is easily seen that the graph built in this way is (2g + 1)-partite. Indeed, it admits a partition into (2g + 1) parts,

numbered 0, . . . , 2g , which consist of enumerating the vertices cyclically. Let A0, . . . , A2g be the different parts. In such a
(2g + 1)-partition, for any element t ∈ X , the vertex t[0] belongs to A0, and the vertex t[1] belongs to A2g . We need this
property to ensure the consistency of our gadget when an element appears in more that one subset. Note that the graphs
induced by V (G) \ Ai in G, for all i = 0, . . . , 2g , form a forest. At this point, one can rewrite the proof of Theorem 2.1 to
obtain the result, just by changing the multiplicative constants. �
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Fig. 3. Adding g − 1 inner points (depicted as© in the figure) to prove the Apx-completeness of finding edge-disjoint C2g+1 ’s.

a b

Fig. 4. Tripartite request graphs used in Lemma 3.2: (a) in the ring for g = 1; (b) in the path for g = 2.

3. Apx-completeness of Traffic Grooming

In this sectionwe prove the hardness results for Ring Traffic Grooming and Path Traffic Grooming. First we prove that
Ring Traffic Grooming belongs to Apx when g is fixed (i.e., not part of the input). The same result holds for Path Traffic
Grooming.

Lemma 3.1. Ring Traffic Grooming belongs to Apx for any fixed g ≥ 1.

Proof. To see that Ring Traffic Grooming is in Apx for any fixed g ≥ 1, we have to find a constant-factor approximation
algorithm. We use the fact that the best possible density ρ∗ of any subgraph involved in the partition of the request graph
in the ring isO(

√
g), given by a complete graph inducing load g in the edges of the ring (it is clear that no graph has greater

density than the complete graph). We prove that the cost A of any solution R1, . . . , RW is in the interval [
|E(R)|
ρ∗
, 2|E(R)|]. This

clearly implies that any solution has cost at most 2ρ∗ = O(
√
g) times the optimal cost. To see this, note that each edge of

R contributes at most twice to the cost, so A ≤ 2|E(R)|. On the other hand, we have

A =
W∑
ω=1

|V (Rω)| =
W∑
ω=1

|E(Rω)|
ρ(Rω)

≥

W∑
ω=1

|E(Rω)|
ρ∗

=
|E(R)|
ρ∗

.

Thus, a O(
√
g)-approximation is obtained just by taking any partition of the request graph. �

Since we will deal with tripartite graphs in the proof of Theorem 3.1, we need first a technical lemma concerning the
structure of the optimal solutions of Ring Traffic Grooming in tripartite request graphs.

Lemma 3.2. Let R be a tripartite instance graph of Ring Traffic Grooming for g = 1 such that the vertices belonging to the
same class of the tripartition are placed consecutively in the ring, and let t∗ be the maximum number of edge-disjoint triangles in
R. If there exists a partition of E(R) into triangles and P4’s which uses exactly t∗ triangles, then this partition is optimal. The same
property holds for Path Traffic Grooming and g = 2.

Proof. We focus first on Ring Traffic Grooming. Let t∗ the maximum number of edge-disjoint triangles of a partition of
E(R). When R is tripartite and g = 1, it is clear that the only possible subgraphs that can be involved in a partition of E(R)
are K3, P2, P3, and P4 (see Fig. 4a). Since these three paths have density at most 3/4 (attained by the P4), the cost At of any
solution using t triangles satisfies

At ≥ t + 4 ·
|E(R)| − 3t

3
=
4
3
|E(R)| − 3t ≥

4
3
|E(R)| − 3t∗. (1)

Note that the above bound does not depend on t , and therefore holds for any solution. A partition as stated in the conditions
of the lemma attains this lower bound, hence it is optimal. The same argument applies to the path and g = 2 (see Fig. 4b),
since the same subgraphs are involved in any partition. �
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a

b

c

Fig. 5. Request graphs used in the proof of Theorem 3.1: (a) gadget Gi corresponding to the set ci = {x, y, z}. The labels of the vertices indicate the
tripartition; (b) partition into 9 K3 ’s and 4 P4 ’s with the edges x, y, z ; (c) partition into 8 K3 ’s and 4 P4 ’s without the edges x, y, z.

We are ready to state the main result of this section.

Theorem 3.1. Ring Traffic Grooming is Apx-complete for fixed g = 1, even if the request graph has degree bounded by a
constant B ≥ 10. Thus, it does not accept a PTAS unless P = NP.

Proof. The problem is in Apx by Lemma 3.1. To prove the Apx-hardness, we consider the family of request graphsR defined
as follows.
Mimic the proof of Theorem 2.1 replacing the gadget of Fig. 2 with the gadget of Fig. 5a. With slight abuse of notation,

the edge corresponding to an element x is also denoted x. It is easy to check that the same proof carries over with these new
gadgets, and therefore the problem of finding the maximum number of edge-disjoint triangles in this class R of graphs is
Apx-hard. Note that all the graphs built in this way are also tripartite, as shown in Fig. 5a.
Håstad proved [17] thatMaximum Bounded Covering by 3-Sets is Apx-hard evenwhen restricted to instances for which

we know that there exists a collection of mutually disjoint 3-subsets covering all the elements in the set. Therefore, we can
assume without loss of generality that any optimal solution of MECT-B in a graph R ∈ R corresponds to a collection of
mutually disjoint 3-subsets covering all the elements in the set. Hence, such an optimal solution of MECT-B restricted to
each gadget Gi corresponding to the set ci = {x, y, z} satisfies:

(i) either it contains the three edges x, y, z corresponding to the elements in the set ci = {x, y, z}; or
(ii) it contains none of the edges x, y, z.

Thinking of the graphs R ∈ R as instances of Ring Traffic Grooming, the key observation is that:

• in case (i), the gadget Gi can be partitioned into 9 K3’s and 4 P4’s (see Fig. 5b);
• in case (ii), the gadget Gi − {x, y, z} can be partitioned into 8 K3’s and 4 P4’s (see Fig. 5c).

It is easy to see that such a partition uses the maximum number of edge-disjoint triangles in the tripartite graph R, and only
K3’s and P4’s are involved. By Lemma 3.2, this partition is an optimal solution of Ring Traffic Grooming for g = 1 in R. Let
OPT be the number of vertices of such an optimal solution in R, and let t∗ be the number of triangles in an optimal solution
in R. (We simply write OPT and t∗ instead of OPT (R) and t∗(R), respectively.) It is clear that

|E(R)| ≤ OPT ≤ 2|E(R)|. (2)

We have seen in the proof of Lemma 3.2 that the cost At of any solution using t triangles satisfies At ≥ 4
3 |E(R)| − 3t . We

can also write

OPT =
4
3
|E(R)| − 3t∗. (3)

SinceMECT-B is Apx-hard inR, there exists a constant ε0 > 0 such that, unless P = NP, one cannot find in polynomial time
more than (1− ε0)t∗ triangles in an arbitrary graph R ∈ R. Therefore, the cost A of any solution of Ring Traffic Grooming
that can be found in polynomial time satisfies

A ≥
4
3
|E(R)| − 3(1− ε0)t∗ = OPT + 3ε0t∗, (4)
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where we have used Eq. (3). On the other hand, from Eq. (3) and using Eq. (2) twice we get

t∗ =
4
9
|E(R)| −

OPT
3
≥
4
9
|E(R)| −

|E(R)|
3
=
|E(R)|
9
≥
OPT
18

. (5)

Combining Eqs. (4) and (5) yields that the cost A of any solution satisfies

A ≥ OPT + 3ε0
OPT
18
=

(
1+

ε0

6

)
OPT = (1+ ε1)OPT ,

with ε1 = ε0/6 > 0. Therefore, unless P = NP, Ring Traffic Grooming does not accept a PTAS for fixed g = 1. �

As expected, the result can be generalized to any g ≥ 1.

Theorem 3.2. Ring Traffic Grooming is Apx-complete for any fixed g ≥ 1, even if the request graph has degree bounded by a
constant B ≥ 10. Thus, it does not accept a PTAS unless P = NP.

Proof. Sketch. The case g = 1 has been proved in Theorem 3.1, so assume henceforth that g > 1. The problem is in Apx
for any g ≥ 1 by Lemma 3.1. To prove the Apx-hardness, take a (2g + 1)-partite graph as request graph, in such way that
each cycle makes at least g tours around the center of the ring. At this point we can reduce the grooming problem to the
problem of finding a maximum number of cycles of length 2g + 1 in this graph (as in the case g = 1). This later problem is
also Apx-complete, see Theorem 2.2. The details follow.
Let G be a graph satisfying the conditions of Theorem 2.2: G is a (2g + 1)-partite graph, consisting of 2g + 1 parts

A0, . . . , A2g such that the only edges are between Ai and Ai+1 (mod 2g + 1), i = 0, . . . , 2g , and such that the graph induced
between two consecutive parts of G forms a forest (or more generally, a graph of girth at least g + 1). In order to simplify
the presentation, suppose that this graph can be partitioned into C2g+1’s.
Let c0, . . . , c2g be a permutation of the vertices of the cycle C2g+1, such that the polygon (c0, . . . , c2g) makes g tours

around the center (for g = 1 take the triangle; for g arbitrary, let ci = exp(
2igπ
2g+1 )). Now replace each vertex ci with an

interval consisting of vertices of Ai. In this cyclic representation of the graph G, each cycle makes at least g tours around the
origin. To see this, recall that the only possible edges are between Ai and Ai+1 (mod 2g + 1), i = 0, . . . , 2g , and also the
graph induced between two consecutive parts forms a forest. This implies that every cycle should intersect each Ai at least
once, and so this cycle makes at least g tours around the origin, as the original cycle {c0, . . . , c2g} does so.
Each cycle used in the solution should be of length exactly 2g+1, there is no cycle of smaller length, and longer cycles use

each edgemore than g times, as theymakemore than g tours around the origin. Then the problem is reduced to finding edge-
disjoint cycles of length 2g+ 1, which is also Apx-hard by Theorem 2.2. The proof of Theorem 3.1 can now be reproduced to
obtain the same result for any g , replacing the factor 43 for g = 1 (because the path with greatest density in any solution for
g = 1 is P4) with a factor

2g+2
2g+1 for a general g (because the path with greatest density in any solution for general g is P2g+2).

Hence, Ring Traffic Grooming is Apx-complete even for bounded number of requests per node B ≥ 10. �

These ideas can be naturally extended to prove the Apx-completeness of Path Traffic Grooming for any fixed g ≥ 2.

Theorem 3.3. Path Traffic Grooming is Apx-complete for any fixed g ≥ 2. Thus, it does not accept a PTAS unless P = NP.

Proof. Again, the result holds even for bounded number B of requests per node, B ≥ 10. We prove the result for g = 2, pro-
ceeding for g > 2 as in the proof of Theorem3.2. Consider the family of request graphsR defined in the proof of Theorem3.1,
and place the three partition classes consecutively on the path one after the other, as shown in Fig. 4b. Since each triangle
induces load 2 (that is ), minimizing the number of ADMs corresponds to finding the maximum number of edge-disjoint
triangles. Therefore, the problem does not accept a PTAS unless P = NP. �

4. Approximating ring traffic grooming

We are now interested in finding good approximation algorithms considering g as part of the input. As we saw in
Section 3, obtaining a O(

√
g)-approximation is trivial. Since in practical applications SONET WDM rings are widely used

as backbone optical networks [12,24], the grooming factor is usually greater than the size of the network, i.e., g ≥ n. Thus,
it turns out to be important to find approximation algorithms with an approximation ratio not depending on g . A general
approximation algorithm with this property is the main result of this section. It provides in the worst case aO(n1/3 log2 n)-
approximation. We describe it for the ring topology, but exactly the same arguments provide an algorithm for the path.
The main idea is to greedily find subgraphs with high density using approximation algorithms for the Dense k-Subgraph
problem, which is defined as follows: given a graph G and an integer k, find an induced subgraph H ⊆ G on k vertices
with the greatest density among all subgraphs on k vertices. In [14] the authors provide a polynomial-time algorithm with
approximation ratio 2n1/3. To simplify the presentation, suppose that n = 2t for some t > 0 (otherwise, introduce dummy
vertices on the ring until getting size n′ = 2t , with n′ < 2n):
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Algorithm A:

(1) Divide the request set into log n classes, such that in each class Ci the length of the requests lies in the interval [2i, 2i+1),
i = 0, . . . , log n − 1. For each class Ci, the ring can be divided into intervals of length 2i such that the only requests
are between consecutive intervals. In this way we obtain n

2i
subproblems for each class: each one consists in finding

an optimal solution in a bipartite graph of size 2 · 2i. More precisely, each subproblem can be formulated as:
Bipartite Traffic Grooming
Input: A bipartite graph R, and a grooming factor g .
Output: Partition of the edges of R into subgraphs Rω with at most g edges, 1 ≤ ω ≤ W .
Objective:Minimize

∑W
ω=1 |V (Rω)|.

Find a solution to each Bipartite Traffic Grooming subproblem independently using step (2), and output the union
of all solutions.

(2) To find a solution to each Bipartite Traffic Grooming subproblem in a bipartite graph R, proceed greedily (until all
edges are covered) by finding at step j a subgraph Rj of G\ (R1∪ · · ·∪Rj−1)with at most g edges in the following way:
For each k = 2, . . . , 2g find a subgraph Bk of R\ (R1∪· · ·∪Rj−1) using the algorithm of [14] for theDense k-Subgraph
problem.
• If for some k∗, |E(Bk∗)| > g , and |E(Bj)| ≤ g for all j < k∗, remove |E(Bk∗)| − g arbitrary edges from Bk∗ and output
the densest graph among B2, . . . , Bk∗−1, Bk∗ .
• Otherwise, output the densest graph among B2, . . . , B2g .

Let OPT be the optimal solution of Ring Traffic Grooming, and let OPT1 be the cost of the solution obtained by solving
optimally all the subproblems generated by step (1) of AlgorithmA. We prove a lemma before stating Theorem 4.1.

Lemma 4.1. Let β be a given positive real number. Suppose that there exists an algorithm that finds in any bipartite graph R
on at most n vertices, a subgraph with at most g edges which has density at least 1/β times the density of the densest subgraph
with at most g edges. Then in the greedy procedure of step (2) of Algorithm A, one obtains a solution of cost OPT2 such that
OPT2 ≤ O(log n) · β · OPT1.

Proof. Let m be the number of edges of the request graph R, and let R1, R2, . . . , Rr be the subgraphs generated in order by
the above algorithm. We will prove that

∑
|V (Ri)| ≤ log(m) · β · OPT1. To prove this, we first enumerate the edges of R in

order of appearance in Ri’s: all the edges in R1 will be enumerated e1, . . . , eg1 (g1 = |E(R1)| ≤ g), all the edges in R2 will be
enumerated eg1+1, . . . , eg1+g2 (g2 = |E(R2)| ≤ g), and so on. Let ρi be the density of the subgraph Ri, i.e. ρi =

|E(Ri)|
|V (Ri)|

, and
Σ =

∑
|V (Ri)| the total cost of the solution. For every edge ej ∈ Ri, we define c(ej) = 1

ρi
. We claim that

∑
j c(ej) = Σ . To

prove this equality just note that
∑
ej∈E(Ri)

c(ej) =
|E(Ri)|
ρi
= |V (Ri)|, and so

∑
j c(ej) =

∑
i |V (Ri)| = Σ . Let us define R

′

i to be
the union of Ri, Ri+1, . . . , Rr . We define ρ ′i to be the density of the densest subgraph of R

′

i containing at most g edges. Let us
take an optimal solution for R′i , i.e. a decomposition of R

′

i into subgraphs A1, . . . , As such that
∑s
k=1 |V (Ak)| is minimum. Let

ρ1, . . . , ρs be the density of these subgraphs. We have:

• ∀k ≤ s, ρk ≤ ρ ′i : because each Ak is a subgraph of R
′

i containing at most g edges, and ρ
′

i is the density of the densest
subgraph with at most g edges in R′i .
• ρ ′i ≤ βρi: because we suppose that we can find an approximation of ρ

′

i up to a factor 1/β .

This implies that 1
ρk
≥

1
βρi
, and so∑

k

|V (Ak)| =
∑
k

|E(Ak)|
ρk

≥

∑
k

|E(Ak)|
βρi

=
|E(R′i)|
βρi

.

But an optimal solution for R provides a solution for R′i of cost at least the optimal solution for R
′

i , i.e.
∑
k |V (Ak)| ≤ OPT1.

Using this in the above inequality we get 1
ρi
≤

β·OPT1
|E(R′i)|

, and so for an edge ej ∈ Ri we have c(ej) = 1
ρi
≤

β·OPT1
|E(R′i)|

≤
β·OPT1
m−j+1 , and

this proves that

Σ =
∑
j

c(ej) ≤ β ·

(∑
j

1
m− j+ 1

)
· OPT1 ≤ β · log(m) · OPT1 ≤ 2β · log(n) · OPT1. �

Theorem 4.1. A is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor
O(n1/3 log2 n) for any g ≥ 1.

Proof. AlgorithmA returns a valid solution of Ring Traffic Grooming, because each request is contained in some bipartite
graph, and no request is counted twice. The runtime is polynomial in both n and g , because we run at most 2g− 1 times the
algorithm of [14] for each subproblem, and there are n(

∑t−1
i=0

1
2i
)− 1 = 2n− 3 subproblems. We prove the approximation

guarantee:
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• We claim that OPT1 ≤ 2 log n · OPT . Indeed, let c i be the optimal cost of the subset of requests of length in the interval
[2i, 2i+1), i = 0, . . . , log(n) − 1. It is clear that c i ≤ OPT for each i , and thus

∑log n−1
i=0 c i ≤ log n · OPT . Finally, OPT1 ≤

2
∑log n−1
i=0 c i, because each vertex is taken into account in two subproblems.

• The greedy procedure described in step (2) of Algorithm A outputs a graph whose density is at least 1
2n1/3

times the
greatest density (with atmost g edges) of the updated request graph. To see that, note that the optimal density is achieved
by a subgraph on at most 2g vertices (it would be the case of g disjoint edges). Then, for each value of k, the algorithm
of [14] finds a 2n1/3-approximation of the maximum number of edges of an induced subgraph on k vertices.1 Thus, if
we take the densest subgraph among B2, . . . , B2g (removing edges if necessary) we also obtain a 2n1/3-approximation of
the greatest density of a subgraph with at most g edges. Let ρk be the density of Bk before removing edges. The explicit
formula of the greatest density ρ that we output in step (2) of AlgorithmA is:

ρ := max
k∈{2,...,2g}

min
(
ρk,
g
k

)
.

The above formula justifies that the algorithm stops the search at k = k∗. Summarizing, we can use β = 2n1/3 in
Lemma 4.1.
• By combining the remarks above and Lemma 4.1 we obtain that the cost A returned by Algorithm A satisfies A ≤
2n1/3 · OPT2 ≤ 4n1/3 log n · OPT1 ≤ 8n1/3 log2 n · OPT . �

We can improve the approximation ratio of the algorithm if all the requests have short length compared to the length
of the ring. This situation is usual in practical applications since nodes may want to communicate only with their nearest
neighbors. Let f (n) be any function of n. If all the requests have length at most f (n), then the above algorithm provides an
approximation ratio of O(f (n)1/3 log2 n). Indeed, in step (2) of Algorithm A, we have to find dense subgraphs in bipartite
graphs of size at most 2f (n), hence the factor 2n1/3 can be replaced with 2(2f (n))1/3.
Remark that all the instances of Dense k-Subgraph problem in our algorithm are bipartite. Using the results of [27], it

is possible to obtain a better approximation ratio when the request graph is bipartite and satisfies some uniform density
conditions.
Corollary 4.1. If the request graph R is such that in any large enough subgraph H ⊆ R, a densest subgraph (A ∪ B, E) satisfies
|A|, |B| = O(

√
g) and |E| = Ω(g), then for any constant ε > 0 there exists a polynomial-time algorithm for Ring Traffic

Grooming with approximation ratio O(nε log2 n).
To end this section, it is interesting to mention that the results of [9] show that the density can be approximated within a
constant factor two in the class of graphs excluding a fixed graph H as minor. Thus, if the request graph R is H-minor free
(for instance if R is planar, or of bounded genus, etc.), AlgorithmA achieves an approximation factor of O(log2 n).

5. Conclusions and further research

This article dealt with Traffic Grooming, a central problem in WDM optical networks. The contribution of this work
can be divided into two main parts: on the one hand, we stated inapproximability results for Ring Traffic Grooming and
Path Traffic Grooming for fixed values of g . More precisely, we proved that Ring Traffic Grooming is Apx-complete for
fixed g ≥ 1, and that Path Traffic Grooming is Apx-complete for fixed g ≥ 2. In other works, we ruled out the existence
of a PTAS for fixed values of g . To prove these results we reduced Ring Traffic Grooming for g = 1 to the problem of
finding the maximum number of edge-disjoint triangles in a graph of degree bounded by B (MECT-B for short). We proved
that MECT-B is Apx-complete, and we generalized this reduction for Path Traffic Grooming and for all values of g ≥ 1.
On the other hand, we provided a polynomial-time approximation algorithm for Ring and Path Traffic Groomingwith an
approximation ratio not depending on g , considering g as part of the input.
A number of interesting questions remain open. First, when g is not part of the input, the non-existence of a PTAS blows

the whistle to start the race of finding the best constant-factor approximation for each value of g , for both the ring (g ≥ 1)
and the path (g ≥ 2). We did not focus on this issue in this article.
Secondly, when g is part of the input, it is a challenging open problem to close the complexity gap of Traffic Grooming,

that is, to provide an approximation algorithm with an approximation ratio matching the corresponding inapproximability
result.We are convinced that the inherent difficulty of the problem resides in finding dense subgraphswith boundednumber
of edges. This problem is strongly related to the problem of finding the densest subgraph with bounded number of vertices,
which has been recently proved to have, essentially, the same difficulty as the Dense k-Subgraph problem [1]. The non-
existence of a PTAS for the Dense k-Subgraph problem has been proved in [22] involving very technical proofs, and this is
the best existing hardness result. A long-standing conjecture claims that there exists some constant ε > 0 such that finding
a nε-approximation for Dense k-Subgraph is NP-hard [14]. As we proved in Section 4, an α-approximation for Dense k-
Subgraph yields a O(α log2 n)-approximation for Ring Traffic Grooming. We suspect that a similar result in the other
direction should also exist. Because of this, we conjecture that:

1 In fact, the improved approximation ratio of the Dense k-Subgraph problem is O(nδ) for some constant δ < 1/3 [14]. Obviously, the same applies to
our algorithm, replacing the exponent 1/3 with the same δ < 1/3.
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Conjecture 5.1. There exists some constant δ > 0, such that Ring Traffic Grooming is NP-hard to approximate in polynomial
time within a factor O(nδ) when the grooming factor g is part of the input.
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