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Abstract

A circuit in a simple undirected graphG = (V,E) is a sequence of vertices {v1, v2, . . . , vk+1}
such that v1 = vk+1 and {vi, vi+1} ∈ E for i = 1, . . . , k. A circuit C is said to be edge-
simple if no edge of G is used twice in C. In this article we study the following problem:
which is the largest integer k such that, given any subset of k ordered vertices of a graph
G, there exists an edge-simple circuit visiting the k vertices in the prescribed order? We
first study the case when G has maximum degree at most 3, establishing the value of k for
several subcases, such as when G is planar or 3-vertex-connected. Our main result is that
k = 10 in infinite square grids. To prove this, we introduce a methodology based on the no-
tion of core graph, in order to reduce the number of possible vertex configurations, and then
we test each one of the resulting configurations with an Integer Linear Program (ILP) solver.
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1 Introduction

A circuit in a simple undirected graph G = (V,E) is a sequence of vertices {v1, v2, . . . , vk+1}
such that v1 = vk+1 and {vi, vi+i} ∈ E for i = 1, . . . , k. A circuit C is said to be edge-simple if
no edge of G is used twice in C. The existence of a circuit through a prescribed set of vertices or
edges has been an important graph-theoretical question for many years [2–4,6–8,10–12,15,16,19].
Typically, high connectivity is a powerful sufficient condition for the existence of such circuits.
For instance, it is well known that in a k-vertex-connected graph any subset of k vertices [6] or
any subset of k − 1 independent edges [12] is included in a cycle. A circuit C is a cycle if no
vertex of G is used twice in C, except for v1 = vk+1.

However, knowing specific properties of the graph often permits to prove much stronger
results. In this article we focus, on the one hand, on the existence of edge-simple circuits
through specified vertices in the infinite square grid (or equivalently, a large enough toroidal
grid), which is a widely studied 4-vertex-connected graph. On the other hand, we also study
(planar and general) graphs of maximum degree at most 3. In addition, we do not only require
the circuit to visit a subset of vertices, but also to visit them in a prescribed order. More
precisely, we are interested in the following type of circuits:

Definition 1.1 (good circuit). Given a set S of k distinct ordered vertices {v1, v2, . . . , vk} in
a graph G, an edge-simple circuit C in G is S-good if the vertices v1, v2, . . . , vk appear in C in
this order (modulo cyclic permutations).

If the ordered subset of vertices S is clear from the context, we may refer to an S-good
circuit simply as good. It is easy to check that, for instance, such a good circuit in a square grid
always exists for any ordered subset of at most 4 vertices, and one can also verify (still within a
reasonable amount of time) that the same holds for any subset of 5 vertices. On the other hand,
it seems intuitive to suspect that this property will not be true for an arbitrary large subset of
ordered vertices of a square grid. Therefore, the following natural question arises:

Problem (Longest Good Circuit (LGC for short)). Given a graph G, which is the largest integer
k such that for any subset S of k distinct ordered vertices in G, there exists an S-good circuit?

Our results and organization of the paper. We first provide some background and moti-
vations for our problem in Section 2. In Section 3 we use the notion of edge expansion to provide
an upper bound for LGC in general graphs. In Section 4 we investigate the question in graphs
of maximum degree at most 3 and graphs with vertices of small degree. In particular, we prove
in Subsection 4.1 that LGC(G) = 3 for G being an infinite hexagonal grid, and in Subsection 4.2
that for any 3-vertex-connected planar cubic graph G different from K4, LGC(G) = 3. This
bound on the connectivity is tight, namely we show that there exist 2-vertex-connected planar
cubic graphs G for which LGC(G) = 2. In Section 5 we focus on infinite square grids. Namely,
we show in Subsection 5.1 that checking the feasibility of a configuration in the grid is equivalent
to checking its feasibility in an auxiliary graph, called internal graph. In Subsection 5.2 we in-
troduce the notion of core graphs in order to reduce the number of internal graphs to be tested.
In Subsection 5.3 we give a counterexample establishing the upper bound of 10 in square grids.
In Subsection 5.4 we match this upper bound with the help of an Integer Linear Program (ILP)
solver to exhaustively test all the orderings for a small list of possible configurations that we
obtained after applying the reductions of Subsections 5.1 and 5.2. Finally, Section 6 concludes
the article and presents some lines for further research.

Notation. We use standard graph terminology (c.f. for instance [5].) All the graphs consid-
ered in this article are undirected. Given a graph G we denote by V (G) and E(G) the sets of
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vertices and edges of G, respectively. If H is a subgraph of G, we denote it by H ⊆ G. Given
a graph G and S ⊆ V (G), we denote by G[S] the subgraph of G containing all the edges with
both endpoints in S. Given a vertex v ∈ V (G), we define NG[v] to be the set of vertices of V (G)
at distance at most 1 from v, and NG(v) = NG[v] \ {v}. The degree of a vertex v ∈ V (G) is
defined as degG(v) = |NG(v)|. A graph is cubic if all its vertices have degree 3. The maximum
degree of G is defined as ∆(G) = maxv∈V (G) degG(v). Given an edge e = {u, v}, we define the
operation of subdividing e as deleting the edge e = {u, v}, adding a new vertex w, and making
it adjacent to both u and v. Conversely, given a vertex w of degree 2 belonging to edges {u,w}
and {w, v}, we define the operation of dissolving vertex w as replacing edges {u,w} and {w, v}
with a new edge {u, v}.

2 Background and Motivation

Connectivity is one of the cornerstone concepts of graph theory. Maybe the most archetypal
results are Menger’s classical theorems [5], which say that a graph is k-vertex-connected (resp.
k-edge-connected) if and only if it contains k vertex-disjoint (resp. edge-disjoint) paths between
any two vertices. There is a huge literature concerning extremal problems of cycles in k-
connected graphs. See for instance the following theorems that we recall here for the sake of
completeness.

Theorem 2.1 (Dirac [6]). In a k-vertex-connected graph any subset of k vertices is included in
a cycle.

Theorem 2.2 (Häggkvist and Thomassen [12]). In a k-vertex-connected graph any subset of
k − 1 independent edges is included in a cycle.

There are a number of works giving necessary or sufficient conditions for the existence of a
cycle through a specified set of vertices in a general graph [4, 7, 15,16].

Some stronger results have been given for specific classes of graphs, like 3-connected cubic
graphs [7,8]. For this class of graphs it is known that there exists a cycle through any 9 vertices,
and that there exists a cycle which passes through any 10 given vertices if and only if the graph
is not contractible to the Petersen graph, in such a way that each of the 10 vertices maps to a
distinct vertex of the Petersen graph [8]. If, in addition, the 3-connected cubic graph is planar,
then there exists a cycle through any 23 vertices [2]. Another example can be found in [10],
where the authors provide necessary and sufficient conditions for a given graph embedded on
the torus to contain edge-disjoint cycles satisfying prescribed topological properties.

However, all these results do not take into account the order in which the cycle visits the
prescribed set of vertices. This is a natural constraint, since for example in telecommunication
networks it may be important to connect a subset of vertices in such a way that each vertex
numbered i has capability to communicate only with the two vertices numbered i− 1 and i+ 1
(modulo the cardinality of the subset of vertices). This could be the case, for instance, of the
classical token ring networks defined by the standard IEEE 802.5. That is, there exists a whole
class of problems to consider when introducing the constraint on the order of the vertices to be
visited. In this article we study one of these problems in infinite square grids (or large enough
toroidal grids) as well as in graphs maximum degree at most 3 and in graphs with vertices of
small degree.

Let us now make a connection to the disjoint paths problem. Observe that, in a general
(di)graph, the problem of deciding whether there exist edge-disjoint paths between given pairs
of vertices is NP-complete [14] (even if the graph is a square grid [17]). When the number
of pairs of vertices is bounded by a constant, the disjoint paths problem is polynomial-time
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solvable in undirected graphs [20], NP-complete in directed graphs [18] (even with only two
pairs of vertices [9]), and polynomial-time solvable in symmetric directed graphs [13]. In fact,
the existence of a good circuit C for a set of k ordered vertices {v1, v2, . . . , vk} corresponds to the
existence of k edge-disjoint paths in the graph G between the pairs of vertices (or commodities)
{v1, v2} , {v2, v3} , . . . , {vk−1, vk} , {vk, v1}. Thus, for a particular placement of v1, v2, . . . , vk inG,
the existence of a good circuit can be checked by solving the associated integer multicommodity
flow problem.

When designing a telecommunication network, the fault tolerance is a crucial issue. Observe
that the simplest network which is able to support any single link failure is an edge-simple circuit,
and that is one of the main reasons why the study of such circuits is important. The study of the
square grid is also natural, due among other reasons to its extensive use in parallel computing.
In this context, it is interesting to know which is the largest integer k for which there always
exists a circuit visiting any ordered subset of at most k vertices. Observe also that without
taking into account the ordering, there exists a cycle (and thus, a circuit) visiting any subset of
vertices of the square grid, since a toroidal grid is a Hamiltonian graph.

It is worth mentioning that the square grid is in some sense the common skeleton of planar
graphs. Indeed, it is well-known that every planar graph of branchwidth at least ` contains
an (b`/4c × b`/4c)-grid as a minor [21]. Therefore, a square grid is inside every planar graph,
and any edge-simple circuit in a minor of a graph can be easily transformed to an edge-simple
circuit in the graph itself.

3 General Upper Bound

In this section we use the notion of edge expansion to provide an upper bound for LGC in
general graphs, and then we apply this technique to the toroidal grid.

Definition 3.1 (edge expansion). The edge expansion of a graph G = (V,E) is defined as

h(G) = min

{
|∂(S)|
|S|

: S ⊆ V, 1 ≤ |S| ≤ |V |
2

}
,

where ∂(S) stands for the set of edges with exactly one endpoint in S.

Proposition 3.1. Given a graph G = (V,E) with h(G) < 2, it holds

LGC(G) < 2 ·min

{
|S| : S ⊆ V, |∂(S)|

2
< |S| ≤ |V |

2

}
.

Proof. Let S be a smallest subset of vertices of G such that |∂(S)|/2 < |S| ≤ |V |/2, and let S′

be a subset of vertices of V − S such that |S| = |S′|. We assign integers 2i + 1, 0 ≤ i < |S|,
to vertices of S and integers 2i, 1 ≤ i ≤ |S|, to vertices of S′. Now, regardless of the specific
assignment of integers to vertices of S and S′, we need 2|S| edges outgoing from S (|S| edges
for the paths from 2i + 1 to 2i + 2, 0 ≤ i < |S|, and |S| edges for the paths from 2i to 2i + 1,
1 ≤ i ≤ |S|). But since h(G) < 2, we have strictly less that 2|S| edges outgoing from S.
Therefore, we have LGC(G) < 2 ·min {|S| : S ⊆ V, |∂(S)|/2 < |S| ≤ |V |/2}.

As an example of how to use this technique, one can check that the edge expansion of the
toroidal grid Tn of size n × n, with n ≥ 6, is strictly smaller than 2. Indeed, let Xp,q be a

subgrid of size p × q of Tn with pq ≤ n2

2 . Xp,q has pq vertices and |∂(Xp,q)| = 2(p + q). So we

have h(Tn) ≤ min
{

2(p+q)
pq , 1 ≤ pq ≤ n2

2

}
. When n = 2p and p = q, we have 2(p+q)

pq = 4
p = 8

n .

Consequently, when n ≥ 6, we have h(Tn) ≤ 8
6 < 2. Now, remark that a set of 6 vertices of Tn
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Figure 1: Example showing that LGC(G) < 12 for G being an infinite square grid.

such as the set S illustrated in Figure 1 satisfies |∂(S)| = 10 (that is, there are 10 edges going
from S to V \ S), so by Proposition 3.1 LGC(Tn) < 12. Summarizing,

Corollary 3.1. LGC(G) < 12 for G being an infinite square grid or a big enough toroidal grid.

We shall see in Section 5 that the bound given in Corollary 3.1 can be improved using more
involved arguments.

4 Hexagonal Grids, Cubic Graphs, and Graphs with Vertices
of Small Degree

In this section we study some simple cases before studying in detail square grids in Section 5.
Namely, we focus on hexagonal grids on Subsection 4.1, on cubic graphs in Subsection 4.2 and,
more generally, on graphs with vertices of small degree in Subsection 4.3.

4.1 Hexagonal grids

For the sake of presentation, we gradually improve in what follows the bound for LGC in
hexagonal grids. First, note that from Proposition 3.1 we have that LGC(G) < 6 for G being

an infinite hexagonal grid, as h(G) < 2 and the smallest subset of vertices S such that |∂(S)||S| < 2

has size 3, as shown in Figure 2(a). Nevertheless, we can obtain a better bound in the hexagonal
grid without using Proposition 3.1.

Lemma 4.1. LGC(G) < 5 for G being an infinite hexagonal grid.

Proof. Consider the example of Figure 2(b). In order to find a good circuit, we need in particular
to find a path from vertex 1 to vertex 2. Suppose without loss of generality that this path
contains edge {1, 4}. Thus, it also contains a second edge adjacent to vertex 4. Since vertex 4
has degree 3, it can no longer be in a path from vertex 3 to vertex 5 without reusing an edge of
the path from vertex 1 to vertex 2.

We can improve the result of Lemma 4.1 by using a more refined argument.

Lemma 4.2. LGC(G) < 4 for G being an infinite hexagonal grid.
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(a) Example for k = 6.
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(b) Example for k = 5.
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(c) Example for k = 4.

Figure 2: Examples for k = 4, 5, 6 in the infinite hexagonal grid.

Proof. Consider the example with 4 vertices of Figure 2(c). We distinguish two cases. First, if
the path from vertex 1 to vertex 2 contains vertex 3 (resp. 4), then it is no longer possible to
find edge-disjoints paths from vertex 2 to vertex 3 and from vertex 3 to vertex 4 (resp. between
vertices 1 and 4, and vertices 3 and 4).

Suppose now, as for the example of Figure 2(c), that the path from vertex 1 to vertex 2
does not contain vertices 3 and 4. Since vertices along that path have degree 3, they cannot
belong to a path between vertex 3 and vertex 2 or 4. Furthermore, we can assume that the
path between vertices 2 and 3 uses only edge {2, 3}, since otherwise it would use edge {1, 3}
and it would not be possible to find a disjoint path between vertices 3 and 4. Thus, the path
between vertices 3 and 4 has to use edge {1, 3} plus another edge incident to vertex 1, and so
it is no longer possible to find a path between vertices 1 and 4.

We conclude that there exists no good circuit for the placement of vertices of Figure 2(c).

From Lemma 4.2 and Dirac’s Theorem [6], we conclude that:

Proposition 4.1. LGC(G) = 3 for G being an infinite hexagonal grid.

4.2 Cubic graphs

More generally, we obtain that:

Lemma 4.3. For any cubic graph G, LGC(G) < 5.

Proof. Let G be a cubic graph. If |V (G)| ≤ 4, then LGC(G) < 5 by definition. If |V (G)| ≥ 6
(recall that cubic graphs have an even number of vertices), we choose a vertex of G and we call
it 1. Then, we call its three neighbors 3, 4, and 5 respectively. We now choose another vertex in
V (G) \ {1, 3, 4, 5} and we call it 2. Using similar arguments to those in the proof of Lemma 4.1,
we obtain the result.

Lemma 4.4. For any planar cubic graph G different from K4, LGC(G) < 4.

Proof. Note first that the only cubic planar graph without a face containing more than 3 vertices
(including the external one) is K4. Let now G be a cubic planar graph different from K4, let
u1, u2, . . . , ul, l ≥ 4, be the vertices belonging to a face of G containing at least 4 vertices, and
let us place number 4 on ua, 1 on ub, 3 on uc, and 2 on ud with 1 ≤ a < b < c < d ≤ l. Using a
proof similar to the one of Lemma 4.2, we obtain that G contains no edge-simple circuit visiting
1, 2, 3, and 4 in this order.
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Figure 3: Example showing that it is not true that LGC(G) = 3 for any 2-vertex-connected
planar cubic graph G.

Now recall that by Dirac’s Theorem [6], for k ≤ 3, any k-vertex-connected graph G satisfies
LGC(G) ≥ k. Combining this observation with Lemma 4.4 we obtain that

Corollary 4.1. For any 3-vertex-connected planar cubic graph G different from K4, LGC(G) =
3.

The bound on the connectivity in Corollary 4.1 is tight. Indeed, consider the 2-vertex-
connected planar cubic graph G depicted in Figure 3. One can check that there is no edge-simple
circuit visiting the vertices a, b, c, in this order. Therefore, for this graph G, LGC(G) = 2.

To conclude this section, we note that it is easy to check that LGC(G) = 4 for G being K4

and K3,3. On the other hand, it is clear that LGC(G) = 1 for any 1-edge-connected graph G
or any cubic 1-vertex-connected graph G. An interesting question is to completely characterize
cubic graphs G for which LGC(G) = 3.

4.3 Graphs with vertices of small degree

The above results are in fact based on the existence of configurations linking vertices of small
degree in the graphs under study. We present here a collection of easy observations for graphs
with vertices of small degree.

Fact 4.1. If a graph G contains

(i) one vertex of degree 1, then LGC(G) = 1;

(ii) two adjacent vertices of degree 2, then LGC(G) < 4;

(iii) one vertex of degree 2 adjacent to one vertex of degree 3, then LGC(G) < 4;

(iv) one vertex of degree 3 adjacent to three vertices of degree 2, then LGC(G) < 3. In
particular, LGC(K2,3) = 2. Also LGC(G) = 2 if G is also 2-vertex-connected;

(v) one vertex of degree 3 adjacent to two vertices of degree 3, then LGC(G) < 5.

Proof.

(i) An edge-simple circuit cannot contain a vertex of degree 1.
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(ii) If |V (G)| ≤ 3, it is true by definition.

Let us now suppose that |V (G)| ≥ 4. We give to the two vertices of degree 2 the numbers
2 and 4. One of the paths from 2 to 1 or from 2 to 3 has to go through 4. Vertex 4 has
then no more available edges for the paths from 4 to 1 and from 4 to 3.

(iii) Same proof than (ii).

(iv) Let v be the vertex of degree 3, and u1,u2,u3 be the vertices of degree 2. Now give numbers
1,2,3 to u1,u2,u3, respectively. Since u1 has degree 2, one of the paths between u1 and u2
or u3 has to go through v, say the path {u1, v, u2}. Furthermore, since u3 has also degree
2, one of the paths between u3 and u1 or u2 has to go through v, but v has only degree 3.

When G is 2-vertex-connected, we use Dirac’s Theorem [6] to conclude that LGC(G) = 2.

(v) As such graph has at least 4 vertices, we can consider an example similar to the one used
in the proof of Lemma 4.1, assigning numbers 1, 3, 4, 5 to u, v1, v2, v3, respectively (see
Figure 2(b)).

5 Infinite Square Grids

In this section, we investigate the problem in infinite square grids (or large enough toroidal
grids). Namely, we show in Subsection 5.1 that checking the feasibility of a configuration in
the grid is equivalent to checking its feasibility in an auxiliary graph, which we call internal
graph. In Subsection 5.2 we introduce the notion of core graphs in order to reduce the number of
internal graphs to be tested. In Subsection 5.3 we give a counterexample establishing the upper
bound of 10 for LGC in square grids. Finally, in Subsection 5.4 we match this upper bound
with the help of an ILP solver to exhaustively test all the orderings for a small list of possible
configurations that we obtained after applying the reductions of Subsections 5.1 and 5.2.

5.1 Preliminaries

We now introduce some additional definitions to be used throughout this section.

Definition 5.1 (configuration, feasible configuration). A configuration X is a subset of vertices
of the infinite square grid. A configuration X is feasible if, for any permutation σ of the vertices
of X, there exists a good circuit in the infinite square grid joining the vertices of X following
the ordering given by σ.

Definition 5.2 (internal graph, internal and external degree). Given a subset X = {u1, . . . , un}
of vertices in the square grid, the internal graph G = (V,E) of X is the graph with V =
{v1, . . . , vn}, and for ui, uj ∈ X, {vi, vj} ∈ E if and only if ui and uj are on the same row (or
column) and there is no other z ∈ X between ui and uj on that row (or column).

Given ui ∈ X, the internal degree degin(ui) of ui is the degree of ui in the internal graph G
of X, i.e., degG(ui). Similarly, the external degree of ui ∈ X is degout(ui) = 4− degin(ui). A
vertex ui ∈ X is isolated if degin(ui) = 0.

For example, in Figure 4, a configuration X in the square grid (defined by the full dots) and
its corresponding internal graph G are depicted. The vertex labeled u satisfies degin(u) = 3 and
degout(u) = 1.
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Figure 4: A configuration X (defined by the full dots) and its corresponding internal graph G.
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Figure 5: Some feasible internal graphs on 10 vertices.

Since we deal with an infinite square grid, any two vertices of an internal graph G with
external degree at least one can be connected with a path in the grid without using any edge of
G. This is because a vertex that has external degree at least one has no neighbor in the internal
graph along an infinite semirow or semicolumn of the grid. This fact can be modeled in the
following way: given an internal graph G, we construct a (multi)graph Ĝ from G by adding a
new vertex ∞ and, for each vertex u ∈ V (G), degout(u) copies of the edge {u,∞}.

Definition 5.3 (feasible internal graph). An internal graph G is feasible if, for all the permu-
tations σ of the vertices of G, there exists an edge-simple circuit in Ĝ joining the vertices of G
following the ordering given by σ.

The following lemma follows easily from the above definitions.

Lemma 5.1. A configuration X is feasible if its internal graph G is feasible.

Observe that the fact that G is feasible is a sufficient (but not necessary) condition for X
to be feasible. Intuitively, the internal graph captures the most difficult case among all the
configurations having the same internal graph.

Before getting into technical details, and in order to get familiar with the problem, the
curious reader may verify that all the internal graphs on 10 vertices depicted in Figure 5 are
feasible. We shall see in Subsection 5.4 that this fact is not a coincidence, as we will prove that
any configuration on at most 10 vertices is feasible.
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5.2 Reducing the problem

We now prove several technical lemmas to be used in the sequel of this section. The objective
is to reduce the number of configurations to be tested.

Lemma 5.2. Any internal graph in which all vertices have external degree at least 2 is feasible.

Proof. Let G be an internal graph in which all vertices have external degree at least 2, and
assume that the vertices are ordered v1, v2, . . . , vk by the permutation σ. Then the circuit
defined by vertices {v1,∞, v2,∞, v3, . . . , vk−1,∞, vk,∞, v1} is a solution in G.

Lemma 5.3. If an internal graph G is feasible then any internal graph H that is a subgraph of
G is feasible.

Proof. Let G be a feasible internal graph, and let H be a subgraph of G. That is, there exists an
injective mapping ϕ from V (H) to V (G) such that if {u, v} ∈ E(H), then {ϕ(u), ϕ(v)} ∈ E(G).
Assume first that |V (H)| = |V (G)| (note that in that case, ϕ is a bijection), and let v1, . . . , vk
be an ordering of the vertices of H. Consider a solution C in G for the ordering ϕ(v1), . . . , ϕ(vk)
of the vertices of G. A solution in H is obtained from C by replacing each edge {x, y} ∈ E(C)
in the following way: if {ϕ−1(x), ϕ−1(y)} ∈ E(H), we replace {x, y} with {ϕ−1(x), ϕ−1(y)};
otherwise we replace it with the two edges {ϕ−1(x),∞}, {∞, ϕ−1(v)}. It is easy to check that
the obtained circuit is a solution in H. Finally, if |V (H)| = k < n = |V (G)|, given an ordering
v1, . . . , vk of V (H), consider a solution C in G for any ordering of V (G) that coincides with
ϕ(v1), . . . , ϕ(vk) when restricted to the image of ϕ. Then the above replacement transforms C
into a solution in H.

Two internal graphs G1 and G2 are equivalent if G2 is feasible if and only if G1 is.

Lemma 5.4. Any two isomorphic internal graphs G1 and G2 are equivalent.

Proof. Let ϕ be an isomorphism mapping the vertices of G1 to the vertices of G2, and suppose
without loss of generality that G1 is feasible. We shall find a solution in G2 for an arbitrary or-
dering v1, . . . , vk of its vertices. Let C be a solution in G1 for the ordering ϕ−1(v1), . . . , ϕ

−1(vk),
which exists since G1 is feasible. Let Pi,j be the subpath of C going from ϕ−1(vi) to ϕ−1(vj).
Since each path P1 in G1 corresponds bijectively to a path P2 in G2, we can denote with-
out ambiguity the path P2 by ϕ(P1). Then the circuit defined by the union of the paths
ϕ(P1,2), ϕ(P2,3), . . . , ϕ(Pk−1,k), ϕ(Pk,1) is a solution in G2.

Lemma 5.5. If an internal graph G is feasible, then any internal graph G′ that can be obtained
from G via the following transformation T1 is also feasible:

(1) Choose from G an isolated vertex u and an edge {x, y}.

(2) Remove u, add a new vertex v, and replace the edge {x, y} with the edges {x, v} , {v, y}.

Proof. Given an ordering σ of the vertices of G′, let s (resp. t) be the vertex that precedes (resp.
follows) v in σ. Consider a solution C in Ĝ for the ordering obtained from σ by replacing v with
u, and let us obtain from C a solution in Ĝ′. If the edge {x, y} is used in C, replace it with the
path {x, v, y}. Since dG(u) = 0, the path from s to u in Ĝ is of the form {s, P,∞, u}, and the
path from u to t is of the form {u,∞, Q, t}. Since dG′(v) = 2, replacing the path {s, P,∞, u}
(resp. {u,∞, Q, t}) with {s, P,∞, v} (resp. {v,∞, Q, t}) yields a solution in Ĝ′.

Lemma 5.6. If an internal graph G is feasible, then any internal graph G′ that can be obtained
from G via the following transformation T2 is also feasible:
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T2T1 T2+

Figure 6: We can restrict ourselves to core graphs. An arrow from a graph G to a graph H
means that if G is feasible, so is H (due to either transformation T1 or transformation T2).

(1) Choose from G two vertices u and w, such that u is isolated and degin(w) ≤ 3.

(2) Remove u, and add a new vertex v and the edge {w, v}.

Proof. Given an ordering σ of the vertices of G′, let s (resp. t) be the vertex that precedes
(resp. follows) v in σ. Consider a solution C in Ĝ for the ordering obtained from σ by replacing
v with u, and let us obtain from C a solution in Ĝ′. If any of the edges {w,∞} is used in C,
replace one of them with the edges {w, v} , {v,∞}. Since dG(u) = 0, the path from s to u in Ĝ is
of the form {s, P,∞, u}, and the path from u to t is of the form {u,∞, Q, t}. Since dG′(v) = 1,
replacing the path {s, P,∞, u} (resp. {u,∞, Q, t}) with {s, P,∞, v} (resp. {v,∞, Q, t}) yields
a solution in Ĝ′.

Combining inductively Lemmas 5.5 and 5.6, we deduce that if G′ is an internal graph
obtained from a feasible graph G with a sequence of the transformations T1 and T2, then G′

is also feasible. In practice, this means that in any internal graph we can take the vertices of
internal degree 2 that lie in the middle of a path and the vertices with internal degree 1, and put
them as isolated vertices. If the resulting graph is a feasible internal graph, then by Lemmas 5.5
and 5.6, so is the original one. In other words, we can restrict ourselves to internal graphs G
whose connected components (except isolated vertices) have at least two vertices in each row
and each column.

Definition 5.4 (core graph, `-core graph). An internal graph is a core graph if all its non-
edgeless connected components have at least two vertices in each row and each column. A core
graph G on k vertices is an `-core graph if G has k − ` isolated vertices.

Lemmas 5.5 and 5.6 imply that we can restrict ourselves to core graphs. For instance,
consider the example of Figure 6. The leftmost internal graph (which is the same example of
Figure 4) can be obtained by a sequence of the transformations T1 and T2. Thus, to prove that
the three internal graphs of Figure 6 are feasible it is enough to prove it for the rightmost graph,
which is a 7-core graph.

This simplification reduces the number of configurations dramatically. In particular, the
above discussion together with Lemma 5.2 proves that all forests are feasible. Therefore, if we
want to know if all the configurations on k vertices are feasible, it suffices to test all the core
graphs on k vertices; this is the topic of Subsection 5.4 for k = 10. Summarizing,

Proposition 5.1. If all the core graphs on k vertices are feasible, then all the configurations
on k vertices are feasible.

Note that if all the configurations on k vertices are feasible, then clearly so are all the
configurations on k′ vertices, for every k′ < k.

We introduce a last criterium to deduce the feasibility of an internal graph on 10 vertices.

11



(a) A triple edge.
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v
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P1 P2

P3

(b) A 10-core obtained from subdivision. (c) The only 6-core.

Figure 7: Graphs obtained from a triple edge by subdividing edges.

Lemma 5.7. All the core graphs on 10 vertices whose non-edgeless connected components can
be obtained from a triple edge by subdividing edges are feasible.

Proof. Let G be a core graph whose non-edgeless connected components can be obtained from
a triple edge (see Figure 7(a)). It is easy to check that the smallest core in the square grid
that can be obtained in this way has 6 vertices (see Figure 7(c)), so since G has 10 vertices,
G has exactly one such non-edgeless component. By construction, all the vertices of G have
internal degree 2, except possibly isolated vertices and 2 vertices u and v that have internal
degree 3, as it is exemplified in Figure 7(b). Suppose we are given an arbitrary ordering
x1, . . . , xi = u, . . . , xj = v, . . . , x10 of the vertices of G. By an argument analogous to the one of
the proof of Lemma 5.2, to prove the feasibility of G it is sufficient to find two paths using only
edges of G from u (resp. v) to xi−1 or xi+1 (resp. xj−1 or xj+1), with x0 = x10 and x11 = x1.
We distinguish three cases according to the relative position of u and v in the ordering.

1. If u and v are consecutive in the ordering, any path from u to v in G fulfills the conditions.

2. If u and v are at distance 2 in the ordering, let w be the vertex which lies between u and
v. Then take a path in G from u to v through w.

3. Otherwise, if u and v are at distance at least 3, u (resp. v) has at least one vertex at
distance 1 in the ordering xu (resp. xv) inside G. Observe that there are 3 edge-simple
paths P1, P2, P3 between u and v in G. Suppose that xu ∈ Pi and xv ∈ Pj . If i 6= j, take
a path from u to xu in Pi and a path from v to xv in Pj . If i = j, assume without loss
of generality that i = j = 1. If, beginning from u, xu comes before xv in P1, consider the
subpaths in P1 from u to xu and from v to xv. Otherwise, if xv comes before xu in P1

(see Figure 7(b)), consider the paths {u, P2, v
in P1−−−→ xu} and {v, P3, u

in P1−−−→ xv}.

5.3 Upper bound

We have seen in Corollary 3.1 that LGC(G) < 12 for G being an infinite square grid. In this
section we present an unfeasible configuration proving that LGC(G) < 11. We start with the
following definition.

Definition 5.5 (internal path). Given an internal graph G, a permutation σ of X, a solution
C to the instance (G, σ), and a subset S ⊆ X, an internal path in S is a subpath P of C linking
two consecutive vertices of X according to σ, such that P is a subgraph of G[S].

12
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Figure 8: The counterexample (G, σ) used in Proposition 5.2 showing that k < 11, together
with the vertex sets defined in the proof.

Given a subset of vertices S ⊆ X, the paths originating from S are paths with at least one
endpoint in S.

Proposition 5.2. LGC(G) < 11 for G being an infinite square grid.

Proof. Let (G, σ) be the internal graph on 11 vertices together with the ordering depicted in
Figure 8. Suppose for the sake of contradiction that there exists a solution C to the instance
(G, σ). Let S = {1, 6, 3, 9, 5, 11, 7} ⊆ X, and let S = {2, 8, 4, 10} (see Figure 8(a)). Note that
there are 12 edges outgoing from G[S] to the rest of the grid.

Claim 5.1. C contains exactly 1 internal path in S.

Proof. Suppose first that there is no internal path in S. Therefore, each path originating from
S uses at least 2 edges outgoing from G[S]. Since |S| = 7, there must be 14 edges in C outgoing
from G[S] to the rest of the grid, but there are only 12. Therefore, C contains at least 1 internal
path in S.

Suppose now that C contains at least 2 internal paths in S. Let S′ = {3, 9} (see Figure 8(a)),
and note that there are 6 edges outgoing from G[S′]. Note also that the only possible internal
paths in S are 5 → 6 (we adopt this notation here for simplicity), 6 → 7, and 11 → 1, so
any internal path in S must cross S′. Therefore, there can be at most 2 such internal paths,
and those 2 paths use 4 edges outgoing from G[S′]. Thus, only 6− 4 = 2 outgoing edges from
G[S′] are left, which are not enough to route the 4 subpaths in C containing the vertices of S′.
Therefore, C contains exactly 1 internal path in S.

Claim 5.1 implies that all the edges outgoing from G[S] are used by C to route paths
originating at S. Let now S1 = {1, 3, 5} and S3 = {2, 4} (see Figure 8(b)).

Claim 5.2. C contains at least 2 internal paths from S1 to S3.

Proof. Note that subgraph G[S3] has 6 outgoing edges. Since all the edges outgoing from G[S]
are used by C, exactly 3 paths go from S to S in C. Clearly, the 4 subpaths in C containing
the vertices of S3 use 4 outgoing edges from G[S3]. Note that all paths from S to S3 are from
S1.

If there is no path in C from S1 to S3, then the 3 paths from S to S cross S3, so no
edge outgoing from G[S3] would be left to route the paths originating from S3, which is a
contradiction.
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If there is 1 path in C from S1 to S3, then 2 paths from S to S cross S3, so altogether the 3
paths from S to S use 5 out of the 6 outgoing edges from G[S3]. However, 3 additional outgoing
edges from G[S3] would be needed to route the 3 remaining paths originating from S3, which is
a contradiction.

Consider now S2 = {6, 9, 11} (see Figure 8(b)). The subgraph G[S2] has 8 outgoing edges,
and 6 of them are required in C to route the paths originating at S2, so only 2 edges outgoing
from G[S2] are still available in C. But, by Claim 5.2, C contains at least 2 internal paths
from S1 to S3 (which cross S2), hence using 4 outgoing edges from G[S2]. The proposition
follows.

5.4 Lower bound

To show that LGC(G) ≥ 10 for G being an infinite square grid, one has a priori to test whether
all the configurations with 10 vertices on the grid are feasible or not. But, the number of such
configurations is prohibitively big, and testing a single configuration may take a non-negligible
time (see discussion below). Hence we introduce a methodology, based on the notion of core
graph (see Subsection 5.2) in order to reduce the number of configurations to be tested.

A näıve strategy to generate all configurations is to consider all the possibilities of placing 10
points in the square grid. However, we showed in Proposition 5.1 that we only need to consider
core graphs with 10 vertices, introduced in Definition 5.4. In addition, by Lemma 5.4 these core
graphs can be considered modulo isomorphism. It is clear that the smallest integer i such that
an i-core on 10 vertices exists is 4, and in that case the non-edgeless connected component of
the 4-core is a 4-cycle. Such a core is always feasible due to Lemma 5.2, because all the vertices
have external degree at least 2. It is also easy to check that, due to the topology of the grid,
a 5-core cannot exist. One can also verify that the only 6-core in which not all vertices have
external degree at least 2 is a 2 × 3-grid (see Figure 7(c)). Therefore, it is enough to test this
6-core plus all the `-cores on 10 vertices, for ` = 7, 8, 9, 10. The procedure to generate the core
graphs to be tested is detailed in Algorithm 1. The complete code and some examples can be
found at [1].

Proposition 5.3. The feasibility of any configuration on 10 vertices follows from Algorithm 1.

Proof. To prove the correctness of Algorithm 1, we analyze each step sequentially.
Step 2: As by definition, core graphs have at least 2 vertices in each row (resp. column)

(besides isolated vertices), the number of rows (resp. column) of an `-core is at most
⌊
`
2

⌋
.

Hence, it is enough to consider internal graphs fitting into an
(⌊

`
2

⌋
×
⌊
`
2

⌋)
-grid, except possibly

a set of isolated vertices. Moreover, two internal graphs G1 and G2 such that G2 is obtained
from G1 by a translation or a symmetry are clearly equivalent (Lemma 5.4).

In steps 3-5, the algorithm removes from T` all the internal graphs with some vertex of
internal degree 1. This can be done because, by Lemma 5.6, it is enough to test the internal
graphs in which all vertices, except the isolated ones, have internal degree at least 2.

In steps 6-8, the algorithm removes from T` all the internal graphs such that all vertices
have external degree at least 2, which are feasible due to Lemma 5.2.

In steps 9-15, the algorithm identifies the isomorphism classes of core graphs (step 10) and
kept at most one representative per class. More precisely, in steps 11-13, the algorithm removes
from T` all the isomorphism classes that have some representative without at least 2 vertices
per row and column. This can be done by combining Lemma 5.4 and Proposition 5.1. Then,
by Lemma 5.4, all the graphs in an isomorphism class are equivalent, so it is enough to keep
one graphs of each class, as it is done in step 15.

The correctness of steps 16-19 (resp. 20-22) follows directly from Lemma 5.7 (resp. Lemma 5.3).
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Algorithm 1 Test configurations on 10 vertices

1: for ` = 6 to 10 do
2: generate a list T` of all the internal graphs on ` vertices in an (

⌊
`
2

⌋
×
⌊
`
2

⌋
)-grid

(modulo translations, symmetries, and compression of empty rows or columns)
3: // INTERNAL DEGREE 1:

4: for all G ∈ T` such that G has some vertex of internal degree 1 do
5: remove G from T` {Lemma 5.6}
6: // EXTERNAL DEGREE AT LEAST 2:

7: for all G ∈ T` such that all the vertices of G have external degree at least 2 do
8: remove G from T` {Lemma 5.2}
9: // ISOMORPHIC GRAPHS:

10: partition T` into classes G1, . . . ,Gn of isomorphic graphs
11: for i = 1 to n do
12: if there exists G ∈ Gi without at least two vertices per row and column then
13: remove from T` all the graphs in Gi {Lemma 5.4 and Proposition 5.1}
14: else
15: remove from T` all the graphs in Gi except one {Lemma 5.4}
16: // SUBDIVISION OF TRIPLE EDGE:

17: if ` = 10 then
18: for all G ∈ T` such that G can be obtained from a triple edge by subdividing edges

do
19: remove G from T` {Lemma 5.7}
20: // SUBGRAPHS:

21: for each pair of graphs G,H ∈ T` such that H is a subgraph of G do
22: remove H from T` {Lemma 5.3}
23: b` ← 1
24: for each G ∈ T` do
25: G′ ← G+ (10− `) isolated vertices
26: for each permutation σ of the vertices of G′ do
27: test if (G′, σ) is feasible using an ILP solver
28: if (G′, σ) is not feasible then
29: b` ← 0
30: if (b6 · b7 · b8 · b9 · b10) == 1 then
31: k = 10
32: else
33: k < 10
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In steps 23-29, the feasibility of each pair (G′, σ) is tested using an ILP solver to find
a solution of the associated integer multicommodity flow problem, as explained in Section 2
(more details about the implementation are available at [1]).

Finally, by Proposition 5.1, it is clear that k = 10 if and only if all the `-core graphs are
feasible, for each ` ∈ {6, 7, 8, 9, 10}, as tested in steps 30-33.

Remark 5.1. In step 10 of Algorithm 1, we partition T` into isomorphism classes. This step
could take a non-negligible time if we just test if each pair of graphs are isomorphic. To deal with
this problem, we first carry out a sieve according to the sorted degree sequence of the vertices
and the sorted degree sequences of the neighbours of each vertex. That is, if two graphs do not
have the same sequence of degrees and degrees of the neighbours of each vertex, we infer directly
that these two graphs are not isomorphic. This sieve reduces the computation time considerably.

Remark 5.2. Observe that, due to Lemma 5.5, the internal graphs without at least 2 vertices
per row and column could have been already removed from T` after step 2. The reason why we
kept those graphs until step 13 is that some graphs that do have at least 2 vertices per row and
column are isomorphic to graphs without at least 2 vertices per row and column, so we can also
remove them from T`.

Table 1 summarizes the number of `-cores obtained while running Algorithm 1, for ` ∈
{6, 7, 8, 9, 10}. The numbers given in the first row (initial number of internal graphs) follow
from the introduction of internal graphs; without it, we would have a much greater number of
configurations to test. Note that the results of Subsection 5.2 imply an overall reduction from
4714 to 52 graphs.

Testing the feasibility of core graphs. Recall that for each core graph G on 10 vertices,
G is feasible if for any ordering of V (G) there is a good circuit visiting V (G) in the prescribed
order. Without loss of generality, we can assign to one of the vertices of G the number 1 of
the permutation (modulo cyclic permutations), and then for each core graph one has to test
9! = 362.880 possibilities.

For each core graph G and permutation σ, the problem we study can be easily formulated as
an integer multicommodity flow problem in a graph with unitary capacity on the edges and so
as an integer linear program (ILP). Indeed, the existence of a good circuit Cσ in a core graphs
G is equivalent to the existence of k edge-disjoint paths in G between the pairs of vertices (or
commodities) {σ(1), σ(2)} , . . . , {σ(k − 1), σ(k)} , {σ(k), σ(1)}. Thus, a feasible solution of the
ILP implies the existence of a good circuit, and this feasibility can be quickly checked using an
ILP solver (for instance, CPLEX or GLPK).

In average, testing the 9! permutations for each internal graph takes around 40 minutes on
a PC with an Intel Core 2 Duo CPU 2.33GHz running Fedora 8 (see [1]), so testing the 4714
internal graphs would take around 4 months and a half. Testing the 52 remaining graphs has
taken just 35 hours and 37 minutes [1].

Running the ILP solver on the configurations given by Algorithm 1, we obtained that all
`-cores are feasible for each ` ∈ {6, 7, 8, 9, 10}. Therefore, combining Propositions 5.2 and 5.3
yields that

Theorem 5.1. There exists an edge-simple circuit through any set of 10 ordered vertices of an
infinite square grid or a large enough toroidal grid.

We would like to stress that the unfeasible configuration used in the lower bound of Propo-
sition 5.2 has been found using our computer-based techniques, and then we analyzed it to
formally prove that it is indeed unfeasible.
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Graphs \ ` 6 7 8 9 10 Total

Initial number of internal graphs 1 7 53 485 4166 4714
Number of isomorphisms 0 3 42 453 4051 4581

Number of subgraphs 0 0 5 10 58 73
Number of single graphs 0 2 6 22 74 104

Final number of internal graphs 1 2 4 10 35 52

Table 1: Number of `-core graphs on 10 vertices in Algorithm 1. A single graph is a graph with
a line or column with only one vertex.

6 Concluding Remarks

In this article we studied the problem that consists in, given a graph G, determining which
is the largest integer k such that for any collection of k ordered vertices in G, there exists
an edge-simple circuit visiting those vertices in the prescribed order. We denote this integer
by LGC(G). After providing an upper bound for general graphs, we first investigated this
question for graphs with maximum degree at most 3, or graphs with vertices of small degree.
In particular, we proved that LGC(G) = 3 for G being an infinite hexagonal grid, and that for
any 3-vertex-connected planar cubic graph G different from K4, LGC(G) = 3. This bound on
the connectivity is tight, namely we showed that there exist 2-vertex-connected planar cubic
graphs G for which LGC(G) = 2.

Our main result is that LGC(G) = 10 for G being an infinite square grid. To prove this, we
introduced a methodology in order to reduce the problem to a small number of configurations,
which were then exhaustively tested using an ILP solver. The details about the implementation
of our algorithm are available at [1]. Finding a purely combinatorial proof of this result remains
open.

Another avenue for further research could be to impose a bound on the size of the square
(or toroidal) grid, namely to consider LGC on a (n1 × n2)-grid. Considering triangular grids
may be also interesting, mainly due to its extensive use in telecommunication networks.

A more ambitious problem is, given a positive integer k, characterizing graphs G for which
LGC(G) = k. In particular, it would be interesting to characterize all graphs G with maximum
degree at most 3 for which LGC(G) = 3.

Finally, adding the constraint of the prescribed order to the classical problems concerning
the existence of circuits (see related work in Section 2), creates a whole family of new problems
to consider.

Acknowledgement. We would like to thank the anonymous referees for helpful remarks
that improved the presentation of the paper.
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