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Abstract. In the last years several algorithmic meta-theorems have appeared (Bod-
laender et al. [FOCS 2009], Fomin et al. [SODA 2010], Kim et al. [ICALP 2013])
guaranteeing the existence of linear kernels on sparse graphs for problems satisfying
some generic conditions. The drawback of such general results is that it is usually
not clear how to derive from them constructive kernels with reasonably low explicit
constants. To fill this gap, we recently presented [STACS 2014] a framework to obtain
explicit linear kernels for some families of problems whose solutions can be certified
by a subset of vertices. In this article we enhance our framework to deal with pack-
ing problems, that is, problems whose solutions can be certified by collections of
subgraphs of the input graph satisfying certain properties. F-Packing is a typical
example: for a family of connected graphs F that we assume to contain at least one
planar graph, the task is to decide whether a graph G contains k vertex-disjoint sub-
graphs such that each of them contains a graph in F as a minor. We provide explicit
linear kernels on sparse graphs for the following two orthogonal generalizations of
F-Packing: for an integer ` > 1, one aims at finding either minor-models that are
pairwise at distance at least ` in G (`-F-Packing), or such that each vertex in G
belongs to at most ` minors-models (F-Packing with `-Membership). Finally, we
also provide linear kernels for the versions of these problems where one wants to pack
subgraphs instead of minors.

Keywords: Parameterized complexity; linear kernels; packing problems; dynamic
programming; protrusion replacement; graph minors.

1 Introduction

Motivation. A fundamental notion in parameterized complexity (see [13,17,31] for an intro-
duction to the field) is that of kernelization, which asks for the existence of polynomial-time
preprocessing algorithms producing equivalent instances whose size depends exclusively on
the parameter k. Finding kernels of size polynomial or linear in k (called linear kernels) is
one of the major goals of this area. A pioneering work in this direction was the linear kernel
of Alber et al. [2] for Dominating Set on planar graphs, generalized by Guo and Nie-
dermeier [25] to a family of problems on planar graphs. Several algorithmic meta-theorems
on kernelization have appeared in the last years, starting with the result of Bodlaender et
al. [5] on graphs of bounded genus. It was followed-up by similar results on larger sparse
graph classes, such as graphs excluding a minor [21] or a topological minor [27].

The above results guarantee the existence of linear kernels on sparse graph classes for
problems satisfying some generic conditions, but it is hard to derive from them construc-
tive kernels with explicit constants. We recently made in [23] an significant step toward
a fully constructive meta-kernelization theory on sparse graphs with explicit constants. In
a nutshell, the main idea is to substitute the algorithmic power of CMSO logic that was
used in [5, 21,27] with that of dynamic programming (DP for short) on graphs of bounded
decomposability (i.e., bounded treewidth). We refer the reader to the introduction of [23]
for more details. Our approach provides a DP framework able to construct linear kernels
for families of problems on sparse graphs whose solutions can be certified by a subset of
vertices of the input graph, such as r-Dominating Set or Planar-F-Deletion.
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Our contribution. In this article we make one more step in the direction of a fully construc-
tive meta-kernelization theory on sparse graphs, by enhancing the existing framework [23]
in order to deal with packing problems. These are problems whose solutions can be certified
by collections of subgraphs of the input graph satisfying certain properties. We call these
problems packing-certifiable, as opposed to vertex-certifiable ones1.

As an illustrative example, for a family of connected graphs F containing at least one
planar graph, we provide a linear kernel on sparse graphs for the F-Packing problem2:
decide whether a graph G contains at least k vertex-disjoint subgraphs such that each of
them contains a graph in F as a minor. We provide linear kernels as well for the following two
orthogonal generalizations of F-Packing: for an integer ` > 1, one aims at finding either
minor-models that are pairwise at distance at least ` in G (`-F-Packing), or such that
each vertex in G belongs to at most ` minors-models (F-Packing with `-Membership).
While only the existence of linear kernels for F-Packing was known [5], to the best of our
knowledge no kernels were known for `-F-Packing and F-Packing with `-Membership,
except for `-F-Packing when F consists only of a triangle and the maximum degree is also
considered as a parameter [3]. We would like to note that the kernels for F-Packing and for
F-Packing with `-Membership apply to minor-free graphs, while those for `-F-Packing
for ` > 2 apply to the smaller class of apex-minor-free graphs.

We also provide linear kernels for the versions of the above problems where one wants to
pack subgraphs instead of minors (as one could expect, the kernels for subgraphs are con-
siderably simpler than those for minors). We call the respective problems `-F-Subgraph-
Packing and F-Subgraph-Packing with `-Membership. While the first problem can
be seen as a broad generalization of `-Scattered Set (see for instance [5,23]), the second
one was recently defined by Fernau et al. [16], motivated by the problem of discovering over-
lapping communities (see also [34,35] for related problems about detecting overlapping com-
munities): the parameter ` bounds the number of communities that a member of a network
can belong to. More precisely, the goal is to find in a graph G at least k subgraphs isomor-
phic to a member of F such that every vertex in V (G) belongs to at most ` subgraphs. This
type of overlap was also studied by Fellows et al. [15] in the context of graph editing. Fer-
nau et al. [16] proved, in particular, that the F-Subgraph-Packing with `-Membership
problem is NP-hard for all values of ` > 1 when F = {F} and F is an arbitrary connected
graph with at least three vertices, but polynomial-time solvable for smaller graphs. Note
that F-Subgraph-Packing with `-Membership generalizes the F-Subgraph-Packing
problem, which consists in finding in a graph G at least k vertex-disjoint subgraphs isomor-
phic to a member of F . The smallest kernel for the F-Subgraph-Packing problem [30] has
size O(kr−1), where F = {F} and F is an arbitrary graph on r vertices. A list of references
of kernels for particular cases of the family F can be found in [16]. Concerning the kerneliza-
tion of F-Subgraph-Packing with `-Membership, Fernau et al. [16] provided a kernel
on general graphs with O((r + 1)rkr) vertices, where r is the maximum number of vertices
of a graph in F . In this article we improve this result on graphs excluding a fixed graph
as a minor, by providing a linear kernel for F-Subgraph-Packing with `-Membership
when F is any family of (not necessarily planar) connected graphs.

Our techniques. It appears that packing-certifiable problems are intrinsically more in-
volved than vertex-certifiable ones. This fact is well-known when speaking about FPT-
algorithms on graphs of bounded treewidth [10, 29], but we need to be more precise with

1 For instance, deciding whether a graph G contains at least k vertex-disjoint cycles is a typical
packing-certifiable problem. This problem, called Cycle Packing, is FPT as it is minor-closed,
but it is unlikely to admit polynomial kernels on general graphs [6].

2 We would like to clarify here that in our original submission of [23] we claimed, among other
results, a linear kernel for F-Packing on sparse graphs. Unfortunately, while preparing the
camera-ready version, we realized that there was a bug in one of the proofs and we had to
remove this result from the paper. It turned out that for fixing that bug, several new ideas and
a generalization of the original framework seemed to be necessary; this was the starting point of
the results presented in the current paper.
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what be mean by being “more involved” in our setting of obtaining kernels via DP on a
tree decomposition of the input graph. Loosely speaking, the framework that we presented
in [23] and that we need to redefine and extend here, can be summarized as follows. First
of all, we propose a general definition of a problem encoding for the tables of DP when
solving parameterized problems on graphs of bounded treewidth. Under this setting, we
provide three general conditions guaranteeing that such an encoding can yield a so-called
protrusion replacer, which in short is a procedure that replaces large “protrusions” (i.e.,
subgraphs with small treewidth and small boundary) with “equivalent” subgraphs of con-
stant size. Let us be more concrete on these three conditions that such an encoding E needs
to satisfy in order to obtain an explicit linear kernel for a parameterized problem Π.

The first natural condition is that on a graph G without boundary, the optimal size
of the objects satisfying the constraints imposed by E coincides with the optimal size of
solutions of Π in G; in that case we say that E is a Π-encoder. On the other hand, we need
that when performing DP using the encoding E, we can use tables such that the maximum
difference among all the values that need to be stored is bounded by a function g of the
treewidth; in that case we say that E is g-confined. Finally, the third condition requires
that E is “suitable” for performing DP, in the sense that the tables at a given node of a
tree decomposition can be computed using only the information stored in the tables of its
children (as it is the case of practically all natural DP algorithms); in that case we say that
E is DP-friendly. These two latter properties exhibit some fundamental differences when
dealing with vertex-certifiable or packing-certifiable problems.

Indeed, as discussed in more detail in Section 3, with an encoding E we associate a
function fE that corresponds, roughly speaking, to the maximum size of a partial solution
that satisfies the constraints defined by E. In order for an encoder to be g-confined for some
function g(t) of the treewidth t, for some vertex- certifiable problems such as r-Scattered
Set (see [23]) we need to “force” the confinement artificially, in the sense that we directly
discard the entries in the tables whose associated values differ by more than g(t) from the
maximum (or minimum) ones. Fortunately, we can prove that an encoder with this modified
function is still DP-friendly. However, this is not the case for packing-certifiable problems
such as F-Packing. Intuitively, the difference lies on the fact that in a packing-certifiable
problem, a solution of size k can contain arbitrarily many vertices3 and so it can as well
contain arbitrarily many vertices from any subgraph corresponding to a rooted subtree of
a tree decomposition of the input graph G. This possibility prevents us from being able
to prove that an encoder is DP-friendly will still being confined, as in order to fill in the
entries of the tables at a given node, one may need to retrieve information from the tables
of other nodes different from its children. To circumvent this problem, we introduce another
criterion to discard the entries in the tables of an encoder: we recursively discard the entries
of the tables whose associated partial solutions induce partial solutions at some lower node
of the rooted tree decomposition that need to be discarded. That is, if an entry of the table
needs to be discarded at some node of a tree-decomposition, we propagate this information
to all the other nodes.

Organization of the paper. For the reader not familiar with the background used in
previous work on this topic [5, 21, 23, 27], some preliminaries can be found in Section 2. In
Section 3 we introduce the basic definitions of our framework and present an explicit pro-
trusion replacer for packing-certifiable problems. The applications to the different problems
can be found in Section 4 and Section 5 concludes the article. Due to space limitations, the
proofs of the results marked with ‘[?]’ have been moved to the appendix.

2 Preliminaries

Graphs. In our article graphs are undirected, simple, and without loops. We use standard
graph-theoretic notation; see for instance [12]. We denote by dG(v, w) the distance in G

3 For instance, if one wants to find k disjoint cycles in an n-vertex graph with girth Ω(logn).
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between two vertices v and w and by dG(W1,W2) = min{dG(w1, w2) : w1 ∈ W1, w2 ∈ W2}
the distance between two sets of vertices W1 and W2 of G.

Definition 1. A parameterized graph problem Π is called packing-certifiable is there exists
a language LΠ (called certifying language for Π) defined on pairs (G,S), where G is a graph
and S is a collection of subgraphs of G, such that (G, k) is a Yes-instance of Π if and only
if there exists a collection S of subgraphs of G with |S| > k such that (G,S) ∈ LΠ .

For a class of graphs G, we denote by ΠG the problem Π where the instances are
restricted to belong to G. With a packing-certifiable problem we can associate in a natural
way an optimization function as follows.

Definition 2. Given a packing-certifiable parameterized problem Π, the maximization func-
tion fΠ : Γ ∗ → N ∪ {−∞} is defined as

fΠ(G) =

{
max{|S| : (G,S) ∈ LΠ} , if there exists such an S and
−∞ , otherwise.

(1)

Boundaried graphs. Graphs with a distinguished set of labeled vertices are useful for
decomposing and gluing graphs.

Definition 3. A boundaried graph is a graph G with a set B ⊆ V (G) of distinguished
vertices and an injective labeling λG : B → N. The set B is called the boundary of G and
it is denoted by ∂(G). The set of labels is denoted by Λ(G) = {λG(v) : v ∈ ∂(G)}. We say
that a boundaried graph is a t-boundaried graph if Λ(G) ⊆ {1, . . . , t}.

Definition 4. Let G1 and G2 be two boundaried graphs. We denote by G1 ⊕G2 the graph
obtained from G by taking the disjoint union of G1 and G2 and identifying vertices with the
same label of the boundaries of G1 and G2. In G1⊕G2 there is an edge between two labeled
vertices if there is an edge between them in G1 or in G2.

We are interested in reducing the size of instances of a parameterized problem. To this
aim, we want to replace some boundaried graph with some equivalent and smaller one.
Given G = G1 ⊕ G2 and G′2, we say that G′ = G1 ⊕ G′2 is the graph obtained from G by
replacing G2 with G′2.

Canonical equivalence. A typical kernelization algorithm is based on the application of
a series of reduction rules. To prove that these rules are valid one must show that the
initial and the reduced instances are equivalent. In our case, the reduction rules will consist
of protrusion replacements and the validity of a replacement can be proved thanks to the
notion of canonical equivalence, introduced by Bodlaender el al. [5].

Definition 5. Let Π be a parameterized problem and let t ∈ N. Given G1, G2 ∈ Bt, we say
that G1 ≡Π G2 if Λ(G1) = Λ(G2) and there exists a transposition constant ∆Π,t(G1, G2) ∈
Z such that for every H ∈ Bt and every k ∈ Z, it holds that (G1 ⊕H, k) ∈ Π if and only if
(G2 ⊕H, k +∆Π,t(G1, G2)) ∈ Π.

Treewidth. Intuitively, the treewidth of a graph is a structural parameter capturing how
much it resembles topology to a tree. Its algorithmic importance is certified by the fact that
many problems can be solved efficiently via DP on graphs of bounded treewidth [9].

Definition 6. A tree decomposition of a graph G is a couple (T,X = {Bx : x ∈ V (T )}),
where T is a tree and such that:

•
⋃
x∈V (T )Bx = V (G);

• for every edge {u, v} ∈ E(G) there exists x ∈ V (T ) such that u, v ∈ Bx; and
• for every vertex u ∈ V (G) the set of nodes {x ∈ V (T ) : u ∈ Bx} induce a subtree of T .
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The vertices of T are referred to as nodes and the sets Bx are called bags.
A rooted tree decomposition (T,X , r) is a tree decomposition with a distinguished node

r selected as the root. A nice tree decomposition (T,X , r) (see [28]) is a rooted tree decom-
position where T is binary and for each node x with two children y, z it holds Bx = By = Bz
and for each node x with one child y it holds Bx = By ∪ {u} or Bx = By \ {u} for some
u ∈ V (G). The width of a tree decomposition is the size of a largest bag minus one. The
treewidth of a graph, denoted by tw(G), is the smallest width of a tree decomposition of G.
A treewidth-modulator of a graph G is a set X ⊆ V (G) such that tw(G−X) 6 t, for some
fixed constant t.

Given a bag B (resp. a node x) of a rooted tree decomposition T , we denote by GB
(resp. Gx), the subgraph induced by the vertices appearing in the subtree of T rooted at
the node corresponding to B (resp. the node x). We denote by Bt the set of all t-boundaried
graphs and by Ft the set of all t-boundaried graphs that have a rooted tree decomposition
of width t − 1 with all boundary vertices contained in the root-bag. Obviously Ft ⊆ Bt.
(Note that graphs can be viewed as 0-boundaried graphs, hence we use a same alphabet Γ
for describing graphs and boundaried graphs.)

Protrusions. Loosely speaking, a protrusion of a graph is a subgraph with small treewidth
and small boundary. In many applications, it is interesting to find a decomposition of a
graph into protrusions in order to be able to apply DP on each protrusion.

Definition 7. Let t, α be positive integers. A t-protrusion Y of a graph G is an induced
subgraph of G with ∂(Y ) 6 t and tw(Y ) 6 t − 1, where ∂(Y ) is the set of vertices of Y
having neighbors in V (G) \ V (Y ). An (α, t)-protrusion decomposition of a graph G is a
partition P = Y0 ] Y1 ] · · · ] Y` of V (G) such that:

(i) for every 1 6 i 6 `, N(Yi) ⊆ Y0;
(ii) max{`, |Y0|} 6 α; and

(iii) for every 1 6 i 6 `, Yi ∪NY0(Yi) is a t-protrusion of G.

When (G, k) is the input of a parameterized problem with parameter k, we say that an
(α, t)-protrusion decomposition of G is linear whenever α = O(k).

We say that a rooted tree decomposition of a protrusion G (resp. a boundaried graph
G) is boundaried if the boundary ∂(G) is contained in the root bag. In the following we
always consider boundaried nice tree decompositions of width t−1, which can be computed
in polynomial time for fixed t [4, 28].

3 A framework to replace protrusions for packing problems

In this section we restate and in many cases modify the definitions given in [23] in order to
deal with packing-certifiable problems; we will point out the differences. Since most of the
definitions and proofs are quite similar, we will defer much of the material to the appendices.

Encoders. In the following we extend the definition of an encoder given in [23, Definition
2] so that it is able to deal with packing-certifiable problems. The main difference is that
now the function fE is incorporated in the definition of an encoder, since as discussed in
the introduction we need to consider an additional scenario where the entries of the table
are discarded (technically, this is modeled by setting those entries to “−∞”) and for this we
will have to deal with the partial solutions particular to each problem. In the applications
of the next sections, we will call such functions that propagate the entries to be discarded
relevant. We also need to add a condition about the computability of the function fE , so
that encoders can indeed be used for performing dynamic programming.

Definition 8. An encoder is a triple E = (CE , LE , fE) where
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CE is a function in 2N → 2Υ
∗

that maps a finite subset of integers I ⊆ N to a set CE(I) of
strings over some alphabet Υ . Each string R ∈ CE(I) is called an encoding. The size
of the encoder is the function sE(t) : N → N defined as sE(t) := max{|CE(I)| : I ⊆
{1, . . . , t}}, where |CE(I)| denotes the number of encodings in CE(I);

LE is a computable language which accepts triples (G,S, R) ∈ Γ ∗ ×Σ∗ × Υ ∗, where G is a
boundaried graph, S is a collection of subgraphs of G and R ∈ CE(Λ(G)) is an encoding.
If (G,S, R) ∈ LE , we say that S satisfies the encoding R in G; and

fE is a function in Γ ∗×Υ ∗ → N∪{−∞} that maps a boundaried graph G and an encoding
R ∈ CE(Λ(G)) to an integer or to −∞ and that can be computed in time h(|Λ(G)|)·nO(1),
where h is an arbitrary computable function depending only on the size of the encoder
and n is the number of vertices of G.

As it will become clear with the applications described in the next sections, an encoder is
a formalization of the tables used by an algorithm that solves a packing-certifiable problem
Π by doing DP over a tree decomposition of the input graph. The encodings in CE(I)
correspond to the entries of the DP-tables of graphs with boundary labeled by the set of
integers I. The language LE identifies certificates which are partial solutions satisfying the
boundary conditions imposed by an encoding.

Each fixed encoding R defines an associated problem, which we can denote by ΠR ,
that can be seen as an “enriched” version of the initial problem Π, where some additional
constraints have been imposed by R. If we fix a boundaried graph G, the function fE(G, · ) :
R 7→ fE(G,R) fills in the DP-tables of G and if we fix R, the function fE( · , R) : G 7→
fE(G,R) can be viewed as the optimization function of the problem ΠR associated with R.
The size of the encoder sE(t) can be viewed as an upper bound on the number of encodings
definable for a t-boundaried graph, i.e., the maximum number of entries to be filled in the
DP-tables.

The following definition differs from [23, Definition 3] as now the function fE is incor-
porated in the definition of an encoder E.

Definition 9. Let Π be a packing-certifiable problem. An encoder E is a Π-encoder E if
CE(∅) is a singleton, denoted by {R∅}, such that for any 0-boundaried graph G, fE(G,R∅) =
fΠ(G),

The following definition allows to control the number of possible distinct values assigned
to encodings and plays a similar role to FII or monotonicity in previous work [5, 21,27].

Definition 10. An encoder E is g-confined if there exists a function g : N → N such that
for any t-boundaried graph G with Λ(G) = I it holds that either {R ∈ CE(I) : fE(G,R) 6=
−∞} = ∅ or

max
R
{fE(G,R) 6= −∞} − min

R
{fE(G,R) 6= −∞} 6 g(t). (2)

For an encoder E and a function g, in the next sections we will denote the relevant
functions discussed before by f̄Eg to distinguish them from other functions that we will
need.

Equivalence relations and representatives. We now define some equivalence relations
on t-boundaried graphs.

Definition 11. Let E be an encoder, let G1, G2 ∈ Bt and let G be a class of graphs.

1. G1 ∼∗E,t G2 if Λ(G1) = Λ(G2) =: I and there exists an integer ∆E,t(G1, G2) (depending

on G1, G2) such that for any encoding R ∈ CE(I) we have fE(G1, R) = fE(G2, R) −
∆E,t(G1, G2).

2. G1 ∼G,t G2 if G1, G2 ∈ G and, for any H ∈ Bt, H ⊕G1 ∈ G if and only if H ⊕G2 ∈ G.
3. G1 ∼∗E,G,t G2 if G1 ∼∗E,t G2 and G1 ∼G,t G2.
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4. If we restrict the graphs G1, G2 to be in Ft, then the corresponding equivalence relations,
which are a restriction of ∼∗E,t and ∼∗E,G,t, are denoted by ∼E,t and ∼E,G,t, respectively.

If for all encodings R, fE(G1, R) = fE(G2, R) = −∞, then we set ∆E,t(G1, G2) := 0
(note that any fixed integer would satisfy the first condition in Definition 11). Following
the notation of Bodlaender et al. [5], the function ∆E,t is called the transposition function
for the equivalence relation ∼∗E,t. Note that we can use the restriction of ∆E,t to couples of
graphs in Ft to define the equivalence relation ∼E,t.

In the following we only consider classes of graphs whose membership can be expressed
in Monadic Second Order (MSO) logic. Therefore, we know that the number of equivalence
classes of ∼G,t is finite [13,17,31], say at most rG,t, and we can state the following lemma.

Lemma 1. [?] Let G be a class of graphs whose membership is expressible in MSO logic.
For any encoder E, any function g : N → N and any integer t ∈ N, if E is g-confined then
the equivalence relation ∼∗E,G,t has at most r(E, g, t,G) := (g(t) + 2)sE (t) · 2t · rG,t equivalence
classes. In particular, the equivalence relation ∼E,G,t has at most r(E, g, t,G) equivalence
classes as well.

Definition 12. An equivalence relation ∼∗E,G,t is DP-friendly if, for any graph G ∈ Bt
with ∂(G) = A and any separator B ⊆ V (G) with |B| 6 t, the following holds. Let GB be a
subgraph of G separated by B from the rest of G and such that A∩V (GB) ⊆ B. Considering
GB as a t-boundaried graph (with boundary B), let G′ ∈ Bt with ∂(G′) = A be the graph
obtained from G by replacing the subgraph GB with some G′B ∈ Bt such that GB ∼∗E,G,t G′B.
Then G ∼∗E,G,t G′ and ∆E,t(G,G

′) = ∆E,t(GB , G
′
B).

The following useful fact states that for proving that ∼∗E,G,t is DP-friendly, it suffices to
prove that G ∼∗E,t G′ instead of G ∼∗E,G,t G′.

Fact 1 [?] Let G ∈ Bt with a separator B, let GB ∼E,G,t G′B, and let G′ ∈ Bt as in
Definition 12. If G ∼∗E,t G′, then G ∼∗E,G,t G′.

In order to perform a protrusion replacement that does not modify the behavior of the
graph with respect to a problem Π, we need the relation ∼∗E,t to be a refinement of the
canonical equivalence relation ≡Π,t.

Lemma 2. [?] Let Π be a packing-certifiable parameterized problem defined on a graph class
G, let E be an encoder, let g : N → N, and let G1, G2 ∈ Bt. If E is a g-confined Π-encoder
and ∼∗E,G,t is DP-friendly, then the fact that G1 ∼∗E,G,t G2 implies the following:

• G1 ≡Π G2; and
• ∆Π(G1, G2) = ∆E,t(G1, G2).

In particular, this holds when G1, G2 ∈ Ft and G1 ∼E,G,t G2.

Definition 13. Given an encoder E and an equivalence class C ⊆ Ft of ∼E,G,t, a graph
G ∈ C is a progressive representative of C if for any G′ ∈ C, it holds that ∆E,t(G,G

′) 6 0.

Lemma 3. [?] Let G be a class of graphs whose membership is expressible in MSO logic.
For any encoder E, any function g : N→ N, and any t ∈ N, if E is g-confined and ∼∗E,G,t is
DP-friendly, then any equivalence class of ∼E,G,t has a progressive representative of size at

most b(E, g, t,G) := 2r(E,g,t,G)+1 · t, where r(E, g, t,G) is the function defined in Lemma 1.

An explicit protrusion replacement. The next lemma specifies conditions under which,
given an upper bound on the size of the representatives, a generic DP algorithm can provide
in linear time an explicit protrusion replacer.
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Lemma 4. [?] Let G be a class of graphs, let E be an encoder, let g : N→ N, and let t ∈ N
such that E is g-confined and ∼∗E,G,t is DP-friendly. Assume we are given an upper bound
b > t on the size of a smallest progressive representative of any class of ∼E,G,t. Given a
t-protrusion Y inside some graph, we can compute a t-protrusion Y ′ of size at most b such
that Y ∼E,G,t Y ′ and ∆E,t(Y

′, Y ) 6 0. Furthermore, such a protrusion can be computed in
time O(|Y |), where the hidden constant depends only on E, g, b,G, and t.

Let us now piece everything together to state the main result of [23] that we need to
reprove here for packing-certifiable problems. For issues of constructibility, we restrict G to
be the class of H-(topological)-minor-free graphs.

Theorem 1. Let G be the class of graphs excluding some fixed graph H as a (topological)
minor and let Π be a parameterized packing-certifiable problem defined on G. Let E be an
encoder, let g : N → N, and let t ∈ N such that E is a g-confined Π-encoder and ∼∗E,G,t is
DP-friendly. Given an instance (G, k) of Π and a t-protrusion Y in G, we can compute in
time O(|Y |) an equivalent instance (G−(Y −∂(Y ))⊕Y ′, k′) where Y ′ is a t-protrusion with
|Y ′| 6 b(E, g, t,G) and k′ 6 k and where b(E, g, t,G) is the function defined in Lemma 3.

Proof: By Lemma 1, the number of equivalence classes of the equivalence relation ∼E,G,t is
finite and by Lemma 3 the size of a smallest progressive representative of any equivalence
class of ∼E,G,t is at most b(E, g, t,G). Therefore, we can apply Lemma 4 and deduce that, in
time O(|Y |), we can find a t-protrusion Y ′ of size at most b(E, g, t,G) such that Y ∼E,G,t Y ′
and the corresponding transposition constant ∆E,t(Y

′, Y ) with ∆E,t(Y
′, Y ) 6 0. Since E is

a Π-encoder and ∼∗E,G,t is DP-friendly, it follows from Lemma 2 that Y ≡Π Y ′ and that
∆Π,t(Y

′, Y ) = ∆E,t(Y
′, Y ) 6 0. Therefore, if we set k′ := k + ∆Π,t(Y

′, Y ), it follows that
(G, k) and ((G− (Y −∂(Y )))⊕Y ′, k′) are indeed equivalent instances of Π with k′ 6 k and
|Y ′| 6 b(E, g, t,G). �

Such a protrusion replacer can be used to obtain a kernel when, for instance, one is able
to provide a protrusion decomposition of the instance.

Corollary 1. Let G be the class of graphs excluding some fixed graph H as a (topological)
minor and let Π be a parameterized packing-certifiable problem defined on G. Let E be an
encoder, let g : N → N, and let t ∈ N such that E is a g-confined Π-encoder and ∼∗E,G,t
is DP-friendly. Given an instance (G, k) of Π and an (αk, t)-protrusion decomposition of
G, we can construct a linear kernel for Π of size at most (1 + b(E, g, t,G)) · α · k, where
b(E, g, t,G) is the function defined in Lemma 3.

Proof: For 1 6 i 6 `, we apply the polynomial-time algorithm given by Theorem 1 to
replace each t-protrusion Yi with a graph Y ′i of size at most b(E, g, t,G) and to update
the parameter accordingly. In this way we obtain an equivalent instance (G′, k′) such that
G′ ∈ G, k′ 6 k and |V (G′)| 6 |Y0|+ ` · b(E, g, t,G) 6 (1 + b(E, g, t,G))α · k . �

4 Applications

Due to space limitations, we just sketch here the main ingredients that we use in our
applications for obtaining the linear kernels. Full details can be found in the appendices.
More precisely, we start in Appendix C with the linear kernel for Connected-Planar-F-
Packing. In Appendix D we deal with the variant in which the minor-models are pairwise
at distance at least ` and, in Appendix E with the version in which each vertex can belong
to at most ` minor-models. Finally, we adapt in Appendix F, the machinery developed for
packing minors to packing subgraphs, considering both variants of the problem. For the
sake of readability, each the considered problems will be redefined in the corresponding
appendix.

General methodology. The next theorem will be fundamental in the applications.
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Theorem 2 (Kim et al. [27]). Let c, t be two positive integers, let H be an h-vertex graph,
let G be an n-vertex H-topological-minor-free graph, and let k be a positive integer. If we
are given a set X ⊆ V (G) with |X| 6 c ·k such that tw(G−X) 6 t, then we can compute in
time O(n) an ((αH · t · c) · k, 2t+ h)-protrusion decomposition of G, where αH is a constant
depending only on H, which is upper-bounded by 40h225h log h.

A typical application of our framework for obtaining an explicit linear kernel for a
packing-certifiable problem Π on a graph class G is as follows. The first task is to define an
encoder E and to prove that for some function g : N→ N, E is a g-confined Π-encoder and
∼∗E,G,t is DP-friendly. This step is usually quite technical, but it becomes reasonably easy
after one gets used to it. The next ingredient is a polynomial-time algorithm that, given
an instance (G, k) of Π, either reports that (G, k) is a Yes-instance (or a No-instance,
depending on the problem), or finds a treewidth-modulator of G with size O(k). The way
to obtain this algorithm depends on each particular problem and in our applications we will
use a number of existing results in the literature in order to find it. Once we have such a
linear treewidth-modulator, we can use Theorem 2 to find a linear protrusion decomposition
of G. Finally, it just remains to apply Corollary 1 to obtain an explicit linear kernel for Π
on G.

Let us provide here some generic intuition about the additional criterion mentioned
in the introduction to discard the entries in the tables of an encoder. For an encoder E =
(CE , LE , fE) and a function g : N→ N, we need some notation in order to define the relevant
function f̄Eg , which will be an appropriate modification of fE . Let G ∈ Bt with boundary A

and let RA be an encoding. We (recursively) define RA to be irrelevant for f̄Eg if there exists

a certificate S such that (G,S, RA) ∈ LE and |S| = fE(G,RA) and a separator B ⊆ V (G)
with |B| 6 t and B 6= A, such that S induces an encoder RB in the graph GB ∈ Bt with
f̄Eg (GB , RB) = −∞. Here, by using the term “induces” we implicitly assume that S defines
in an unambiguous way an encoder RB in the graph GB ; this will be the case in all the
encoders used in our applications.

To define f̄Eg , we will always use the following natural function fE , which for each problem
Π is meant to correspond to an extension to boundaried graphs of the maximization function
fΠ of Definition 2. For a graph G and an encoding R, this natural function is defined as
fE(G,R) = max{k : ∃S, |S| > k, (G,S, R) ∈ LE}. Then we define the function f̄Eg as follows:

f̄Eg (G,RA) =

 −∞, if fE(G,RA) + g(t) < max{fE(G,R) : R ∈ CE(Λ(G))},
or if RA is irrelevant for f̄Eg .

fE(G,RA), otherwise.

That is, we will use the modified encoder (CE , LE , f̄Eg ). We need to guarantee that the

above function f̄Eg can be computed in time h(|Λ(G)|) · nO(1), as required4 in Definition 8.
Indeed, from the definition it follows that an encoding RA defined at a node x of a given
tree decomposition is irrelevant if and only if RA can be obtained by combining encodings
corresponding to the children of x, such that at least one of them is irrelevant. This latter
property can be easily computed recursively on a tree decomposition within the claimed time
bounds, by performing standard dynamic programming. We will omit this computability
issue in the applications, as the same argument sketched here applies to all of them.

In order to obtain the linear treewidth-modulators mentioned before, we will use several
results from [5,20,21], which in turn use the following two propositions (the grid-like graph
Γr is defined in Appendix B).

Proposition 1 (Demaine and Hajiaghayi [11]). There is a function fm : N→ N such
that for every h-vertex graph H and every positive integer r, every H-minor-free graph with
treewidth at least fm(h) · r, contains the (r × r)-grid as a minor.

4 The fact that the values of the function f̄Eg can be calculated is important, in particular, in the
proof of Lemma 4, since we need to be able to compute equivalence classes of the equivalence
relation ∼E,G,t.
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Proposition 2 (Fomin et al. [18]). There is a function fc : N → N such that for every
h-vertex apex graph H and every positive integer r, every H-minor-free graph with treewidth
at least fc(h) · r, contains the graph Γr as a contraction.

The current best upper bound [26] for the function fm is fm(h) = 2O(h2 log h) and, up
to date, there is no explicit bound for the function fc. We would like to note that this non-
existence of explicit bounds for fc is an issue that concerns the graph class of H-minor-free
graphs and it is perfectly compatible with our objective of providing explicit constants for
particular problems defined on that graph class, which will depend on the function fc.

Let us now provide a sketch of the main basic ingredients used in each of the applications.

Packing minors. Let F be a fixed finite set of graphs. In the F-Packing problem, we
are given a graph G and an integer parameter k and the question is whether G has k
vertex-disjoint subgraphs G1, . . . , Gk, each containing some graph in F as a minor. When
all the graphs in F are connected and F contains at least one planar graph, we call the
problem Connected-Planar-F-Packing. The encoder uses the notion of rooted packing
introduced by Adler et al. [1], which we also used in [23] for Connected-Planar-F-
Deletion. To obtain the treewidth-modulator, we use the Erdős-Pósa property for graph
minors [7, 14, 32]. More precisely, we use that on minor-free graphs, as proved by Fomin
et al. [22], if (G, k) is a No-instance of Connected-Planar-F-Packing, then (G, k′)
is a Yes-instance of Connected-Planar-F-Deletion for k′ = O(k). Finally, we use a
result of Fomin et al. [21] that provides a polynomial-time algorithm to find treewidth-
modulators for Yes-instances of Connected-Planar-F-Deletion. The obtained con-
stants involve, in particular, the currently best known constant-factor approximation of
treewidth on minor-free graphs.

Packing scattered minors. Let F be a fixed finite set of graphs and let ` be a positive
integer. In the `-F-Packing problem, we are given a graph G and an integer parameter k and
the question is whether G has k subgraphs G1, . . . , Gk pairwise at distance at least `, each
containing some graph from F as a minor. The encoder for `-F-Packing is a combination
of the encoder for F-Packing and the one for `-Scattered Set that we used in [23].
For obtaining the treewidth-modulator, unfortunately we cannot proceed as for packing
minors, as up to date no linear Erdős-Pósa property for packing scattered planar minors is
known; the best bound we are aware of is O(k

√
k), which is not enough to obtain a linear

kernel. To circumvent this problem, we use the following trick: we (artificially) formulate
`-F-Packing as a vertex-certifiable problem and prove that it fits the conditions required
by the framework of Fomin et al. [21] to produce a treewidth-modulator. (We would like to
stress that this formulation of the problem as a vertex-certifiable one is not enough to apply
the results of [23], as one has to further verify the necessary properties of the encoder are
satisfied and it does not seem to be an easy task at all.) Once we have it, we consider the
original formulation of the problem to define its encoder. As a drawback of resorting to the
general results of [21] and, due to the fact that `-F-Packing is contraction-bidimensional,
we provide linear kernels for the problem on the (smaller) class of apex-minor-free graphs.

Packing overlapping minors. Let F be a fixed finite set of graphs and let ` be a positive
integer. Given a finite set of graphs F and a positive integer `, we consider the following
problem. In the F-Packing with `-Membership problem, we are given a graph G and an
integer parameter k and the question is whether G has k subgraphs G1, . . . , Gk such that
each subgraph contains some graph from F as a minor, and each vertex of G belongs to
at most ` subgraphs. The encoder is an enhanced version of the one for packing minors, in
which we allow a vertex to belong simultaneously to several minor-models. To obtain the
treewidth-modulator, the situation is simpler than above, thanks to the fact that a packing
of models is in particular a packing of models with `-membership. This allows us to use the
linear Erdős-Pósa property that we described for packing minors and therefore to construct
linear kernels on minor-free graphs.
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Packing scattered and overlapping subgraphs. The definitions of the corresponding
problems are similar to the ones above, just by replacing the minor by the subgraph relation.
The encoders are simplified versions of those that we defined for packing scattered and
overlapping minors, respectively. The idea for obtaining the treewidth-modulator is to apply
a simple reduction rule that removes all vertices not belonging to any of the copies of the
subgraphs we are looking for. It can be easily proved that if a reduced graph is a No-instance
of the problem, then it is a Yes-instance of `′-Dominating Set, where `′ is a function of
the integer ` corresponding to the problem and the largest diameter of a subgraph in the
given family. We are now in position to use the machinery of [21] for `′-Dominating Set
and find a linear treewidth-modulator.

5 Conclusions and further research

In this article we generalized the framework introduced in [23] to deal with packing problems.
Our main result can be seen as a meta-theorem, in the sense that as far a particular
problem satisfies the generic conditions stated in Corollary 1, an explicit linear kernel on the
corresponding graph class follows. Nevertheless, in order to verify these generic conditions
and, in particular, to verify that the equivalence relation associated with an encoder is DP-
friendly, the proofs are usually quite technical (as demonstrated in the appendices of this
article) and one first needs to get familiar with several definitions. We think that it may be
possible to simplify the general methodology, thus improving its applicability.

Concerning the explicit bounds derived from our results, one natural direction is to
reduce them as much as possible. These bounds depend on a number of intermediate results
that we use along the way and improving any of them would result in an improvement
on the overall kernel sizes. It is worth insisting here that some of the bounds involve the
(currently) non-explicit function fc defined in Proposition 2, which depends exclusively on
the considered graph class (and not on each particular problem). In order to find explicit
bounds for this function fc, we leave as future work using the linear-time deterministic
protrusion replacer recently introduced by Fomin et al. [19], partially inspired from [23].

It seems plausible to push further the machinery that we developed for dealing with
even more general problems, whose certificates concern objects more general than pack-
ings. Finding interesting problems of this shape looks like an interesting avenue for further
research.

Acknowledgement. We would like to thank Archontia Giannopoulou for insightful discussions
about the Erdős-Pósa property for scattered planar minors.
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35. J. Romero and A. López-Ortiz. A parameterized algorithm for packing overlapping subgraphs.
In Proc. of the 9th International Computer Science Symposium in Russia (CSR), volume 8476
of LNCS, pages 325–336, 2014.



Explicit Linear Kernels for Packing Problems 13

A Deferred proofs in Section 3

A.1 Proof of Lemma 1

Let us first show that the equivalence relation ∼∗E,t has finite index. Let I ⊆ {1, . . . , t}. Since we

assume that E is g-confined, we have that for any G ∈ Bt with Λ(G) = I, the function fE(G, · ) can
take at most g(t)+2 distinct values (g(t)+1 finite values and possibly the value −∞). Therefore, it
follows that the number of equivalence classes of ∼∗E,t containing all graphs G ∈ Bt with Λ(G) = I

is at most (g(t) + 2)|C
E (I)|. As the number of subsets of {1, . . . , t} is 2t, we deduce that the overall

number of equivalence classes of ∼∗E,t is at most (g(t) + 2)sE (t) · 2t. Finally, since the equivalence
relation ∼∗E,G,t is the Cartesian product of the equivalence relations ∼∗E,t and ∼G,t, the result follows
from the fact that G can be expressed in MSO logic.

A.2 Proof of Fact 1

Let G = G− ⊕ GB and let G′ = G− ⊕ G′B . Assume that G ∼∗E,t G′. In order to deduce that
G ∼∗E,G,t G′, it suffices to prove that G ∼G,t G′. Let H ∈ Bt. We need to show that G ⊕ H ∈ G
if and only if G′ ⊕ H ∈ G. We have that G ⊕ H = (GB ⊕ G−) ⊕ H = GB ⊕ (G− ⊕ H), and
similarly for G′. Since GB ∼G,t G′B , it follows that G ⊕ H = GB ⊕ (G− ⊕ H) ∈ G if and only if
GB ⊕ (G− ⊕H) = G⊕H ∈ G.

A.3 Proof of Lemma 2

Let E = (CE , LE , fE) be a Π-encoder and let G1, G2 ∈ Bt such that G1 ∼E,t G2. We need to prove
that for any H ∈ Bt and any integer k, (G1⊕H, k) ∈ Π if and only if (G2⊕H, k+∆E,t(G1, G2))Π.

Suppose that (G1 ⊕ H, k) ∈ Π (by symmetry the same arguments apply starting with G2).
Since G1 ⊕H is a 0-boundaried graph and E is a Π-encoder, we have that

fE(G1 ⊕H,R∅) = fΠ(G1 ⊕H) 6 k. (3)

As ∼∗E,G,t is DP-friendly and G1 ∼∗E,G,t G2, it follows that (G1 ⊕ H) ∼∗E,G,t (G2 ⊕ H) and that
∆E,t(G1 ⊕ H,G2 ⊕ H) = ∆E,t(G1, G2). Since G2 ⊕ H is also a 0-boundaried graph, the latter
property and Equation (3) imply that

fE(G2 ⊕H,R∅) = fE(G1 ⊕H,R∅) +∆E,t(G1, G2) 6 k +∆E,t(G1, G2). (4)

Since E is a Π-encoder, fΠ(G2 ⊕ H) = fE(G2 ⊕ H,R∅), and from Equation (4) it follows that
(G2 ⊕H, k +∆E,t(G1, G2)) ∈ Π.

A.4 Proof of Lemma 3

Let C be an arbitrary equivalence class of ∼E,G,t. Let us first argue that C contains some progressive
representative. Since∆E,t(G1, G2) = fE(G1, R)−fE(G2, R) for any encodingR,G ∈ C is progressive
if fE(G,R) is minimal in fE(C, R) = {f(G,R) : G ∈ C}, for any R. Since fE(C, R) is a subset of
N, it necessarily has a minimal element, hence there is a progressive representative in C (in other
words, the order defined by G1 4 G2 if ∆E,t(G1, G2) 6 0 is well-founded).

Now let G ∈ G be a progressive representative of C with minimum number of vertices. We claim
that G has size at most 2r(E,g,t,G)+1 · t (we would like to stress that at this stage we only need to
care about the existence of such representative G, and not about how to compute it). Let (T,X )
be a boundaried nice tree decomposition of G of width at most t − 1 such that ∂(G) is contained
in the root-bag (such a nice tree decomposition exists by [28]).

We first claim that for any node x of T , the graph Gx is a progressive representative of its
equivalence class with respect to ∼E,G,t, namely C′. Indeed, assume for contradiction that it is not
the case, and let G′x be a progressive representative of C′, which exists by the discussion in the
first paragraph of the proof. Since G′x is progressive and Gx is not, ∆E,t(G

′
x, Gx) < 0. Let G′ be

the graph obtained from G by replacing Gx with G′x. Since ∼∗E,G,t is DP-friendly, it follows that
G ∼E,G,t G′ and that ∆E,t(G

′, G) = ∆E,t(G
′
x, Gx) < 0, contradicting the fact that G is a progressive

representative of the equivalence class C.
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We now claim that for any two nodes x, y ∈ V (T ) lying on a path from the root to a leaf of T ,
it holds that Gx �E,G,t Gy. Indeed, assume for contradiction that there are two nodes x, y ∈ V (T )
lying on a path from the root to a leaf of T such that Gx ∼E,G,t Gy. Let C′ be the equivalence
class of Gx and Gy with respect to ∼E,G,t. By the previous claim, it follows that both Gx and
Gy are progressive representatives of C′, and therefore it holds that ∆E,t(Gy, Gx) = 0. Suppose
without loss of generality that Gy ( Gx (that is, Gy is a strict subgraph of Gx), and let G′ be the
graph obtained from G by replacing Gx with Gy. Again, since ∼∗E,G,t is DP-friendly, it follows that
G ∼E,G,t G′ and that ∆E,t(G

′, G) = ∆E,t(Gy, Gx) = 0. Therefore, G′ is a progressive representative
of C with |V (G′)| < |V (G)|, contradicting the minimality of |V (G)|.

Finally, since for any two nodes x, y ∈ V (T ) lying on a path from the root to a leaf of T
we have that Gx �E,G,t Gy, it follows that the height of T is at most the number of equivalence
classes of ∼E,G,t, which is at most r(E, g, t,G) by Lemma 1. Since T is a binary tree, we have that
|V (T )| 6 2r(E,g,t,G)+1− 1. Finally, since |V (G)| 6 |V (T )| · t, it follows that |V (G)| 6 2r(E,g,t,G)+1 · t,
as we wanted to prove.

A.5 Proof of Lemma 4

Let E = (CE , LE , fE) be the given encoder. We start by generating a repository R containing all
the graphs in Ft with at most b+ 1 vertices. Such a set of graphs, as well as a boundaried nice tree
decomposition of width at most t− 1 of each of them, can be clearly generated in time depending
only on b and t. By assumption, the size of a smallest progressive representative of any equivalence
class of ∼E,G,t is at most b, so R contains a progressive representative of any equivalence class of
∼E,G,t with at most b vertices. We now partition the graphs in R into equivalence classes of ∼E,G,t
as follows: for each graph G ∈ R and each encoding R ∈ CE(Λ(G)), as LE and fE are computable,
we can compute the value fE(G,R) in time depending only on E, g, t, and b. Therefore, for any two
graphs G1, G2 ∈ R, we can decide in time depending only on E, g, t, b, and G whether G1 ∼E,G,t G2,
and if this is the case, we can compute the transposition constant ∆E,t(G1, G2) within the same
running time.

Given a t-protrusion Y on n vertices with boundary ∂(Y ), we first compute a boundaried nice
tree decomposition (T,X , r) of Y in time f(t)·n, by using the linear-time algorithm of Bodlaender [4,
28]. Such a t-protrusion Y equipped with a tree decomposition can be naturally seen as a t-
boundaried graph by assigning distinct labels from {1, . . . , t} to the vertices in the root-bag. We
can assume that Λ(Y ) = {1, . . . , t}. Note that the labels can be transferred to the vertices in all
the bags of (T,X , r), by performing a standard shifting procedure when a vertex is introduced
or removed from the nice tree decomposition [5]. Therefore, each node x ∈ V (T ) defines in a
natural way a t-protrusion Yx ⊆ Y with its associated boundaried nice tree decomposition, with
all the boundary vertices contained in the root bag. Let us now proceed to the description of the
replacement algorithm.

We process the bags of (T,X ) in a bottom-up way until we encounter the first node x in V (T )
such that |V (Yx)| = b+1 (note that as (T,X ) is a nice tree decomposition, when processing the bags
in a bottom-up way, at most one new vertex is introduced at every step, and recall that b > t, hence
such an x exists). We compute the equivalence class C of Yx according to ∼E,G,t; this corresponds
to computing the set of encodings CE(Λ(Yx)) and the associated values of fE(Yx, · ) that, by
definition of an encoder, can be computed in time h(|Λ(Yx)|) · bO(1), where h is some computable
function. As |V (Yx)| = b+ 1, the graph Yx is contained in the repository R, so in constant time we
can find in R a progressive representative Y ′x of C with at most b vertices and the corresponding
transposition constant ∆E,t(Y

′
x, Yx) 6 0, (the inequality holds because Y ′x is progressive). Let Z be

the graph obtained from Y by replacing Yx with Y ′x, so we have that |V (Y ′)| < |V (Z)| (note that this
replacement operation directly yields a boundaried nice tree decomposition of width at most t−1 of
Z). Since ∼∗E,G,t is DP-friendly, it follows that Y ∼E,G,t Z and that ∆E,t(Z, Y ) = ∆E,t(Y

′
x, Yx) 6 0.

We recursively apply this replacement procedure on the resulting graph until we eventually
obtain a t-protrusion Y ′ with at most b vertices such that Y ∼E,G,t Y ′. The corresponding transpo-
sition constant ∆E,t(Y

′, Y ) can be easily computed by summing up all the transposition constants
given by each of the performed replacements. Since each of these replacements introduces a pro-
gressive representative, we have that ∆E,t(Y

′, Y ) 6 0. As we can assume that the total number
of nodes in a nice tree decomposition of Y is O(n) [28, Lemma 13.1.2], the overall running time
of the algorithm is O(n) (the constant hidden in the “O” notation depends indeed exclusively on
E, g, b,G, and t).
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B A grid-like graph contained as a contraction in graphs of large
treewidth

For an integer r > 2, let Γr be the graph obtained from the (r × r)-grid by triangulating internal
faces such that all internal vertices become of degree 6, all non-corner external vertices are of degree
4, and one corner of degree 2 is made adjacent to all vertices of the external face (the corners are
the vertices that in the underlying grid have degree 2). As an example, the graph Γ6 is shown in
Figure 1.

Fig. 1. The graph Γ6.

C A linear kernel for Connected-Planar-F-Packing

Let F be a finite set of graphs. We define the F-Packing problem as follows.

F-Packing
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have k vertex-disjoint subgraphs G1, . . . , Gk

each containing some graph in F as a minor?

In order to build a protrusion decomposition for instances of the above problem, we use a version
of the Erdős-Pósa property (see Definition 16 and Theorem 3) that establishes a linear relation
between No-instances of F-Packing and Yes-instances of F-Deletion, and then we apply tools
of Bidimensionality theory on F-Deletion (see Corollary 2). Hence, we also need to define the
F-Deletion problem.

F-Deletion

Instance: A graph G and a non-negative integer k.
Parameter: The integer k.

Question: Does G have a set S ⊆ V (G) such that |S| 6 k
and G− S is H-minor-free for every H ∈ F?

When all the graphs in F are connected, the corresponding problems are called Connected-
F-Packing and Connected-F-Deletion, and when F contains at least one planar graph, we
call them Planar-F-Packing and Planar-F-Deletion, respectively. When both conditions are
satisfied, the problems are called Connected-Planar-F-Packing and Connected-Planar-F-
Deletion (the parameterized versions of these problems are respectively denoted by cFP, cFD,
pFP, pFD, cpFP, and cpFD).
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In this section we present a linear kernel for Connected-Planar-F-Packing on the family
of graphs excluding a fixed graph H as a minor.

We need to define which kind of structure a certificate for F-Packing is. For an arbitrary
graph, a solution will consist of a packing of models as defined below. We also recall the definition
of model.

Definition 14. A model of a graph F in a graph G is a mapping Φ that assigns to every vertex
v ∈ V (F ) a non-empty connected subgraph Φ(v) of G, and to every edge e ∈ E(F ) an edge Φ(e) ∈
E(G), such that:

• the graphs Φ(v) for v ∈ V (F ) are mutually vertex-disjoint and
the edges Φ(e) for e ∈ E(F ) are pairwise distinct;

• for {u, v} ∈ E(F ), Φ({u, v}) has one endpoint in V (Φ(u)) and the other in V (Φ(v)).

We denote by Φ(F ) the subgraph of G obtained by the (disjoint) union of the subgraphs Φ(v)
for v ∈ V (F ) plus the edges Φ(e) for e ∈ E(F ).

Definition 15. Given a set F of minors and a graph G, a packing of models S is a set of vertex-
disjoint models. That is, the graphs Φ(F ) for Φ ∈ S, F ∈ F are pairwise vertex-disjoint.

C.1 A protrusion decomposition for an instance of F-Packing

In order to find a linear protrusion decomposition, we need some preliminaries.

Definition 16. A class of graphs F satisfies the Erdős-Pósa property [14] if there exists a function
f such that, for every integer k and every graph G, either G contains k vertex-disjoint subgraphs
each isomorphic to a graph in F , or there is a set S ⊆ V (G) of at most f(k) vertices such that
G− S has no subgraph in F .

Given a connected graph F , let M(F ) be the class of graphs that can be contracted to F .
Robertson and Seymour [32] proved that M(F ) satisfies the Erdős-Pósa property if and only if F
is planar. A significant improvement on the function f(k) has been recently provided by Chekuri
and Chuzhoy [7]. When G belongs to a proper minor-closed family, Fomin et al. [22] proved that
f can be taken to be linear for any planar graph F . It is not difficult to see that these results also
hold if instead of a connected planar graph F , we consider a finite family F of connected graphs
containing at least one planar graph. This discussion can be summarized as follows, with a precise
upper bound on the desired linear constant.

Theorem 3 (Fomin et al. [22]). Let F be a finite family of connected graphs containing at least
one planar graph on r vertices, let H be an h-vertex graph, and let G be the class of H-minor-free
graphs. There exists a constant c such that if (G, k) /∈ cpFPG, then (G, c · r · 215h+8h log h · k) ∈
cpFDG.

The next theorem provides a way to find a treewidth-modulator for an instance of a problem
verifying the so-called bidimensionality and separability properties restricted to the class of (apex)-
minor-free graphs. Loosely speaking, the algorithm consists in building a tree decomposition of
the instance, then finding a bag that separates the instance in such a way that the solution is
balanced, and finally finding recursively other bags in the two new tree decompositions. In order
to make the algorithm constructive, we need to build a tree decomposition of the input graph
whose width differs from the optimal one by a constant factor. To this aim, we use a (polynomial)
approximation algorithm of treewidth on minor-free graphs, which is well-known to exist. Let us
denote by τH this approximation ratio. To the best of our knowledge there is no explicit upper
bound on this ratio, but one can be derived from the proofs of Demaine and Hajiaghayi [11]. We
note that any improvement on this constant will directly translate to the size of our kernels. We
also need to compute an initial solution of the problem under consideration. Fortunately, for all
our applications, there is an FPT on minor-free graphs [20]. By choosing the approximation ratio
of the solution to be 2, we can announce the following theorem adapted from Fomin et al. [21].

Theorem 4 (Fomin et al. [21]). For any real ε > 0 and any minor-bidimensional (resp. contraction-
bidimensional) linear-separable problem Π on a the class G of graphs that excude a minor H (resp.
an apex-minor H), there exists an integer t > 0 such that any graph G ∈ G has a treewidth-t-
modulator of size at most ε · fΠ(G).
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The impact of the tree decomposition approximation is hidden in the value of t, and the impact
of the solution approximation will be hidden in the “O” notation. The parameters from the class
of graphs or from the problem will affect the time complexity of the algorithm, and not the size
of our kernel. In our applications we state corollaries of the above result (namely, Corollary 2 and
Corollary 3) in which we choose ε = 1 and we provide an explicit bound on the value of t.

We are in position to state the following corollary claiming that, given an instance of Planar-
F-Deletion, in polynomial time we can either find a treewidth-modulator or report that is a
No-instance. This is a corollary of the result of Fomin et al. [21] stated in Theorem 4, where ε is
fixed to be 1. The bound on the treewidth is derived from the proof of Theorem 4 in [21].

Corollary 2. Let F be a finite set of graphs containing at least one r-vertex planar graph F , let
H be an h-vertex graph, and let G be the class of H-minor-free graphs. If (G, k′) ∈ pFDG, then
there exists a set X ⊆ V (G) such that |X| = k′ and tw(G−X) = O(r

√
r · τ3

H · fm(h)3). Moreover,
given an instance (G, k) with |V (G)| = n, there is an algorithm running in time O(n3) that either
finds such a set X or correctly reports that (G, k) /∈ pFDG.

Note that since in Theorem 4 the value of ε can be chosen arbitrarily, we can state many
variants of the above corollary. For instance, in our previous article [23], we used the particular
case where |X| = O(r · fm(h) · k′) and tw(G−X) = O(r · fm(h)2).

We are now able to construct a linear protrusion decomposition.

Lemma 5. Let F be a finite set of graphs containing at least one r-vertex planar graph F , let H
be an h-vertex graph, and let G be the class of H-minor-free graphs. Let (G, k) be an instance of
Connected-Planar-F-Packing. If (G, k) /∈ cpFPG, then we can construct in polynomial time a
linear protrusion decomposition of G.

Proof: Given an instance (G, k) of cpFPG , we run the algorithm given by Corollary 2 for the
Connected-Planar-F-Deletion problem with input (G, k′ = c · r · 215h+8h log h · k). If the al-
gorithm is not able to find a treewidth-modulator X of size |X| = k′, then by Theorem 3 we can
conclude that (G, k) ∈ cpFPG . Otherwise, we use the set X as input to the algorithm given by
Theorem 2, which outputs in linear time an ((αH · t) · k′, 2t + h)-protrusion decomposition of G,
where

• t = O(r
√
r · τ3

H · fm(h)3) is provided by Corollary 2 (the bound on the treewidth);
• k′ = O(r · 2O(h log h) · k) is provided by Theorem 3 (the parameter of F-Deletion); and
• αH = O(h22O(h log h)) is the constant provided by Theorem 2.

That is, we have obtained an
(
O(h22O(h log h) · r5/2 · τ3

H · fm(h)3) · k , O(r
√
r · τ3

H · fm(h)3)
)

-

protrusion decomposition of G, as claimed. �

C.2 An encoder for F-Packing

Our encoder EFP for F-Packing uses the notion of rooted packing [1], and is inspired by results
on the Cycle Packing problem [5].

Assume first for simplicity that F = {F} consists of a single connected graph F . Following [1],
we introduce a combinatorial object called rooted packing. These objects are originally defined
for branch decompositions, but can easily be translated to tree decompositions. Loosely speaking,
rooted packings capture how potential models of F intersect the separator that the algorithm is
processing. It is worth mentioning that the notion of rooted packing is related to the notion of folio
introduced by Robertson and Seymour [33], but more suited to dynamic programming.

Definition 17. Let F be a connected graph. Given a boundary B of the input graph G, we define
a rooted packing of B as a quintuple (A, S∗F , SF , ψ, χ), where

• SF ⊆ S∗F are both subsets of V (F );
• A is a (possible empty) collection of mutually disjoint non-empty subsets of B;
• ψ : A → SF is a surjective mapping assigning vertices of SF to the sets in A; and
• χ : SF × SF → {0, 1} is a binary symmetric function between pairs of vertices in SF .
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We also define a potential model of F in G matching with (A, S∗F , SF , ψ, χ) as a partial mapping
Φ, that assigns to every vertex v ∈ SF a non-empty subgraph Φ(v) ⊆ G such that {A ∈ A : ψ(A) =
v} is the set of intersections of B with connected components of Φ(v); to every vertex v ∈ S∗F \ SF
a non-empty connected subgraph Φ(v) ⊆ G; and to every edge e ∈ {e ∈ E(F ) : χ(e) = 1 ∨ e ∈
S∗F × S∗F \ SF } an edge Φ(e) ∈ E(G), such that Φ satisfies the two following conditions (as in
Definition 14):

• the graphs Φ(v) for v ∈ V (F ) are mutually vertex-disjoint and the edges Φ(e) for e ∈ E(F ) are
pairwise distinct; and

• for {u, v} ∈ E(F ), Φ({u, v}) has one endpoint in V (Φ(u)) and the other in V (Φ(v)).

The intended meaning of a rooted packing (A, S∗F , SF , ψ, χ) on separator b is as follows. The
packing A represents the intersection of the connected components of the potential model with B.
The subsets S∗F , SF ⊆ V (F ) and the function χ indicate that we are looking in the graph G for
a potential model of F [S∗F ] containing the edges between vertices in SF given by the function χ.
Namely, the function χ captures which edges of F [S∗F ] have been realized so far in the processed
graph. Since we allow the vertex-models intersecting B to be disconnected, we need to keep track
of their connected components. The subset SF ⊆ S∗F tells us which vertex-models intersect B (in
other words, SF is the boundary of F [S∗F ]), and the function ψ associates the sets in A with the
vertices in SF . We can think of ψ as a coloring that colors the subsets in A with colors given by
the vertices in SF . Note that several subsets in A can have the same color u ∈ SF , which means
that the vertex-model of u in G is not connected yet, but it may get connected in further steps of
the dynamic programming. Again, see [1] for the details.

It is proved in [1] that rooted packings allow to carry out dynamic programming in order to
determine whether an input graph G contains a graph F as a minor. It is easy to see that the

number of distinct rooted packings at a separator B is upper-bounded by f(t, F ) := 2t log t · rt · 2r
2

,
where t > |B|. In particular, this proves that when G is the class of graphs excluding a fixed
graph H on h vertices as a minor, then the index of the equivalence relation ∼G,t is bounded by

2t log t · ht · 2h
2

.

The encodings generator CEFP . Let G ∈ Bt with boundary ∂(G) labeled with Λ(G). The
function CEFP maps Λ(G) to a set CEFP (Λ(G)) of encodings. Each R ∈ CEFP (Λ(G)) is a set of
at most |Λ(G)| rooted packings {(Ai, S∗Fi

, SFi , ψi, χi) | Fi ∈ F}, where each such rooted packing
encodes a potential model of a minor Fi ∈ F (multiple models of the same graph are allowed).

The language LEFP . For a packing of models S, we say that (G,S, R) belongs to the language
LEFP (or that S is a packing of models satisfying R) if there is a packing of potential models
matching with the rooted packings of R in G \

⋃
Φ∈S Φ(F ).

Note that we allow the entirely realized models of S to intersect ∂(G) arbitrarily, but they must
not intersect potential models imposed by R.

As mentioned in the introduction, the natural definition of the maximization function does not

provide a confined encoder, hence we need to use the relevant function f̄
EFP
g . In order to define

this function we note that, given a separator B and a subgraph GB , a (partial) solution naturally
induces an encoding RB ∈ CEFP (Λ(GB)), where the rooted packings correspond to the intersection
of models with B.

Formally, let G be a t-boundaried graph with boundary A and let S be a partial solution satis-
fying some RA ∈ CEFP (Λ(G)). Let also P be the set of potential models matching with the rooted
packings in RA. Given a bag B in G, we define the induced encoding RB = {(Ai, S∗Fi

, SFi , ψi, χi) |
Φi ∈ S ∪P} ∈ CEFP (Λ(GB)) such that for each (potential) model Φi ∈ S ∪P of Fi ∈ F intersecting
B,

• Ai contains elements of the form B ∩ C, where C is a connected component of the graph
induced by V (Φi(v)) ∩ V (GB), with v ∈ V (Fi);

• ψi maps each element of Ai to its corresponding vertex in Fi; and
• S∗Fi

, SFi , correspond to the vertices of Fi whose vertex models intersect GB and B, respectively.

Clearly, the set of models of S entirely realized in GB is a partial solution satisfying RB .
Provided with a formal definition of an induced encoding, and following the description given

in Section 4, we can state the definition of an irrelevant encoding for our problem. Let G ∈ Bt with
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boundary A and let RA be an encoding. An encoding RA is irrelevant for f̄
EFP
g if there exists a

certificate S such that (G,S, RA) ∈ LEFP and |S| = fEFP (G,RA), and a separator B ⊆ V (G) with
|B| 6 t and B 6= A, such that S induces (as defined above) an encoder RB in the graph GB ∈ Bt
with f̄

EFP
g (GB , RB) = −∞.

The function f̄
EFP
g . Let G ∈ Bt with boundary A and let g(t) = t. We define the function f̄

EFP
g as

f̄
EFP
g (G,RA) =


−∞, if fEFP (G,RA) + g(t) < max{fEFP (G,R) : R ∈ CEFP (Λ(G))}

or if RA is irrelevant for f̄
EFP
g .

fEFP (G,RA), otherwise.
(5)

In the above equation, fEFP is the natural maximization function associated with the encoder,
that is, fEFP (G,R) is the maximal number of (entire) models in G which do not intersect potential
models imposed by R. Formally,

fEFP (G,R) = max{k : ∃S, |S| > k, (G,S, R) ∈ LEFP }.

The size of EFP . Recall that f(t, F ) := 2t log t · rt · 2r
2

is the number of rooted packings for a
minor F of size r on a boundary of size t. If we let r := maxF∈F |V (F )| and J be any set such that∑
j∈J j 6 t, by definition of EFP , it holds that

sEFP (t) 6 (
∑
j∈J

2j log j · rj · 2r
2

) 6 (
∑
j∈J

2t log t · rt) · 2r
2

6 t · 2t log t · rt · 2r
2

. (6)

Note that an encoding can also be seen as the rooted packing of the disjoint union of at most
t minors of F .

Fact 2 Let G ∈ Bt with boundary A, let Φ be a model (resp. a potential model matching with a
rooted packing defined on A) of a graph F in G, let B be a separator of G, and let GB ∈ Bt be as
in Definition 12. Let (A, S∗F , SF , φ, χ) be the rooted packing induced by Φ (as defined above). Let
G′B ∈ Bt with boundary B and let G′ be the graph obtained by replacing GB with G′B. If G′B has a
potential model Φ′B matching with (A, S∗F , SF , φ, χ), then G′ has a model (resp. a potential model)
of F .

Proof: Let us build a model (resp. a potential model) Φ′ of F in G′. For every vertex v in V (F )\S∗F ,
we set Φ′(v) = Φ(v). For every vertex v in S∗F \SF , we set Φ′(v) = Φ′B(v). For every vertex v in SF ,
we set Φ′(v) = Φ(v)[V (G) \ V (GB)]⊕ Φ′B(v). As Φ(v) is connected and the connected components
in Φ′B(v) have the same boundaries than the ones in Φ(v)[V (GB)] (by definition of rooted packing),
it follows that Φ′(v) is connected. Note that Φ′(v) do not intersect Φ′(u), since Φ(v), Φ′B(v) do not
intersect Φ′(u) for any u ∈ V (F ).

For every edge e in V (F )×V (F )\S∗F or such that χ(e) = 0 we set Φ′(e) = Φ(e). For every edge
e in S∗F × S∗F \ SF or such that χ(e) = 1 we set Φ′(e) = Φ′B(e). Since B is a separator in G, SF is
a separator in F and there is no edge in V (F ) \ S∗F × S∗F \ SF . Since Φ,Φ′B are (potential) models,
the edges Φ′(e), e ∈ E(F ) are obviously distinct and if e = {u, v}, then Φ′(e) as one endpoint in
Φ′(u) and the other in Φ′(v). �

Lemma 6. The encoder EFP is a g-confined cFP-encoder for g(t) = t. Furthermore, if G is an
arbitrary class of graphs, then the equivalence relation ∼∗EFP ,G,t is DP-friendly.

Proof: Let us first show that the encoder EFP is a cFP-encoder. Indeed, if G is a 0-boundaried
graph, then CEFP (∅) consists of a single encoding R∅ (an empty set of rooted packings), and by
definition of LEFP , any S such that (G,S, R∅) ∈ LEFP is a packing of models. According to Equa-

tion (5), there are two possible values for f̄
EFP
g (G,R∅): either fEFP (G,R∅), which by definition

equals fΠ(G), or −∞. Let S be a packing of models of size fΠ(G), and assume for contradiction

that f̄
EFP
g (G,R∅) = −∞. Then, by a recursive argument we can assume that there is a separator

B of size at most t and a subgraph GB of G as in Definition 12, such that S induces RB and
fEFP (GB , RB) + t < max{fEFP (G,R) : R ∈ CEFP (I)}. Let M be the set of models entirely real-
ized in GB . We have |M | = fEFP (GB , RB), as otherwise S is not maximal. Let MB be the set
of models intersecting B, so we have |MB | 6 t. Finally, let M0 be a packing of models in GB of
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size max{fEFP (G,R), R ∈ CEFP (I)}. Clearly, S \ (M ∪MB) ∪M0 is a packing of models smaller

than S (by optimality), that is, |M0| 6 |M |+ t, a contradiction with the definition of f̄
EFP
g . Hence

f̄
EFP
g (G,R∅) = fΠ(G).

By definition of the function f̄
EFP
g , the encoder EFP is g-confined for g : t 7→ t.

It remains to prove that the equivalence relation ∼∗EFP ,G,t is DP-friendly for g(t) = t. Due to

Fact 1, it suffices to prove that ∼∗EFP ,t is DP-friendly. Let G ∈ Bt with boundary A, let B be any
separator of G, and let GB be as in Definition 12. The subgraph GB can be viewed as a t-boundaried
graph with boundary B. We define H ∈ Bt to be the graph induced by V (G) \ (V (GB) \B), with
boundary B (that is, we forget boundary A) labeled in the same way than GB . Let G′B ∈ Bt such
that GB ∼∗EFP ,t G

′
B and let G′ = H ⊕ G′B , with boundary A. We have to prove that G ∼∗EFP ,t G

′

and ∆EFP ,t(G,G
′) = ∆EFP ,t(GB , G

′
B), that is, that f̄

EFP
g (G,RA) = f̄

EFP
g (G′, RA) +∆EFP ,t(GB , G

′
B)

for all RA ∈ CEFP (Λ(G)).

Let RA be an encoding defined on A. Assume first that f̄
EFP
g (G,RA) 6= −∞. Let S = M ∪

MB ∪MH be a packing of models satisfying RA with size f̄
EFP
g (G,RA) in G, with M being the set

of models entirely contained in GB , MH the set of models entirely contained in V (H) \B, and MB

the set of models intersecting B and H. Notice that M,MB ,MH is a partition of S. Let P be the
set of potential models matching with the rooted packings in RA. Let also RB ∈ CEFP (Λ(GB)) be
the encoding induced by S ∪ P.

Observe that f̄
EFP
g (GB , RB) 6= −∞, as otherwise, by definition of the relevant function f̄

EFP
g ,

we would have that f̄
EFP
g (G,RA) = −∞. Also, by construction of RB it holds that |M | =

f̄
EFP
g (GB , RB), as otherwise S would not be not maximum. Let M ′ be a packing of models of
F in G′B such that (G′B ,M

′, R) ∈ LEFP and of maximum cardinality, that is, such that |M ′| =

f̄
EFP
g (G′B , RB). Consider now the potential models matching with RB . There are two types of such

potential models. The first ones match with rooted packings defined by the intersection of models
in S and B; we glue them with the potential models defined by H∩MB to construct M ′B . The other
ones match with rooted packings defined by the intersection of potential model in P and B; we glue
them with the potential models defined by H ∩ P to construct P ′. Observe that |MB | = |M ′B |. As

GB ∼∗EFP ,t G
′
B and f̄

EFP
g (GB , RB) 6= −∞, we have that |M ′| = f̄

EFP
g (GB , RB) + ∆EFP ,t(GB , G

′
B),

and therefore |M ′∪M ′B ∪MH | = f̄
EFP
g (GB , RB)+∆EFP ,t(GB , G

′
B)+ |MB |+ |MH | = f̄

EFP
g (G,RA)+

∆EFP ,t(GB , G
′
B).

By definition we have that MH and M ′ are packings of models. The set M ′B contains vertex-
disjoint models by Fact 2. Note that models in MH ∪ M ′ are vertex-disjoint (because V (H) ∩
V (GB) = ∅), models in MH ∪M ′B are vertex-disjoint (because the ones in MH ∪MB are vertex-
disjoint), and models inM ′∪M ′B are vertex-disjoint (becauseM ′ satisfies RB). HenceMH∪M ′∪M ′B
is a packing of models.

It remains to prove that MH ∪ M ′ ∪ M ′B satisfies RA. The set P ′ contains vertex-disjoint
potential models by Fact 2. Models in P ′ ∪M ′ are vertex-disjoint, as M ′B satisfies RB . Models in
P ′ ∪M ′B are vertex-disjoint by definition of RB . Finally, models in P ′ ∪MH are vertex-disjoint
since S satisfies RA.

It follows that G′ has a packing of models satisfying RA of size f̄
EFP
g (G,RA) +∆EFP ,t(GB , G

′
B),

that is, G ∼∗EFP ,t G
′ and ∆EFP ,t(G,G

′) = ∆EFP ,t(GB , G
′
B).

Assume now that f̄
EFP
g (G,RA) = −∞. If f̄

EFP
g (G′, RA) 6= −∞, then applying the same argu-

ments as above we would have that f̄
EFP
g (G,RA) 6= −∞, a contradiction. �

C.3 A linear kernel for F-Packing

We are now ready to provide a linear kernel for Connected-Planar-F-Packing.

Theorem 5. Let F be a finite family of connected graphs containing at least one planar graph
on r vertices, let H be an h-vertex graph, and let G be the class of H-minor-free graphs. Then
cpFPG admits a constructive linear kernel of size at most f(r, h) ·k, where f is an explicit function
depending only on r and h, defined in Equation (7).

Proof: By Lemma 5, given an instance (G, k) we can either conclude that (G, k) is a Yes-instance
of cpFPH , or build in linear time an ((αH · t) · k′, 2t + h)-protrusion decomposition of G, where
αH , t, k

′ are defined in the proof of Lemma 5.



Explicit Linear Kernels for Packing Problems 21

We now consider the encoder EFP defined in Subsection C.2. By Lemma 6, EFP is a g-confined
cpFPG-encoder and ∼∗EFP ,G,t is DP-friendly, where g(t) = t and G is the class of H-minor-free

graphs. An upper bound on sEFP (t) is given in Equation (6). Therefore, we are in position to apply
Corollary 1 and obtain a linear kernel for cpFPH of size at most

(αH · t) · (b (EFP , g, t,G) + 1) · k′ , where (7)

• b (EFP , g, t,G) is the function defined in Lemma 3;
• t is the bound on the treewidth provided by Corollary 2;
• k′ is the parameter of F-Deletion provided by Theorem 3; and
• αH is the constant provided by Theorem 2. �

By using the recent results of Chekuri and Chuzhoy [8], it can be shown that the factor αH =
O(h22O(h log h)) in Theorem 3 can be replaced with hO(1). However, in this case this would not
directly translate into an improvement of the size of the kernel given in Equation (7), as the term

hO(1) would be dominated by the term fm(h) = 2O(h2 log h).

D Application to `-F-Packing

We now consider the scattered version of the packing problem. Given a finite set of graphs F and
a positive integer `, the `-F-Packing problem is defined as follows.

`-F-Packing
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have k subgraphs G1, . . . , Gk pairwise at distance at least `,

each containing some graph from F as a minor?

We again consider the version of the problem where all the graphs in F are connected and at
least one is planar, called Connected-Planar-`-F-Packing (cp`FP).

We obtain a linear kernel for Connected-Planar `-F-Packing on the family of graphs
excluding a fixed apex graph H as a minor. We use again the notions of model, packing of model,
and rooted packing.

D.1 A protrusion decomposition for an instance of `-F-Packing

In order to obtain a linear protrusion decomposition for `-F-Packing, a natural idea could be to
prove an Erdős-Pósa property at distance `, generalizing the approach for F-Packing described
in Section C. Unfortunately, the best known Erdős-Pósa relation between a maximum `-F-packing
and a minimum `-F-deletion set is not linear. Indeed, by following and extending the ideas of
Giannopoulou [24, Theorem 8.7 in Section 8.4] for the special case of cycles, it is possible to derive
a bound of O(k

√
k), which is superlinear, and therefore not enough for our purposes. Proving a

linear bound for this Erdős-Pósa relation, or finding a counterexample, is an exciting topic for
further research.

We will use another trick to obtain the decomposition: we will (artificially) consider the `-
F-Packing problem as a vertex-certifiable problem. Hence we propose the formulation described
below, which is clearly equivalent to the previous one. Using such a formulation, a natural question
is whether the `-F-Packing problem can fit into the framework for vertex-certifiable problems [23].
However, finding an appropriate encoder for this formulation does not seem an easy task, and it is
more convenient to describe the encoder for `-F-Packing using the new framework designed for
packing problems.

`-F-Packing
Instance: A graph G and a non-negative integer k.

Parameter: the integer k.
Question: Does G have a set {v1, . . . , vk} of k vertices such that every vi

belongs to a subgraph Gi of G with G1, . . . , Gk pairwise at
distance at least ` and each containing some graph from F as a minor?
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With such a formulation, we are inposition to use some powerful results from Bidimensionality
theory. It is not so difficult to see that, the `-F-Packing problem is contraction-bidimensional [21].
Then we can use Theorem 4 and obtain the following corollary. Again, the bound on the treewidth
is derived from the proof of Theorem 4 in [21].

Corollary 3. Let F be a finite set of graphs containing at least one r-vertex planar graph F , let
H be an h-vertex apex graph, and let G be the class of H-minor-free graphs. If (G, k) ∈ p`FPG,
then there exists a set X ⊆ V (G) such that |X| = k and tw(G−X) = O((2r + `)3/2 · τ3

H · fc(h)3).
Moreover, given an instance (G, k) with |V (G)| = n, there is an algorithm running in time O(n3)
that either finds such a set X or correctly reports that (G, k) /∈ p`FPG.

We are now able to construct a linear protrusion decomposition.

Lemma 7. Let F be a finite set of graphs containing at least one r-vertex planar graph F , let H
be an h-vertex apex graph, and let G be the class of H-minor-free graphs. Let (G, k) be an instance
of Connected Planar-`-F-Packing. If (G, k) ∈ cp`FPG, then we can construct in polynomial
time a linear protrusion decomposition of G.

Proof: Given an instance (G, k) of cp`FPG , we run the algorithm given by Corollary 3. If the
algorithm is not able to find a treewidth-modulator X of size |X| = k, then by Theorem 3 we can
conclude that (G, k) /∈ cp`FPG . Otherwise, we use the set X as input to the algorithm given by
Theorem 2, which outputs in linear time an ((αH · t) · k, 2t + h)-protrusion decomposition of G,
where

• t = O((r + `)3/2 · τ3
H · fc(h)3) is provided by Corollary 3; and

• αH = O(h22O(h log h)) is the constant provided by Theorem 2.

This is an
(
h2 · 2O(h log h) · (r + `)3/2 · τ3

H · fc(h)3 · k, O((r + `)3/2 · τ3
H · fc(h)3)

)
-protrusion de-

composition of G. �

D.2 An encoder for `-F-Packing

Our encoder E F̀P for `-F-Packing is a combination of the encoder for F-Packing and the one
for `-Scattered Set that we defined in [23].

The encodings generator CE F̀P . Let G ∈ Bt with boundary ∂(G) labeled with Λ(G). The
function CE F̀P maps Λ(G) to a set CE F̀P (Λ(G)) of encodings. Each R ∈ CE F̀P (Λ(G)) is a pair
(RP , RS), where

• RP is a set of at most |Λ(G)| rooted packings {(Ai, S∗Fi
, SFi , φi, χi) | i ∈ Λ(G), Fi ∈ F}, where

each such rooted packing encodes a potential model of a minor Fi ∈ F (that is, RP is an
encoding of F-Packing); and

• RS maps label j ∈ Λ(G) to an |Λ(G)|-tuple (d, di, i ∈ Λ(G), i 6= j) ∈ [0, ` + 1]|Λ(G)| (that is,
RS is an encoding of `-Scattered Set), for simplicity, since each label in Λ(G) is uniquely
associated with a vertex in ∂(G), we denote by R(v) the vector assigned by RS to label λ(v).

The language LE F̀P . For a packing of models S, we say that (G,S, R) belongs to the language
LE F̀P (or that S is a packing of models satisfying R) if

• the models are pairwise at distance at least `, that is, for each Φ1, Φ2 ∈ S models of F1, F2 ∈ F ,
respectively, dG(V (Φ1(F1)), V (Φ2(F2))) > `;

• there is a packing of potential models matching with the rooted packings of RP pairwise at
distance at least ` and at distance at least ` from

⋃
Φ∈S Φ(F ); and

• for any vertex v ∈ ∂(G), if (d, di) = R(v) then dG(v,S ∪P) > d, and dG(v, w) > dλ(w), for any
w ∈ ∂(G).

Similarly to F-Packing, we need the relevant version of the function f̄
E F̀P
g . Let G ∈ Bt with

boundary A and let S be a partial solution satisfying some RA ∈ CE F̀P (Λ(G)). Let also P be the
set of potential models matching with the rooted packings in RA. Given a separator B in G, and
GB as in Definition 12, we define the induced encoding RB = (RP , RS) as follows:
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• RP is defined by the intersection of B with models in S ∪ P, (as for F-Packing); and

• RS maps each v ∈ B to R(v) = (dGB (v,S ∪ P), dGB (v, w), w ∈ B).

The set of models of S entirely realized in GB is a partial solution satisfying RB .

The definition of an irrelevant encoding is as described in Section 4.

The function f̄
E F̀P
g . Let G ∈ Bt with boundary A and let g(t) = 2t. We define f̄

E F̀P
g as

f̄
E F̀P
g (G,RA) =


−∞, if fE F̀P (G,RA) + 2t < max{fE F̀P (G,R) : R ∈ CE F̀P (Λ(G))},

or if RA is irrelevant for f̄
E F̀P
g .

fE F̀P (G,RA), otherwise.
(8)

In the above equation, fE F̀P is the natural optimization function defined as

fE F̀P (G,R) = max{k : ∃S, |S| > k, (G,S, R) ∈ LE F̀P }. (9)

Size of E F̀P . Since CE F̀P (I) = CEFP × ([0, `+ 1]t)t, it holds that

sE F̀P (t) 6 sĒFP (t)× (`+ 2)t
2

. (10)

Lemma 8. The encoder E F̀P is a g-confined c`FP-encoder for g(t) = 2t. Furthermore, if G is an
arbitrary class of graphs, then the equivalence relation ∼∗E F̀P ,G,t is DP-friendly.

Proof: We first prove that E F̀P is a c`FP-encoder. Obviously, {(G,S) : (G,S, R∅) ∈ LE F̀P , R∅ ∈
CE F̀P (∅)} = LΠ . As in the proof of Lemma 6, in order to show that fE F̀P (G,R∅) 6= −∞ we prove

that the value computed by f̄
E F̀P
g has not been truncated. Let G,GB and S,M,MH ,MB ,M0 as in

proof of Lemma 6, and let M∗0 = M0\{Φ(F ) : Φ(F )∩Nr/2(B) 6= ∅, F ∈ F} and M∗H = MH \{Φ(F ) :
Φ(F ) ∩Nr/2(B) 6= ∅, F ∈ F}. M∗0 ∪M∗H is a scattered packing of size at least |S| − 2t.

The encoder E F̀P is g-confined for g : t 7→ 2t by definition of f̄
E F̀P
g .

Following the proof of Lemma 6 again, let G,G′ ∈ Bt with boundary A and let GB , G
′
B , H ∈ Bt

with boundary B. We have to prove that f̄
E F̀P
g (G,RA) = f̄

E F̀P
g (G′, RA) + ∆E F̀P ,t(GB , G

′
B) for

every RA ∈ CE F̀P (Λ(G)).

Let RA be an encoding defined on A. Assume that f̄
E F̀P
g (G,RA) 6= −∞. Let S = M∪MB∪MH

be a packing of models satisfying RA with size f̄
E F̀P
g (G,RA) in G, with M,MB ,MH as in the proof

of Lemma 6. Let also P be the set of potential models matching with RA and let RB ∈ CE F̀P (Λ(GB))
be the encoding induced by S ∪ P.

Observe that, by definition, f̄
E F̀P
g (GB , RB) 6= −∞. Hence there is a packing M ′ in G′B of

maximum cardinality and such that (G′B ,M
′, R) ∈ LE F̀P . As in the proof of Lemma 6, we can

define M ′B to be the set of models obtained from the potential models defined by the intersection of
models in MB with H, glued to the ones in G′B matching with RB . We can also define P ′ to be the
set of potential models obtained from the potential models defined by the intersection of models
in MB with H, glued to the ones in G′B matching with RB . As GB ∼∗E F̀P ,t G

′
B and following the

argumentation in Lemma 6 we have that |M ′ ∪M ′B ∪MH | = f̄
E F̀P
g (G,RA) +∆E F̀P ,t(GB , G

′
B).

We already have that S ′ = MH ∪M ′ ∪M ′B is a packing of models according to the proof of
Lemma 6. It remains to prove that (potential) models in S ′ ∪P ′ are pairwise at distance at least `.
We follow the proof of [23, Lemma 6]. Let P be a shortest path between any two models in S ′∪P ′.
We subdivide P into maximal subpaths in G′B and maximal subpaths in H. Clearly the length of a
subpath in H does not change. Moreover, note that the length of a subpath in G′B with extremities
v, w ∈ B is at least dGB (v, w), by definition of RB . Note also that the length of a subpath in G′B
with an extremity in a model and the other v ∈ B is at least dGB (v,S), also by definition of RB .
Therefore, the distance between any two models is indeed at least `.

It follows that G′ has a scattered packing of models satisfying RA of size f̄
E F̀P
g (G,RA) +

∆E F̀P ,t(GB , G
′
B), that is, G ∼∗E F̀P ,t G

′ and ∆E F̀P ,t(G,G
′) = ∆E F̀P ,t(GB , G

′
B). The case where

f̄
E F̀P
g (G,RA) = −∞ is easily handled as in Lemma 6. �
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D.3 A linear kernel for `-F-Packing

We are now ready to provide a linear kernel for Connected-Planar-`-F-Packing.

Theorem 6. Let F be a finite family of connected graphs containing at least one planar graph on
r vertices, let H be an h-vertex apex graph, and let G be the class of H-minor-free graphs. Then
cp`FPG admits a constructive linear kernel of size at most f(r, h, `) · k, where f is an explicit
function depending only on r, h, and `, defined in Equation (11).

Proof: By Lemma 7, given an instance (G, k) we can either report that (G, k) is a Yes-instance
of cp`FPH , or build in linear time an ((αH · t) · k, 2t + h)-protrusion decomposition of G, where
αH and t are defined in the proof of Lemma 7.

We now consider the encoder E F̀P defined in Subsection D.2. By Lemma 8, E F̀P is a g-confined
cp`FPG-encoder and ∼∗E F̀P ,G,t is DP-friendly, where g(t) = 2t and G is the class of H-minor-free

graphs. An upper bound on sE F̀P (t) is given in Equation (10). Therefore, we are in position to
apply Corollary 1 and obtain a linear kernel for cp`FPH of size at most

(αH · t) · (b (E F̀P , g, t,G) + 1) · k′ , where (11)

• b (E F̀P , g, t,G) is the function defined in Lemma 3;

• t is the bound on the treewidth provided by Corollary 3; and

• αH is the constant provided by Theorem 2.

�

E Application to F-Packing with `-Membership

Now we consider a generalization of the F-Packing problem that allows models to be close to
each other (conversely to `-F-Packing, which asks for scattered models). That is, we consider
the version for minors of the F-Subgraph-Packing with `-Membership defined in [16]. Let F
be a finite set of graphs. For every integer ` > 1, we define the F-Packing with `-Membership
problem as follows.

F-Packing with `-Membership

Instance: A graph G and a non-negative integer k.
Parameter: The integer k.

Question: Does G have k subgraphs G1, . . . , Gk such that
each subgraph contains some graph from F as a minor,
and each vertex of G belongs to at most ` subgraphs?

We again consider the version of the problem where all the graphs in F are connected and at
least one is planar, called Connected-Planar-F-Packing with `-Membership (cpFP`M).

We obtain a linear kernel for Connected-Planar-F-Packing with `-Membership on the
family of graphs excluding a fixed graph H as a minor. We use again the notions of model, packing
of models, and rooted packing.

Now, for an arbitrary graph, a certificate for F-Packing with `-Membership is a packing of
models with `-membership, defined as follows.

Definition 18. Given a set F of minors and a graph G, a packing of models with `-membership
S is a set of models such that each vertex of G belongs to at most ` models, that is, to at most `
subgraphs Φ(F ) for Φ ∈ S, F ∈ F .

Note that the above definition is equivalent to saying that each vertex of G belongs to at most
` vertex-models, since vertex-models of a model are vertex-disjoint.
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E.1 A protrusion decomposition for an instance of F-Packing with
`-Membership

In order to find a linear protrusion decomposition, we use again the Erdős-Pósa property, as we did
in Subsection C.1. The construction of a linear protrusion decomposition becomes straightforward
from the fact that a a packing of models is in particular a packing of models with `-membership
for every integer ` > 1.

Lemma 9. Let F be a finite set of graphs containing at least one r-vertex planar graph F , let H
be an h-vertex graph, and let G be the class of H-minor-free graphs. Let (G, k) be an instance of
cpFP`MG. If (G, k) /∈ cpFP`MG, then we can construct in polynomial time a linear protrusion
decomposition of G.

Proof: It suffices to note that if S is a packing of models of size k, then it is in particular a
packing of models with `-membership for every integer ` > 1. Hence, if (G, k) /∈ cpFPrMG then
(G, k) /∈ cpFPG and we can apply Lemma 5. �

E.2 An encoder for F-Packing with `-Membership

Our encoder EFP M̀ for F-Packing with `-Membership uses again the notion of rooted packing,
but now we allow the rooted packings to intersect.

The encodings generator CEFP M̀ . Let G ∈ Bt with boundary ∂(G) labeled with Λ(G). The
function CEFP M̀ maps Λ(G) to a set CEFP M̀ (Λ(G)) of encodings. Each R ∈ CEFP M̀ (Λ(G)) is a set of
at most ` · |Λ(G)| rooted packings{(Ai, S∗Fi

, SFi , φi, χi) | Fi ∈ F}, where each such rooted packing
encodes a potential model of a minor Fi ∈ F (multiple models of the same graph are allowed).

The language LEFP M̀ . For a packing of models with `-membership S, we say that (G,S, R) belongs
to the language LEFP M̀ (or that S is a packing of models with `-membership satisfying R) if there
is a packing of potential models with `-membership matching with the rooted packings of R in
G \ {u : u ∈ Φ1(F1), . . . , u ∈ Φ`(F`);Φi ∈ S, Fi ∈ F}, that is, such that each vertex belongs to at
most ` models or potential models.

The function f̄
EFP M̀
g . Similarly to F-Packing, we need the relevant version of the function f̄

EFP M̀
g .

The function f̄
EFP M̀
g is defined exactly as the one for F-Packing in Section C (in particular, the

encoding induced by a partial solution is also the set of rooted packings defined by the intersection
of the partial solution and the separator).

The size of EFP M̀ . Note that the encoder contains at most `t rooted packings on a boundary of size
t. Hence, if we let r := maxF∈F |V (F )|, and J be any set such that

∑
j∈J j 6 `t and ∀j ∈ J, j 6 t,

by definition of EFP M̀ it holds that

sEFP M̀
(t) 6 `t · 2t log t · rt · 2r

2

.

It just remains to prove that the relation∼∗EFP M̀
,G,t is DP-friendly. Note that in the encoder, the only

difference with respect to F-Packing is that rooted packings are now allowed to intersect. Namely,
the constraint on the intersection is that each vertex belongs to at most ` models. This constraint
can easily be verify locally, so no information has to be transmitted through the separator. Hence,
the proof of the following lemma is exactly the same as the proof of Lemma 6, and we omit it.

Lemma 10. The encoder EFP M̀ is a g-confined cFP`M-encoder for g(t) = t. Furthermore, if G is
an arbitrary class of graphs, then the equivalence relation ∼∗EFP M̀

,G,t is DP-friendly.

E.3 A linear kernel for F-Packing with `-Membership

We are now ready to provide a linear kernel for Connected-Planar F-Packing with `-Membership.

Theorem 7. Let F be a finite family of connected graphs containing at least one planar graph on r
vertices, let H be an h-vertex graph, and let G be the class of H-minor-free graphs. Then cpFP`M
admits a constructive linear kernel of size at most f(r, h, `) · k, where f is an explicit function
depending only on r, h, and `.

The proof of the above theorem is exactly the same as the one of Theorem 6, the only difference
being in the size sEFP M̀

(t) of the encoder, and hence in the value of b (EFP M̀ , g, t,G).
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F Application to F-Subgraph-Packing

In this section we apply our framework to problems where to objective is to pack subgraphs. The
F-Subgraph-Packing problem consists in finding vertex-disjoint subgraphs (instead of minors)
isomorphic to graphs in a given finite family F . Similarly to F-(Minor)-Packing, we study two
generalizations of the problem: the `-F-Subgraph-Packing asking for subgraphs at distance `
from each other, and the F-Subgraph-Packing with `-Membership problem [16] that allows
vertices to belong to at most ` subgraphs.

Let F be a finite set of graphs and let ` > 1 be an integer. We define the F-Subgraph-Packing,
the `-F-Subgraph-Packing, and the F-Subgraph-Packing with `-Membership problems as
follows.

F-Subgraph-Packing
Instance: A graph G and a non-negative integer k.

Parameter: The integer k.
Question: Does G have k vertex-disjoint subgraphs

G1, . . . , Gk, each isomorphic to a graph in F?

`-F-Subgraph-Packing
Instance: A graph G and two non-negative integers k and `.

Parameter: The integer k.
Question: Does G have k subgraphs G1, . . . , Gk pairwise at distance

at least ` and each isomorphic to a graph in F?

F-Subgraph-Packing with `-Membership

Instance: A graph G and two non-negative integers k and `.
Parameter: The integer k.

Question: Does G have k subgraphs G1, . . . , Gk, each isomorphic to a graph
in F , and such that each vertex of G belongs to at most ` subgraphs?

Again, for technical reasons, we consider the versions of the above problems where all the graphs
in F are connected, called Connected F-Subgraph-Packing (cFSP), Connected `-F-Subgraph-Packing
(c`FSP), and Connected F-Subgraph-Packing with `-Membership (cFSP`M), respectively.
As in Section C, connectivity is necessary to use the equivalent notion of rooted packings. Further-
more, in this section we also need connectivity to build the protrusion decomposition, whereas the
presence of a planar graph in F is not mandatory anymore.

Similarly to F-Packing, we establish a relation between instances of F-Subgraph-Packing
(and its variants) and instances of d-Dominating Set for an appropriate value of d. Therefore we
also define this problem. Note that here we do not use any Erdős-Pósa property to establish this
relation.

d-Dominating Set

Instance: A graph G and two non-negative integers k and d.
Parameter: The integer k.

Question: Is there a set D of vertices in G with size at most k,
such that for every vertex v ∈ V (G), Nd[v] ∩D 6= ∅?

In this section we obtain a linear kernel for Connected F-Subgraph-Packing, Connected
`-F-Subgraph-Packing, and F-Subgraph-Packing with `-Membership on the families of graphs
excluding respectively a fixed graph, a fixed apex graph, and a fixed graph, as a minor.

For these three problems, the structure of a solution will be respectively a packing of subgraph
models, a packing of subgraph models, and a packing of subgraph models with `-membership. In order
to define a packing of subgraph models, we need the definition of a subgraph model of F in G, which
is basically an isomorphism from a graph F to a subgraph of G.
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Definition 19. A subgraph model of a graph F in a graph G is a mapping Φ, that assigns to
every vertex v ∈ V (F ) a vertex Φ(v) ∈ v(G), such that

• the vertices Φ(v) for v ∈ V (F ) are distinct; and
• if {u, v} ∈ E(F ), then {Φ(u), Φ(v)} ∈ E(G).

We denote by Φ(F ) the subgraph of G with vertex set {Φ(v) : v ∈ V (F )} and edge set
{{Φ(u), Φ(v)} : {u, v} ∈ E(F )}, which is obviously isomorphic to F .

Definition 20. Let F be a set of subgraphs and let G be a graph. A packing of subgraph models
S is a set of vertex-disjoint subgraph models, that is, the graphs Φ(F ) for Φ ∈ S, F ∈ F are vertex-
disjoint. A packing of subgraph models with `-membership S is a set of subgraph models such that
every vertex v ∈ V (G) is the image of at most ` mappings Φ ∈ S.

F.1 A protrusion decomposition for an instance of F-Subgraph-Packing

In order to find a linear protrusion decomposition, we first need a preprocessing reduction rule. This
rule, which has also been used in previous work [5, 21], enables us to establish a relation between
instances of F-Subgraph-Packing (and its variants) and d-Dominating Set. Then we will be
able to apply Theorem 4 on d-Dominating Set to find a linear treewidth-modulator that allows
to construct the decomposition.

Rule 1 Let v be a vertex of G that does not belong to any subgraph of G isomorphic to a graph in
F . Then remove v from G.

Note that Rule 1 can be applied in time O(nr), where n is the size of G and r is the maximum
size of a graph in F . We call a graph reduced under Rule 1 if the rule cannot be applied anymore
on G.

The next proposition states a relation between an instance of `-F-Subgraph-Packing and
d-Dominating Set. The relation with the two other problems are straightforward, as explained
below.

Proposition 3. Let G be a graph reduced under Rule 1. If (G, k) is a No-instance of Connected
`-F-Subgraph-Packing, then (G, k) is a Yes-instance of (2d+ `)-Dominating Set, where d is
the largest diameter of the graphs in F .

Proof: Let (G, k) be a No-instance of `-F-Subgraph-Packing and let d be the largest diameter
of a graph in F . Let us choose any vertex v ∈ V (G) and remove Nd+`(v) from G. We repeat this
operation until there is no subgraph model of F in G. We call D the set of removed vertices. As
(G, k) is a No-instance of F-Subgraph-Packing, |D| 6 k and as G is reduced under Rule 1 all
vertices in V (G) \ Nd+`(D) belong to a (connected) subgraph model (which intersects Nd+`(D)),
hence all vertices in V (G) \Nd+`(D) are at distance at most 2d+ ` from D. Therefore (G, k) is a
Yes-instance of (2d+ `)-Dominating Set. �

Note that if (G, k) is a No-instance of F-Subgraph-Packing with `-Membership then it is
a No-instance of F-Subgraph-Packing (that is, of 1-F-Subgraph-Packing) and then it is a
No-instance of `-F-Subgraph-Packing for every integer ` > 1. According to Proposition 3, it
follows that (G, k) is a Yes-instance of (2d+ 1)-Dominating Set.
We now apply Theorem 4 in order to find a treewidth-modulator for a Yes-instance of (2d + 1)-
Dominating Set. We now use the following corollary of Theorem 4.

Corollary 4. Let F be a finite set of connected graphs, let H be an h-vertex apex graph, and let G
be the class of H-minor-free graphs. If (G, k) ∈ d-DSG, then there exists a set X ⊆ V (G) such that
|X| = k and tw(G−X) = O(d

√
d·τ3

H ·fc(h)3). Moreover, given an instance (G, k) with |V (G)| = n,
there is an algorithm running in time O(n3) that either finds such a set X or correctly reports that
(G, k) /∈ d-DSG.

We are now able to construct a linear protrusion decomposition.

Lemma 11. Let F be a finite set of connected graphs, let H be an h-vertex apex graph, and let G be
the class of H-minor-free graphs. Let (G, k) be an instance of Connected-`-F-Subgraph-Packing
(or of Connected-F-Subgraph-Packing, or of Connected-F-Subgraph-Packing with `-Membership).
If (G, k) /∈ cFSPG, then we can construct in polynomial time a linear protrusion decomposition of
G.
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Proof: Given an instance (G, k) of cFSPG , we run the algorithm given by Corollary 4 for the
Connected (2d+ `)-Dominating Set problem, where d is the largest diameter of the graphs in
F . If the algorithm is not able to find a treewidth-modulatorX of size |X| = k, then by Proposition 3
we can conclude that (G, k) ∈ c`FSPG (resp. (G, k) ∈ cFSPG and (G, k) ∈ cFSP`MG). Otherwise,
we use the set X as input to the algorithm given by Theorem 2, which outputs in linear time an
((αH · t) · k, 2t+ h)-protrusion decomposition of G, where

• t = O((2d+ `)3/2 · τ3
H · fc(h)3) is provided by Corollary 4; and

• αH = O(h22O(h log h)) is the constant provided by Theorem 2.

This is an
(
h22O(h log h) · (2d+ `)3/2 · τ3

H · fc(h)3 · k , O((2d+ `)3/2 · τ3
H · fm(h)3)

)
-protrusion

decomposition of G. �

F.2 An encoder for F-Subgraph-Packing

Our encoder EFSP for F-Subgraph-Packing uses a simplified version of rooted packings.

Definition 21. Let F be a connected graph and let G be a boundaried graph with boundary B. A
rooted set of B is a quadruple (A,S∗F , SF , ψ), where

• SF ⊆ S∗F are both subsets of V (F );
• A is a non-empty subset of B;
• ψ : A→ SF is a surjective mapping assigning vertices of SF to the vertices in A,

We also define a potential subgraph models of F in G matching with (A,S∗F , SF , ψ) as a partial
mapping Φ, that assigns to every vertex v ∈ SF a vertex Φ(v) ∈ A such that ψ(Φ(v)) = v, and
to every vertex v ∈ S∗F a vertex Φ(v) ∈ V (G) such that for all u, v ∈ S∗F if {u, v} ∈ E(F ) then,
{Φ(u), Φ(v)} ∈ E(G).

Intuitively, the rooted set is a simplification of the rooted packing defined in Section C. The
collection A of subsets of B is replaced with a subset A of B (since now the image of a vertex
v ∈ V (F ) is a vertex of G). The sets S∗F , SF still describe the subgraph of F which is realized in G
and its vertices that lie in B. The function ψ plays the same role as in rooted packings: it can be
viewed as the inverse of the potential subgraph model Φ restricted to B. Note that we do not need
the function χ anymore because the edges cannot appear later (because now the image of a vertex
v ∈ V (F ) is a vertex, and we are dealing with a tree decomposition).

The number of distinct rooted sets at a separator B is upper-bounded by f(t, F ) := 2t · rt · 2r
2

,
where t > |B| and r = |V (F )|.

Here, we only describe the encoder for F-Subgraph-Packing. Similarly to Section D, the en-
coder for `-F-Subgraph-Packing is obtained by a combination of the encoder for F-Subgraph-Packing
and the one for `-Scattered Set. As in Section E, the encoder for F-Subgraph-Packing with `-Membership
is obtained by allowing intersections in the rooted set.

The encodings generator CEFSP . Let G ∈ Bt with boundary ∂(G) labeled with Λ(G). The
function CEFSP maps Λ(G) to a set CEFSP (Λ(G)) of encodings. Each R ∈ CEFSP (Λ(G)) is a set of
at most |Λ(G)| rooted sets {(Ai, S∗Fi

, SFi , ψi) : Fi ∈ F}, where each such rooted set encodes a
potential subgraph model of Fi ∈ F (multiple subgraphs models of the same graph are allowed).

The language LEFSP . For a packing of subgraph models S, we say that (G,S, R) belongs to the
language LEFSP (or that S is a packing of models satisfying R) if there is a packing of potential
subgraph models matching with the rooted sets of R in G \

⋃
Φ∈S Φ(F ).

Note that we allow the entirely realized subgraph models of S to intersect ∂(G) arbitrarily, but
they must not intersect potential subgraph models imposed by R.

As in the previous sections, we need to use the relevant function f̄
EFSP
g . To this aim, we need

to remark that, given a separator B and a subgraph GB , a (partial) solution naturally induces an
encoding RB ∈ CEFSP (Λ(GB)) where the rooted sets correspond to the intersection of models with
B.

Formally, let G be a t-boundaried graph with boundary A and let S be a partial solution satis-
fying some RA ∈ CEFSP (Λ(G)). Let also P be the set of potential subgraph models matching with
the rooted set in RA. Given a bag B in G, we define the induced encoding RB = {(Ai, S∗Fi

, SFi , ψi) :

Φi ∈ S ∪ P} ∈ CEFSP (Λ(GB)) such that for each (potential) subgraph model Φi ∈ S ∪ P of Fi ∈ F
intersecting B,
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• Ai contains vertices of Φi(Fi) in B;

• ψi maps each vertex of Ai to its corresponding vertex in Fi; and

• S∗Fi
and SFi correspond to the vertices of Fi whose images by Φ belong to GB and B, respec-

tively.

Clearly, the set of models of S entirely realized in GB is a partial solution satisfying RB .

The definition of an irrelevant encoding is the same as in Section 4.

The function f̄
EFSP
g . Let G ∈ Bt with boundary A. We define the function f̄

EFSP
g as

f̄
EFSP
g (G,RA) =


−∞, if fEFSP (G,RA) + t < max{fEFSP (G,R) : R ∈ CEFSP (Λ(G))}

or if RA is irrelevent for f̄
EFSP
g .

fEFSP (G,R), otherwise.

In the above equation, fEFSP is the natural maximization function, that is fEFSP (G,R) is the
maximal number of (entirely realized) subgraph models in G which do not intersect potential
subgraph models imposed by R. Formally,

fEFSP (G,R) = max{k : ∃S, |S| > k, (G,S, R) ∈ LEFSP }.

The size of EFSP . Recall that f(t, F ) := 2t · rt · 2r
2

is the number of rooted sets for a subgraph F
of size r on a boundary of size t. Our encoder contains at most t rooted sets, for subgraphs of size
at most r := maxF∈F |V (F )| and such that the sum of their boundary size is at most t. Hence we
can bound the size of the encoder as

sEFSP (t) 6
(∑
j∈J

2j · rj · 2r
2)
6 t · 2t · rt · 2r

2

.

Note that the encoder for `-F-Subgraph-Packing generates couples of encodings for F-Subgraph-Packing
and `-Scattered Set, and therefore the size of the encoder can be bounded as

sÈ FSP (t) 6 sEFSP (t) · (`+ 2)t
2

.

Finally, note that the encoder for F-Subgraph-Packing with `-Membership contains at
most `t rooted sets on a boundary of size t, and thus the size of the encoder can be bounded
as

sEFSP (t) 6 `t · 2t · rt · 2r
2

.

Similarly to Fact 2, the following fact claims that rooted sets allow us to glue and unglue
boundaried graphs, preserving the existence of subgraphs. We omit the proof as it is very similar
to the one of Fact 2.

Fact 3 Let G ∈ Bt with boundary A, let Φ be a subgraph model (resp. a potential subgraph model
matching with a rooted set defined on A) of a graph F in G, let B be a separator of G, and let
GB ∈ Bt be as in Definition 12. Let (A,S∗F , SF , ψ be the rooted set induced by Φ (as defined above).
Let G′B ∈ Bt with boundary B and let G′ be the graph obtained by replacing GB with G′B. If G′B has
a potential subgraph model Φ′B matching with (A,S∗F , SF , ψ), then G′ has a subgraph model (resp.
a potential subgraph model) of F .

We now have to prove that the encoders EFSP , È FSP , EFSP`M are confined and DP-friendly.
The proofs are very similar to the proof of Lemma 6; the proofs for È FSP and EFSP`M have to be
adapted following Sections D and E, respectively. This seems natural as the encoder EFSP is defined
with rooted sets, which are simplifications of rooted packings.

Lemma 12. The encoders EFSP , È FSP , and EFSP`M are g-confined for g(t) = t, g(t) = 2t, and
g(t) = t, respectively. They are respectively a cFSP-encoder, a c`FSP-encoder, and a cFSP`M-
encoder. Furthermore, if G is an arbitrary class of graphs, then the equivalence relations ∼∗EFSP ,G,t,
∼∗È FSP ,G,t, and ∼∗EFSP`M ,G,t are DP-friendly.
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F.3 A linear kernel for F-Subgraph-Packing

We are now ready to provide a linear kernel for Connected F-Subgraph-Packing, Connected
`-F-Subgraph-Packing, and Connected F-Subgraph-Packing with `-Membership.

Theorem 8. Let F be a finite family of connected graphs with diameter at most d, let H be an h-
vertex graph, and let G be the class of H-minor-free graphs. Then Connected F-Subgraph-Packing,
Connected `-F-Subgraph-Packing, and Connected F-Subgraph-Packing with `-Membership
admit constructive kernels of size O(k), where the constant hidden in the “O” notation depends on
h, d, and `.

The proof is similar to the ones in the previous sections. Using the protrusion decomposition
given by Lemma 11 and the encoders described in Section F.2, we have all the material to apply
Corollary 1. The size of the kernel differs from the previous sections due to the size of the encoders
and due to the bound on the treewidth of protrusions given by Lemma 11.

To conclude, we would like to mention that Romero and López-Ortiz [34] introduced an-
other problem allowing intersection of subgraph models, called F-(Subgraph)-Packing with
`-Overlap. In this problem, also studied in [16, 35], a subgraph model can intersect any number
of other models, but they are allowed to pairwise intersect on at most ` vertices. It is easier to
perform dynamic programming on the membership version than on the overlap version, since the
intersection constraint is local for the first one (just on vertices) but global for the second one (on
pairs of models). However, we think that it is possible to define an encoder (with all the required
properties) for F-(Subgraph)-Packing with `-Overlaps using rooted sets and vectors of inte-
gers counting the overlaps (similarly to `-F-Subgraph-Packing). This would imply the existence
of a linear kernel for the F-(Subgraph)-Packing with `-Overlap problem on sparse graphs. We
leave it for further research.
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