
A New Intersection Model and Improved Algorithms for

Tolerance Graphs∗

George B. Mertzios† Ignasi Sau‡ Shmuel Zaks§

Abstract

Tolerance graphs model interval relations in such a way that intervals can tolerate a certain
degree of overlap without being in conflict. This class of graphs, which generalizes in a natural
way both interval and permutation graphs, has attracted many research efforts since their
introduction in [10], as it finds many important applications in constraint-based temporal
reasoning, resource allocation, and scheduling problems, among others. In this article we propose
the first non-trivial intersection model for general tolerance graphs, given by three-dimensional
parallelepipeds, which extends the widely known intersection model of parallelograms in the
plane that characterizes the class of bounded tolerance graphs. Apart from being important on
its own, this new representation also enables us to improve the time complexity of three problems
on tolerance graphs. Namely, we present optimal O(n log n) algorithms for computing a minimum
coloring and a maximum clique, and an O(n2) algorithm for computing a maximum weight
independent set in a tolerance graph with n vertices, thus improving the best known running
times O(n2) and O(n3) for these problems, respectively.

Keywords. Tolerance graphs, parallelogram graphs, intersection model, minimum coloring,
maximum clique, maximum weight independent set.

AMS subject classification (2000). Primary 05C62; Secondary 05C85, 05C15, 05C69, 68R10.

1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there is a set I = {Ii | i = 1, . . . , n} of
closed intervals on the real line and a set T = {ti | i = 1, . . . , n} of positive real numbers, called
tolerances, such that for any two vertices vi, vj ∈ V , vivj ∈ E if and only if |Ii ∩ Ij | ≥ min{ti, tj},
where |I| denotes the length of the interval I. These sets of intervals and tolerances form a tolerance
representation of G. If G has a tolerance representation such that ti ≤ |Ii| for i = 1, . . . , n, then G is
called a bounded tolerance graph and its representation is a bounded tolerance representation.

Tolerance graphs were introduced in [10], mainly motivated by the need to solve scheduling prob-
lems in which resources that would be normally used exclusively, like rooms or vehicles, can tolerate
some sharing among users. Since then, tolerance graphs have been widely studied in the litera-
ture [1, 2, 5, 11, 12, 15, 19, 23], as they naturally generalize both interval graphs (when all tolerances
are equal) and permutation graphs (when |Ii| = ti for i = 1, . . . , n) [10]. For more details, see [13].
∗A preliminary conference version of this work will be presented in the 35th International Workshop on Graph-

Theoretic Concepts in Computer Science (WG), Montpelier, France, June 24-26, 2009.
†Department of Computer Science, RWTH Aachen, Germany. Email: mertzios@cs.rwth-aachen.de
‡Mascotte joint Project of INRIA/CNRS/UNSA, Sophia-Antipolis, France; and Graph Theory and Combinatorics

Group, Applied Maths. IV Dept. of UPC, Barcelona, Spain. Email: ignasi.sau@sophia.inria.fr
§Department of Computer Science, Technion, Haifa, Israel. Email: zaks@cs.technion.ac.il

1

Notation. All the graphs considered in this paper are finite, simple, and undirected. Given a graph
G = (V,E), we denote by n the cardinality of V . An edge between vertices u and v is denoted by
uv, and in this case vertices u and v are said to be adjacent. G denotes the complement of G,
i.e. G = (V,E), where uv ∈ E if and only if uv /∈ E. Given a subset of vertices S ⊆ V , the graph
G[S] denotes the graph induced by the vertices in S, i.e. G[S] = (S, F), where for any two vertices
u, v ∈ S, uv ∈ F if and only if uv ∈ E. A subset S ⊆ V is an independent set in G if the graph
G[S] has no edges. For a subset K ⊆ V , the induced subgraph G[K] is a complete subgraph of G,
or a clique, if each two of its vertices are adjacent (equivalently, K is an independent set in G). The
maximum cardinality of a clique in G is denoted by ω(G) and is termed the clique number of G.
A proper coloring of G is an assignment of different colors to adjacent vertices, which results in a
partition of V into independent sets. The minimum number of colors for which there exists a proper
coloring is denoted by χ(G) and is termed the chromatic number of G. A partition of V into χ(G)
independent sets is a minimum coloring of G.

Motivation and previous work. Besides generalizing interval and permutation graphs in a natu-
ral way, the class of tolerance graphs has other important subclasses and superclasses. Let us briefly
survey some of them.

A graph is perfect if the chromatic number of every induced subgraph equals the clique number of
that subgraph. Perfect graphs include many important families of graphs, and serve to unify results
relating colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring
problem, maximum clique problem, and maximum independent set problem can all be solved in
polynomial time using the Ellipsoid method [14]. Since tolerance graphs were shown to be perfect [11],
there exist polynomial time algorithms for these problems. However, these algorithms are not very
efficient and therefore, as it happens for most known subclasses of perfect graphs, it makes sense to
devise specific fast algorithms for these problems on tolerance graphs.

A comparability graph is a graph which can be transitively oriented. A co-comparability graph is
a graph whose complement is a comparability graph. Bounded tolerance graphs are co-comparability
graphs [10], and therefore all known polynomial time algorithms for co-comparability graphs apply
to bounded tolerance graphs. This is one of the main reasons why for many problems the existing
algorithms have better running time in bounded tolerance graphs than in general tolerance graphs.

A graph G = (V,E) is the intersection graph of a family F = {S1, . . . , Sn} of distinct nonempty
subsets of a set S if there exists a bijection µ : V → F such that for any two distinct vertices u, v ∈ V ,
uv ∈ E if and only if µ(u) ∩ µ(v) 6= ∅. In that case, we say that F is an intersection model of G.
It is easy to see that each graph has a trivial intersection model based on adjacency relations [22].
Some intersection models provide a natural and intuitive understanding of the structure of a class of
graphs, and turn out to be very helpful to find efficient algorithms to solve optimization problems [22].
Therefore, it is of great importance to establish non-trivial intersection models for families of graphs.
A graph G on n vertices is a parallelogram graph (resp. a trapezoid graph) if we can fix two parallel
lines L1 and L2, and for each vertex vi ∈ V (G) we can assign a parallelogram P i (resp. a trapezoid Ti)
with parallel sides along L1 and L2 so that G is the intersection graph of {P i | i = 1, . . . , n} (resp. of
{Ti | i = 1, . . . , n}). The class of parallelogram graphs is strictly included in the class of trapezoid
graphs [24]. It was proved in [1, 20] that a graph is a bounded tolerance graph if and only if it is a
parallelogram graph. This characterization provides a useful way to think about bounded tolerance
graphs. However, this intersection model cannot cope with general tolerance graphs, in which the
tolerance of an interval can be greater than its length.

Our contribution. In this article we present the first non-trivial intersection model for general
tolerance graphs, which generalizes the widely known parallelogram representation of bounded tol-
erance graphs. The main idea is to exploit the third dimension to capture the information given by

2

unbounded tolerances, and as a result parallelograms are replaced with parallelepipeds. The proposed
intersection model is very intuitive and can be efficiently constructed from a tolerance representation
(actually, we show that it can be constructed in linear time).

Apart from being important on its own, this new representation proves to be a powerful tool for
designing efficient algorithms for general tolerance graphs. Indeed, using our intersection model we
improve the best existing running times of three problems on tolerance graphs. We present algorithms
to find a minimum coloring and a maximum clique in O(n log n) time, which is optimal (as discussed
in Section 3.4). The best existing algorithm was O(n2) [12, 13]. We also present an algorithm
to find a maximum weight independent set in O(n2) time, whereas the best known algorithm was
O(n3) [13]. We note that [23] proposes an O(n2 log n) algorithm to find a maximum cardinality
independent set on a general tolerance graph, and that [13] refers to an algorithm transmitted by
personal communication with running time O(n2 log n) to find a maximum weight independent set
on a general tolerance graph; to the best of our knowledge, this algorithm has not been published.

It is important to note that the complexity of recognizing bounded and general tolerance graphs
is a challenging open problem [3,13,23], and this is the reason why we assume throughout this paper
that along with the input tolerance graph we are also given a tolerance representation of it. On the
contrary, trapezoid graphs can be recognized in polynomial time [21, 25]. However, the polynomial
recognizability of trapezoid graphs does not imply polynomial recognizability of bounded tolerance
graphs, i.e. of parallelogram graphs, since the trapezoids of a bounded tolerance representation have
to intersect the two supporting lines L1 and L2 on intervals of the same length. The only “positive”
result in the literature concerning recognition of tolerance graphs is a linear time algorithm for the
recognition of bipartite tolerance graphs [3].

Nevertheless, it was shown in [15] that every tolerance graph has a polynomial sized tolerance
representation, and hence tolerance graphs recognition is in the class NP. There exist other graph
classes closely related to tolerance graphs. If in the definition of tolerance graphs we replace the
operation “min” between tolerances with “+”, we obtain the class of sum-tolerance graphs [17],
and if we replace it with “max” we obtain the class of max-tolerance graphs. Max-tolerance graphs
recognition is known to be NP-hard [18].

Organization of the paper. We provide the new intersection model of general tolerance graphs
in Section 2. In Section 3 we present a canonical representation of tolerance graphs, and then show
how it can be used in order to obtain optimal O(n log n) algorithms for finding a minimum coloring
and a maximum clique in a tolerance graph. In Section 4 we present an O(n2) algorithm for finding
a maximum weight independent set. Finally, Section 5 is devoted to conclusions and open problems.

2 A New Intersection Model for Tolerance Graphs

One of the most natural representations of bounded tolerance graphs is given by parallelograms be-
tween two parallel lines in the Euclidean plane [1,13,20]. In this section we extend this representation
to a three-dimensional representation of general tolerance graphs.

Given a tolerance graph G = (V,E) along with a tolerance representation of it, recall that vertex
vi ∈ V corresponds to an interval Ii = [ai, bi] on the real line with a tolerance ti ≥ 0. W.l.o.g. we
may assume that ti > 0 for every vertex vi [13].

Definition 1 Given a tolerance representation of a tolerance graph G = (V,E), vertex vi is bounded
if ti ≤ |Ii|. Otherwise, vi is unbounded. VB and VU are the sets of bounded and unbounded vertices
in V , respectively. Clearly V = VB ∪ VU .

3

L1

L2

1

ti

ai

bici

di

ti

φi

P i
P j

aj = dj

cj = bj

φj

P k

|Ij |

tj

|Ik||Ii|

ck = bk

ak = dk

tk =∞

φk

Figure 1: Parallelograms P i and P j correspond to bounded vertices vi and vj , respectively, whereas
P k corresponds to an unbounded vertex vk.

We can also assume w.l.o.g. that ti = ∞ for any unbounded vertex vi, since if vi is unbounded,
then the intersection of any other interval with Ii is strictly smaller than ti. Let L1 and L2 be two
parallel lines at distance 1 in the Euclidean plane.

Definition 2 Given an interval Ii = [ai, bi] with tolerance ti, P i is the parallelogram defined by the
points ci, bi in L1 and ai, di in L2, where ci = min {bi, ai + ti} and di = max {ai, bi − ti}. The slope
φi of P i is φi = arctan

(
1

ci−ai

)
.

An example is depicted in Figure 1, where P i and P j correspond to bounded vertices vi and vj ,
and P k corresponds to an unbounded vertex vk. Observe that when vertex vi is bounded, the values
ci and di coincide with the tolerance points defined in [7, 13,16], and φi = arctan

(
1
ti

)
. On the other

hand, when vertex vi is unbounded, the values ci and di coincide with the endpoints bi and ai of
Ii, respectively, and φi = arctan

(
1
|Ii|

)
. Observe also that in both cases ti = bi − ai and ti = ∞,

parallelogram P i is reduced to a line segment (c.f. P j and P k in Figure 1). Since ti > 0 for every
vertex vi, it follows that 0 < φi <

π
2 . Furthermore, we can assume w.l.o.g. that all points ai, bi, ci, di

and all slopes φi are distinct [7, 13,16].

Observation 1 Let vi ∈ VU , vj ∈ VB. Then |Ii| < tj if and only if φi > φj.

We are ready to give the main definition of this article.

Definition 3 Let G = (V,E) be a tolerance graph with a tolerance representation
{Ii = [ai, bi], ti | i = 1, . . . , n}. For every i = 1 . . . , n, Pi is the parallelepiped in R3 defined as
follows:

(a) If ti ≤ bi − ai (that is, vi is bounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈ P i, 0 ≤ z ≤ φi}.

(b) If ti > bi − ai (vi is unbounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈ P i, z = φi}.

The set of parallelepipeds {Pi | i = 1, . . . , n} is a parallelepiped representation of G.

Observe that for each interval Ii, the parallelogram P i of Definition 2 (see also Figure 1) coincides
with the projection of the parallelepiped Pi on the plane z = 0. An example of the construction of
these parallelepipeds is given in Figure 2, where a set of eight intervals with their associated tolerances
is given in Figure 2(a). The corresponding tolerance graph G is depicted in Figure 2(b), while the
parallelepiped representation is illustrated in Figure 2(c). In the case ti < bi − ai, the parallelepiped
Pi is three-dimensional, c.f. P1, P3, and P5, while in the border case ti = bi − ai it degenerates to
a two-dimensional rectangle, c.f. P7. In these two cases, each Pi corresponds to a bounded vertex

4

I = [1,17] t = 51 1

I = [4,26] t = 2 2

I = [21,37] t = 103 3

I = [32,36] t =4 4

I = [41,60] t = 65 5

I = [43,68] t = 6 6

I = [49,52] t = 37 7

I = [61,66] t = 8 8

8
8 8

8

(a)

1v 2v 3v 4v 5v 6v

7v

8v G

(b)

φ

P

1 6 12 17 21 27 32 37 41 43 4947 52 54 61 66 684

P

P
P

P

P

P

P
1

1

2

2

3
3

4

4

5

6

5

8

7
7

6

8

1

L1

L2 x

yz

φ

φ

φ

φ

φ

φ

φ

(c)

Figure 2: The intersection model for tolerance graphs: (a) a set of intervals Ii = [ai, bi] and tolerances
ti, i = 1, . . . , 8, (b) the corresponding tolerance graph G and (c) a parallelepiped representation of G.

vi. In the remaining case ti = ∞ (that is, vi is unbounded), the parallelepiped Pi degenerates to a
one-dimensional line segment above plane z = 0, c.f. P2, P4, P6, and P8.

We prove now that these parallelepipeds form a three-dimensional intersection model for the class
of tolerance graphs (namely, that every tolerance graph G can be viewed as the intersection graph of
the corresponding parallelepipeds Pi).

Theorem 1 Let G = (V,E) be a tolerance graph with a tolerance representation
{Ii = [ai, bi], ti | i = 1, . . . , n}. Then for every i 6= j, vivj ∈ E if and only if Pi ∩ Pj 6= ∅.

Proof. We distinguish three cases according to whether vertices vi and vj are bounded or unbounded:

(a) Both vertices are bounded, that is ti ≤ bi − ai and tj ≤ bj − aj . It follows from [13] that
vivj ∈ E(G) if and only if P i ∩ P j 6= ∅. However, due to the definition of the parallelepipeds
Pi and Pj , in this case Pi ∩ Pj 6= ∅ if and only if P i ∩ P j 6= ∅ (c.f. P1 and P3, or P5 and P7, in
Figure 2).

(b) Both vertices are unbounded, that is ti = tj =∞. Since no two unbounded vertices are adjacent,
vivj /∈ E(G). On the other hand, the line segments Pi and Pj lie on the disjoint planes z = φi
and z = φj of R3, respectively, since we assumed that the slopes φi and φj are distinct. Thus,
Pi ∩ Pj = ∅ (c.f. P2 and P4).

(c) One vertex is unbounded (that is, ti = ∞) and the other is bounded (that is, tj ≤ bj − aj). If
P i ∩ P j = ∅, then vivj /∈ E and Pi ∩ Pj = ∅ (c.f. P1 and P6). Suppose that P i ∩ P j 6= ∅. We
distinguish two cases:

5

(i) φi < φj . It is easy to check that |Ii ∩ Ij | ≥ tj and thus vivj ∈ E. Since P i ∩ P j 6= ∅ and
φi < φj , then necessarily the line segment Pi intersects with the parallelepiped Pj on the
plane z = φi, and thus Pi ∩ Pj 6= ∅ (c.f. P1 and P2).

(ii) φi > φj . Clearly |Ii∩Ij | < ti =∞. Furthermore, since φi > φj , Observation 1 implies that
|Ii ∩ Ij | ≤ |Ii| < tj . It follows that |Ii ∩ Ij | < min{ti, tj}, and thus vivj /∈ E. On the other
hand, z = φi for all points (x, y, z) ∈ Pi, while z ≤ φj < φi for all points (x, y, z) ∈ Pj , and
therefore Pi ∩ Pj = ∅ (c.f. P3 and P4). aa

Clearly, for each vi ∈ V the parallelepiped Pi can be constructed in constant time. Therefore,

Lemma 1 Given a tolerance representation of a tolerance graph G with n vertices, a parallelepiped
representation of G can be constructed in O(n) time.

3 Coloring and Clique Algorithms in O(n log n)

In this section we present optimal O(n log n) algorithms for constructing a minimum coloring and a
maximum clique in a tolerance graph G = (V,E) with n vertices, given a parallelepiped representation
of G. These algorithms improve the best known running time O(n2) of these problems on tolerance
graphs [12,13]. First, we introduce a canonical representation of tolerance graphs in Section 3.1, and
then we use it to obtain the algorithms for the minimum coloring and the maximum clique problems
in Section 3.2. Finally, we discuss the optimality of both algorithms in Section 3.4.

3.1 A canonical representation of tolerance graphs

We associate with every vertex vi of G the point pi = (xi, yi) in the Euclidean plane, where xi = bi and
yi = π

2 −φi. Since all endpoints of the parallelograms P i and all slopes φi are distinct, all coordinates
of the points pi are distinct as well. Similarly to [12,13], we state the following two definitions.

Definition 4 An unbounded vertex vi ∈ VU of a tolerance graph G is called inevitable (for a certain
parallelepiped representation), if replacing Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} creates a new
edge in G. Otherwise, vi is called evitable.

Definition 5 Let vi ∈ VU be an inevitable unbounded vertex of a tolerance graph G (for a certain
parallelepiped representation). A vertex vj is called a hovering vertex of vi if aj < ai, bi < bj, and
φi > φj.

It is now easy to see that, by Definition 5, if vj is a hovering vertex of vi, then vivj /∈ E. Note
that, in contrast to [12], in Definition 4, an isolated vertex vi might be also inevitable unbounded,
while in Definition 5, a hovering vertex might be also unbounded. Definitions 4 and 5 imply the
following lemma:

Lemma 2 Let vi ∈ VU be an inevitable unbounded vertex of the tolerance graph G (for a certain
parallelepiped representation). Then, there exists a hovering vertex vj of vi.

Proof. Since vi is an inevitable unbounded vertex, replacing Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤
z ≤ φi} creates a new edge in G; let vivj be such an edge. Then, clearly P i ∩ P j 6= ∅. We will
prove that vj is a hovering vertex of vi. Otherwise, φi < φj , aj > ai, or bi > bj . Suppose first
that φi < φj . If vj ∈ VU , then vi remains not connected to vj after the replacement of Pi with
{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi}, since φi < φj , which is a contradiction. If vj ∈ VB, then vi is
connected to vj also before the replacement of Pi, since φi < φj and P i ∩ P j 6= ∅, which is again a

6

contradiction. Thus, φi > φj . Suppose now that aj > ai or bi > bj . Then, since φi > φj , we obtain
for both cases that P i ∩ P j = ∅, which is a contradiction. Thus, aj < ai, bi < bj , and φi > φj , i.e. vj
is a hovering vertex of vi by Definition 5.

Definition 6 A parallelepiped representation of a tolerance graph G is called canonical if every un-
bounded vertex is inevitable.

For example, in the tolerance graph depicted in Figure 2, v4 and v8 are inevitable unbounded
vertices, v3 and v6 are hovering vertices of v4 and v8, respectively, while v2 and v6 are evitable
unbounded vertices. Therefore, this representation is not canonical for the graph G. However, if we
replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} for i = 2, 6, we get a canonical representation for
G.

In the following, we present an algorithm that constructs a canonical representation of a given
tolerance graph G.

Definition 7 Let α = (xα, yα) and β = (xβ, yβ) be two points in the plane. Then α dominates β if
xα > xβ and yα > yβ. Given a set A of points, the point γ ∈ A is called an extreme point of A if
there is no point δ ∈ A that dominates γ. Ex(A) is the set of the extreme points of A.

Given a tolerance graph G = (V,E) with the set V = {v1, v2, . . . , vn} of vertices (and its paral-
lelepiped representation), we can assume w.l.o.g. that ai < aj whenever i < j. Recall that with every
vertex vi we associated the point pi = (xi, yi), where xi = bi and yi = π

2 − φi, respectively. We define
for every i = 1, 2, . . . , n the set Ai = {p1, p2, . . . , pi} of the points associated with the first i vertices
of G.

Lemma 3 Let vi ∈ VU be an unbounded vertex of a tolerance graph G. Then:

(a) If pi ∈ Ex(Ai) then vi is evitable.

(b) If pi /∈ Ex(Ai) and point pj dominates pi for some bounded vertex vj ∈ VB with j < i then vi
is inevitable and vj is a hovering vertex of vi.

Proof. (a) Assume, to the contrary, that vi is inevitable. By Lemma 2 there is a hovering vertex vj
of vi. But then, xi = bi < bj = xj and yi = π

2 − φi < π
2 − φj = yj , while aj < ai, i.e. j < i. Therefore

pj ∈ Ai and pj dominates pi, which is a contradiction, since pi ∈ Ex(Ai).
(b) Suppose that pj dominates pi, for some vertex vj ∈ VB with j < i. The ordering of the vertices

implies aj < ai, while xi < xj and yi < yj imply bi < bj and φi > φj . Thus vi is inevitable and vj is
a hovering vertex of vi.

The following theorem shows that, given a parallelepiped representation of a tolerance graph G,
we can construct in O(n log n) a canonical representation of G. This result is crucial for the time
complexity analysis of the algorithms of Section 3.2.

Theorem 2 Every parallelepiped representation of a tolerance graph G with n vertices can be trans-
formed by Algorithm 1 to a canonical representation of G in O(n log n) time.

Proof. We describe and analyze Algorithm 1 that generates a canonical representation of G. First,
we sort the vertices v1, v2, . . . , vn of G such that ai < aj whenever i < j. Then, we process sequentially
all vertices vi of G. The bounded and the inevitable unbounded vertices will not be changed, while
the evitable unbounded vertices will be replaced with bounded ones. At step i we update the set
Ex(Ai) of the extreme points of Ai (note that the set Ai remains unchanged during the algorithm).
For two points pi1 , pi2 of Ex(Ai), xi1 > xi2 if and only if yi1 < yi2 . We store the elements of Ex(Ai)

7

in a list P , in which the points pj are sorted increasingly according to their x values (or, equivalently,
decreasingly according to their y values). Due to Lemma 3(a), and since during the algorithm the
evitable unbounded vertices of G are replaced with bounded ones, after the process of vertex vi, all
points in the list P correspond to bounded vertices of G in the current parallelepiped representation.

We distinguish now the following cases:
Case 1. vi is bounded. If there exists a point of P that dominates pi then pi /∈ Ex(Ai). Thus,

we do not change P , and we continue to the process of vi+1. If no point of P dominates pi then
pi ∈ Ex(Ai). Thus, we add pi to P and we remove from P all points that are dominated by pi.

Algorithm 1 Construction of a canonical representation of a tolerance graph G

Input: A parallelepiped representation R of a given tolerance graph G with n vertices
Output: A canonical representation R′ of G

Sort the vertices of G, such that ai < aj whenever i < j
`0 ← min{xi : 1 ≤ i ≤ n}; r0 ← max{xi : 1 ≤ i ≤ n}
ps ← (`0 − 1, π2); pt ← (r0 + 1, 0)
P ← (ps, pt); R′ ← R
for i = 1 to n do

Find the point pj having the smallest xj with xj > xi
if yj < yi then {no point of P dominates pi}

Find the point pk having the greatest xk with xk < xi
Find the point p` having the greatest y` with y` < yi
if xk ≥ x` then

Replace points p`, p`+1 . . . , pk with point pi in the list P
else

Insert point pi between points pk and p` in the list P
if vi ∈ VU then {vi is an evitable unbounded vertex}

Replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in R′

else {yj > yi; pj dominates pi}
if vi ∈ VU then {vi is an inevitable unbounded vertex}
vj is a hovering vertex of vi

return R′

Case 2. vi is unbounded. If there exists a point pj ∈ P that dominates pi then pi /∈ Ex(Ai), while
Lemma 3(b) implies that vi is inevitable and vj is a hovering vertex of vi. Thus, similarly to Case 1,
we do not change P , and we continue to the process of vi+1. If no point of P dominates pi then
pi ∈ Ex(Ai). Thus, we add the point pi to P and remove from P all points that are dominated by pi.
In this case, vi is evitable by Lemma 3(a). Hence, we replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi}
in the current parallelepiped representation of G and we consider from now on vi as a bounded vertex.

It follows that after the process of each vertex vi (either bounded or unbounded) the list P stores
the points of Ex(Ai). Furthermore, at every iteration of the algorithm, all points of the list P
correspond to bounded vertices in the current parallelepiped representation of G.

The processing of vertex vi is done by executing three binary searches in the list P as follows. Let
`0 = min{xi | 1 ≤ i ≤ n} and r0 = max{xi | 1 ≤ i ≤ n}. For convenience, we add two dummy points
ps = (`0 − 1, π2) and pt = (r0 + 1, 0). First, we find the point pj ∈ P with the smallest value xj , such
that xj > xi (see Figure 3). Note that pi ∈ Ex(Ai) if and only if yj < yi. If yj > yi then pj dominates
pi (see Figure 3(a)). Thus, if vi ∈ VU , Lemma 3(b) implies that vi is an inevitable unbounded vertex
and vj is a hovering vertex of vi. In the opposite case yj < yi, we have to add pi to P . In order to
remove from P all points that are dominated by pi, we execute binary search two more times. In
particular, we find the points pk and p` of P with the greatest values xk and y`, respectively, such

8

that xk < xi and y` < yi (see Figure 3(b)). If there are some points of P that are dominated by
pi, then pk and p` have the greatest and smallest values xk and x` among them, respectively, and
xk ≥ x`. In this case, we replace all points p`, p`+1, . . . , pk with the point pi in the list P . Otherwise,
if no point of P is dominated by pi, then xk < x`. In this case, we remove no point from P and we
insert pi between pk and p` in P .

x

y

pi

pj

pt

ps

(a)

x

y

pi

pjpk

p`

pt

ps

(b)

Figure 3: The cases where the associated point pi to the currently processed vertex vi is (a) dominated
by the point pj in Ai and (b) an extreme point of the set Ai.

Finally, after processing all vertices vi of G, we return a canonical representation of the given
tolerance graph G, in which every vertex that remains unbounded has a hovering vertex assigned
to it. Since the processing of every vertex can be done in O(log n) time by executing three binary
searches, and since the sorting of the vertices can be done in O(n log n) time, the running time of
Algorithm 1 is O(n log n).

3.2 Minimum coloring

In the next theorem we present an optimal O(n log n) algorithm for computing a minimum coloring
of a tolerance graph G with n vertices, given a parallelepiped representation of G. The informal
description of the algorithm is identical to the one in [12], which has running timeO(n2); the difference
is in the fact that we use our new representation, in order to improve the time complexity.

Algorithm 2 Minimum coloring of a tolerance graph G

Input: A parallelepiped representation of a given tolerance graph G
Output: A minimum coloring of G

Construct a canonical representation of G by Algorithm 1, where a hovering vertex is associated
with every inevitable unbounded vertex
Color G[VB] by the algorithm of [6]
for every inevitable unbounded vertex vi ∈ VU do

Assign to vi the same color as its hovering vertex in G[VB]

Theorem 3 A minimum coloring of a tolerance graph G with n vertices can be computed in
O(n log n) time.

Proof. We present Algorithm 2 that computes a minimum coloring of G. Given a parallelepiped
representation of G, we construct a canonical representation of G in O(n log n) time by Algorithm 1.
VB and VU are the sets of bounded and inevitable unbounded vertices of G in the latter representation,
respectively. In particular, Algorithm 1 associates a hovering vertex vj ∈ VB with every inevitable

9

unbounded vertex vi ∈ VU . We find a minimum proper coloring of the bounded tolerance graph G[VB]
in O(n log n) time using the algorithm of [6]. Finally, we associate with every inevitable unbounded
vertex vi ∈ VU the same color as that of its hovering vertex vj ∈ VB in the coloring of G[VB].

Consider an arbitrary inevitable unbounded vertex vi ∈ VU and its hovering vertex vj ∈ VB.
Following Definition 5, P i ∩ P j 6= ∅ and φi > φj . Consider a vertex vk of G, such that vivk ∈ E. It
follows that vk ∈ VB, since no two unbounded vertices are adjacent in G. Furthermore, since vivk ∈ E,
it follows that P i ∩ P k 6= ∅ and φk > φi. Then P j ∩ P k 6= ∅, and thus Pj ∩ Pk 6= ∅, i.e. vjvk ∈ E,
since both vj and vk are bounded vertices. It follows that vk does not have the same color as vj
in the proper coloring of G[VB], and thus the resulting coloring of G is proper. Finally, since both
colorings of G[VB] and of G have the same number of colors, it follows that this proper coloring of
G is minimum. Since the coloring of G[VB] can be done in O(n log n) time and the coloring of all
inevitable unbounded vertices vi ∈ VU can be done in O(n) time, Algorithm 2 returns a minimum
proper coloring G in O(n log n) time.

3.3 Maximum clique

In the next theorem we prove that a maximum clique of a tolerance graph G with n vertices can
be computed in optimal O(n log n) time, given a parallelepiped representation of G. This theorem
follows from Theorem 2 and from the clique algorithm presented in [6], and it improves the best
known O(n2) running time mentioned in [12].

Theorem 4 A maximum clique of a tolerance graph G with n vertices can be computed in O(n log n)
time.

Proof. We compute first a canonical representation ofG inO(n log n) time by Algorithm 1. The proof
of Theorem 3 implies that χ(G) = χ(G[VB]), where χ(H) denotes the chromaric number of a given
graph H. Since tolerance graphs are perfect graphs [11], ω(G) = χ(G) and ω(G[VB]) = χ(G[VB]),
where ω(H) denotes the clique number of a given graph H. It follows that ω(G) = ω(G[VB]). We
compute now a maximum clique Q of the bounded tolerance graph G[VB] in O(n log n) time. This
can be done by the algorithm presented in [6] that computes a maximum clique in a trapezoid graph,
since bounded tolerance graphs are trapezoid graphs [13]. Since ω(G) = ω(G[VB]), Q is a maximum
clique of G as well.

3.4 Optimality of the running time

In this section we use permutation graphs [13]. Given a sequence S = a1, a2, . . . , an of numbers, a
subsequence of S is a sequence S′ = ai1 , ai2 , . . . , aik , where aij ∈ S for every j ∈ {1, 2, . . . , k}, and
1 ≤ i1 < i2 < . . . < ik ≤ n. S′ is called an increasing subsequence of S, if ai1 < ai2 < . . . < aik .
Clearly, increasing subsequences in a permutation graph G correspond to independent sets of G,
while increasing subsequences in the complement G of G correspond to cliques of G, where G is also
a permutation graph. Since Ω(n log n) is a lower time bound for computing the length of a longest
increasing subsequence in a permutation [6, 8], the same lower time bound holds for computing a
maximum clique and a maximum independent set in a permutation graph G. Furthermore, since
permutation graphs are perfect graphs [9], the chromatic number χ(G) of a permutation graph G
equals the clique number ω(G) of G. Thus, Ω(n log n) is a lower time bound for computing the chro-
matic number of a permutation graph. Finally, since the class of permutation graphs is a subclass of
tolerance graphs [13], the same lower bounds hold for tolerance graphs. It follows that the algorithms
in Theorems 3 and 4 for computing a minimum coloring and a maximum clique in tolerance graphs
are optimal.

10

4 Weighted Independent Set Algorithm in O(n2)

In this section we present an algorithm for computing a maximum weight independent set in a
tolerance graph G = (V,E) with n vertices in O(n2) time, given a parallelepiped representation of G,
and a weight w(vi) > 0 for every vertex vi of G. The proposed algorithm improves the running time
O(n3) of the one presented in [13]. In the following, consider as above the partition of the vertex set
V into the sets VB and VU of bounded and unbounded vertices of G, respectively.

Similarly to [13], we add two isolated bounded vertices vs and vt toG with weights w(vs) = w(vt) =
0, such that the corresponding parallelepipeds Ps and Pt lie completely to the left and to the right of
all other parallelepipeds of G, respectively. Since both vs and vt are bounded vertices, we augment
the set VB by the vertices vs and vt. In particular, we define the set of vertices V ′B = VB ∪ {vs, vt}
and the tolerance graph G′ = (V ′, E), where V ′ = V ′B ∪ VU . Since G′[V ′B] is a bounded tolerance
graph, it is a co-comparability graph as well [11, 13]. A transitive orientation of the comparability
graph G′[V ′B] can be obtained by directing each edge according to the upper left endpoints of the
parallelograms P i. Formally, let (V ′B,≺) be the partial order defined on the bounded vertices V ′B,
such that vi ≺ vj if and only if vivj /∈ E and ci < cj . Recall that a chain of elements in a partial
order is a set of mutually comparable elements in this order [4].

Observation 2 ([13]) The independent sets of G[VB] are in one-to-one correspondence with the
chains in the partial order (V ′B,≺) from vs to vt.

For the sequel, recall that for every unbounded vertex vk ∈ VU the parallelepiped Pk degenerates
to a line segment, while the upper endpoints bk and ck of the parallelogram P k coincide, i.e. bk = ck.

Definition 8 For every vi, vj ∈ V ′B with vi ≺ vj, Li(j) = {vk ∈ VU | bi < ck < cj , vivk /∈ E} and its
weight w(Li(j)) =

∑
v∈Li(j)

w(v).

Definition 9 For every vj ∈ V ′B, Rj = {vk ∈ VU | cj < ck < bj , vjvk /∈ E} and its weight w(Rj) =∑
v∈Rj

w(v).

For every pair of bounded vertices vi, vj ∈ V ′B with vi ≺ vj , the set Li(j) consists of those
unbounded vertices vk ∈ VU , for which vivk /∈ E and whose upper endpoint bk = ck of P k lies
between P i and P j . Furthermore, vjvk /∈ E for every vertex vk ∈ Li(j). Indeed, in the case where
P k ∩P j 6= ∅, it holds φk > φj , since bk = ck < cj , and thus Pk ∩Pj = ∅. Similarly, the set Rj consists
of those unbounded vertices vk ∈ VU , for which vjvk /∈ E and whose upper endpoint bk = ck of P k
lies between the upper endpoints cj and bj of P j . Furthermore, vivk /∈ E for every vertex vk ∈ Rj
as well. Indeed, since vjvk /∈ E, it follows that φk > φj , and thus, P i ∩ P k = ∅ and Pi ∩ Pk = ∅.
In particular, in the example of Figure 4, L1(2) = {v3, v5} and R2 = {v6}. In this figure, the line
segments that correspond to the unbounded vertices v4 and v7, respectively, are drawn with dotted
lines to illustrate the fact that v4v1 ∈ E and v7v2 ∈ E.

L1

L2

c1 b1 c2 b2c3 c4 c5 c6 c7

a1 d1
a2 d2

P 1 P 2

Figure 4: The parallelograms P i, i = 1, 2, . . . , 7 of a tolerance graph with the sets VB = {v1, v2}
and VU = {v3, v4, . . . , v7} of bounded and unbounded vertices, respectively. In this graph, L1(2) =
{v3, v5}, R2 = {v6} and S(v1, v2) = {v3, v5, v6}.

11

Algorithm 3 Maximum weight independent set of a tolerance graph G

Input: A parallelepiped representation of a given tolerance graph G
Output: The value of a maximum weight independent set of G

Add the dummy bounded vertices vs, vt to G, such that Ps and Pt lie completely to the left and to
the right of all other parallelepipeds of G, respectively
V ′B ← VB ∪ {vs, vt}
Construct the partial ordering (V ′B,≺) of the bounded vertices V ′B
Sort the bounded vertices V ′B, such that ci < cj whenever i < j

for j = 1 to |V ′B| do
W (vj)← 0
Compute the value w(Rj)

for i = 1 to |V ′B| do
for every vj ∈ V ′B with vi ≺ vj do

Update the value w(Li(j))
if W (vj) < (w(vj) + w(Rj)) +W (vi) + w(Li(j)) then
W (vj)← (w(vj) + w(Rj)) +W (vi) + w(Li(j))

return W (vt)

Definition 10 ([13]) For every vi, vj ∈ V ′B with vi ≺ vj, S(vi, vj) = {vk ∈ VU | vivk, vjvk /∈ E, bi <
ck < bj}.

Observation 3 For every pair of bounded vertices vi, vj ∈ V ′B with vi ≺ vj,

S(vi, vj) = Li(j) ∪Rj (1)

Furthermore, Li(j) ⊆ Li(`) for every triple {vi, vj , v`} of bounded vertices, where vi ≺ vj, vi ≺ v` and
cj < c`.

In particular, in the example of Figure 4, S(v1, v2) = L1(2) ∪R2 = {v3, v5, v6}.

Lemma 4 ([13]) Given a tolerance graph G with a set of positive weights for the vertices of G, any
maximum weight independent set of G consists of a chain of bounded vertices vx1 ≺ vx2 ≺ . . . ≺ vxk

together with the union of the sets ∪{S(vxi , vxi+1) | i = 0, 1, . . . , k}, where vx0 = vs and vxk+1
= vt.

Now, using Lemma 4 and Observation 3, we can present Algorithm 3, which improves the running
time O(n3) of the one presented in [13].

Theorem 5 A maximum weight independent set of a tolerance graph G with n vertices can be com-
puted using Algorithm 3 in O(n2) time.

Proof. We present Algorithm 3 that computes the value of a maximum weight independent set of G.
A slight modification of Algorithm 3 returns a maximum weight independent set of G, instead of its
value. First, we construct the partial order (V ′B,≺) defined on the bounded vertices V ′B = VB∪{vs, vt},
such that vi ≺ vj whenever vivj /∈ E and ci < cj . This can be done in O(n2) time. Then, we sort the
bounded vertices of V ′B, such that ci < cj whenever i < j. This can be done in O(n log n) time. As
a preprocessing step, we compute for every bounded vertex vj ∈ V ′B the set Rj and its weight w(Rj)
in linear O(n) time by visiting at most all unbounded vertices vk ∈ VU . Thus, all values w(Rj) are
computed in O(n2) time.

12

We associate with each bounded vertex vj ∈ V ′B a cumulative weight W (vj) defined as follows:

W (vs) = 0 (2)
W (vj) = (w(vj) + w(Rj)) + max

vi≺vj

{W (vi) + w(Li(j))}, for every vj ∈ V ′B \ {vs}

The cumulative weight W (vj) of an arbitrary bounded vertex vj ∈ V ′B equals the maximum weight
of an independent set S of vertices vk (both bounded and unbounded), for which bk ≤ bj and vj ∈ S.
Initially all values W (vj) are set to zero.

In the main part of Algorithm 3, we process sequentially all bounded vertices vi ∈ V ′B.
For every such vertex vi, we update sequentially the cumulative weights W (vj) for all
bounded vertices vj ∈ V ′B with vi ≺ vj by comparing the current value of W (vj) with the value
(w(vj) + w(Rj)) +W (vi) + w(Li(j)), and by storing the greatest of them in W (vj). After all bounded
vertices of V ′B have been processed, the value of the maximum weight independent set of G is stored
in W (vt), due to Lemma 4 and Observation 3.

While processing the bounded vertex vi, we compute the values w(Li(j)) sequentially for every
j, where vi ≺ vj , as follows. Let vj1 , vj2 be two bounded vertices that are visited consecutively by
the algorithm, during the process of vertex vi. Then, due to Observation 3, we compute the value
w(Li(j2)) by adding to the previous value w(Li(j1)) the weights of all unbounded vertices vk ∈ VU ,
whose upper endpoints ck lie between cj1 and cj2 .

Since we visit all bounded and all unbounded vertices of the graph at most once during the process
of vi, this can be done in O(n) time. Thus, since there are in total at most n + 2 bounded vertices
vi ∈ V ′B, Algorithm 3 returns the value of the maximum weight independent set of G in O(n2) time.
Finally, observe that, storing at every step of Algorithm 3 the independent sets that correspond to
the values W (vi), and removing at the end the vertices vs and vt, the algorithm returns at the same
time a maximum weight independent set of G, instead of its value.

5 Conclusions and Further Research

In this article we proposed the first non-trivial intersection model for general tolerance graphs, given
by parallelepipeds in the three-dimensional space. This representation generalizes the parallelogram
representation of bounded tolerance graphs. Using this representation, we presented improved algo-
rithms for computing a minimum coloring, a maximum clique, and a maximum weight independent
set on a tolerance graph. The running times of the first two algorithms are optimal. It can be ex-
pected that this representation will prove useful in improving the running time of other algorithms
for the class of tolerance graphs.

As mentioned in Section 1, the complexity of the recognition problem for tolerance and bounded
tolerance graphs is possibly the main open problem in this class of graphs. Even when the input
graph is known to be a tolerance graph, it is not known how to obtain a tolerance representation for
it [23]. Moreover, given a tolerance graph, it is not known how to decide in polynomial time whether
it is a bounded tolerance graph [23].

References

[1] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete
Applied Mathematics, 60(1-3):99–117, 1995.

[2] A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied Mathematics,
154(3):471–477, 2006.

[3] A. H. Busch and G. Isaak. Recognizing bipartite tolerance graphs in linear time. In 33rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 12–20, 2007.

13

[4] R. Diestel. Graph Theory. Springer-Verlag, Berlin, 3rd edition, 2005.

[5] S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28:129–140, 1998.

[6] S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations, geometry and algorithms.
Discrete Applied Mathematics, 74:13–32, 1997.

[7] P. C. Fishburn and W. T. Trotter. Split semiorders. Discrete Mathematics, 195:111–126, 1999.

[8] M. L. Fredman. On computing the length of longest increasing subsequences. Discrete Mathematics,
11:29–35, 1975.

[9] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol.
57). North-Holland Publishing Co., 2004.

[10] M. C. Golumbic and C. L. Monma. A generalization of interval graphs with tolerances. In Proceedings of the
13th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium
35, pages 321–331, 1982.

[11] M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs. Discrete Applied Mathematics,
9(2):157–170, 1984.

[12] M. C. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: Reasoning and scheduling with
interval constraints. In Joint International Conferences on Artificial Intelligence, Automated Reasoning,
and Symbolic Computation (AISC/Calculemus), pages 196–207, 2002.

[13] M. C. Golumbic and A. N. Trenk. Tolerance Graphs. Cambridge Studies in Advanced Mathematics, 2004.

[14] M. Grötshcel, L. Lovász, and A. Schrijver. The Ellipsoid Method and its Consequences in Combinatorial
Optimization. Combinatorica, 1:169–197, 1981.

[15] R. B. Hayward and R. Shamir. A note on tolerance graph recognition. Discrete Applied Mathematics,
143(1-3):307–311, 2004.

[16] G. Isaak, K. L. Nyman, and A. N. Trenk. A hierarchy of classes of bounded bitolerance orders. Ars
Combinatoria, 69, 2003.

[17] M. S. Jacobson and F. R. McMorris. Sum-tolerance proper interval graphs are precisely sum-tolerance
unit interval graphs. Journal of Combinatorics, Information and System Science, 16:25–28, 1991.

[18] M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs as in-
tersection graphs: cliques, cycles, and recognition. In 17th annual ACM-SIAM symposium on Discrete
Algorithms (SODA), pages 832–841, 2006.

[19] J. M. Keil and P. Belleville. Dominating the complements of bounded tolerance graphs and the comple-
ments of trapezoid graphs. Discrete Applied Mathematics, 140(1-3):73–89, 2004.

[20] L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, June 1993.

[21] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of Algorithms,
17(2):251–268, 1994.

[22] T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. Society for Industrial and Applied
Mathematics (SIAM), 1999.

[23] G. Narasimhan and R. Manber. Stability and chromatic number of tolerance graphs. Discrete Applied
Mathematics, 36:47–56, 1992.

[24] S. P. Ryan. Trapezoid order classification. Order, 15:341–354, 1998.

[25] J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs. American
Mathematical Society, 2003.

[26] P. Zhang, E. A. Schon, S. G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and P. E. Bourne. An algorithm
based on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS, 10:309–317,
1994.

14

