
The Recognition of Tolerance and Bounded Tolerance Graphs∗

George B. Mertzios† Ignasi Sau‡ Shmuel Zaks§

Abstract

Tolerance graphs model interval relations in such a way that intervals can tolerate a
certain degree of overlap without being in conflict. This subclass of perfect graphs has
been extensively studied, due to both its interesting structure and its numerous appli-
cations (in bioinformatics, constrained-based temporal reasoning, resource allocation,
and scheduling problems, among others). Several efficient algorithms for optimization
problems that are NP-hard in general graphs have been designed for tolerance graphs.
In spite of this, the recognition of tolerance graphs – namely, the problem of deciding
whether a given graph is a tolerance graph – as well as the recognition of their main
subclass of bounded tolerance graphs, have been the most fundamental open problems
on this class of graphs (cf. the book on tolerance graphs [15]) since their introduction
in 1982 [12]. In this article we prove that both recognition problems are NP-complete,
even in the case where the input graph is a trapezoid graph. The presented results are
surprising because, on the one hand, most subclasses of perfect graphs admit polynomial
recognition algorithms and, on the other hand, bounded tolerance graphs were believed
to be efficiently recognizable as they are a natural special case of trapezoid graphs
(which can be recognized in polynomial time) and share a very similar structure with
them. For our reduction we extend the notion of an acyclic orientation of permutation
and trapezoid graphs. Our main tool is a new algorithm that uses vertex splitting to
transform a given trapezoid graph into a permutation graph, while preserving this new
acyclic orientation property. This method of vertex splitting is of independent interest;
very recently, it has been proved a powerful tool also in the design of efficient recognition
algorithms for other classes of graphs [24].

Keywords: Tolerance graphs, bounded tolerance graphs, recognition, vertex splitting,
NP-complete, trapezoid graphs, permutation graphs.

1 Introduction

1.1 Tolerance graphs and related graph classes

A simple undirected graph G = (V,E) on n vertices is a tolerance graph if there exists a
collection I = {Ii | i = 1, 2, . . . , n} of closed intervals on the real line and a set t = {ti | i =
1, 2, . . . , n} of positive numbers, such that for any two vertices vi, vj ∈ V , vivj ∈ E if and
only if |Ii ∩ Ij | ≥ min{ti, tj}. The pair 〈I, t〉 is called a tolerance representation of G. If G
has a tolerance representation 〈I, t〉, such that ti ≤ |Ii| for every i = 1, 2, . . . , n, then G is
called a bounded tolerance graph and 〈I, t〉 a bounded tolerance representation of G.

Tolerance graphs were introduced in [12], in order to generalize some of the well known
applications of interval graphs. The main motivation was in the context of resource allocation
and scheduling problems, in which resources, such as rooms and vehicles, can tolerate sharing

∗A preliminary conference version of this work appeared in the Proceedings of the 27th International Sym-
posium on Theoretical Aspects of Computer Science (STACS), Nancy, France, March 2010, pages 585–596.
†Caesarea Rothschild Institute, University of Haifa, Israel. Email: mertzios@cs.technion.ac.il
‡AlGCo project-team, CNRS, LIRMM, Montpellier, France. Email: ignasi.sau@lirmm.fr
§Department of Computer Science, Technion, Haifa, Israel. Email: zaks@cs.technion.ac.il

1

among users [15]. If we replace in the definition of tolerance graphs the operator min by the
operator max, we obtain the class of max-tolerance graphs. Both tolerance and max-tolerance
graphs find in a natural way applications in biology and bioinformatics, as in the comparison
of DNA sequences from different organisms or individuals [19], by making use of a software
tool like BLAST [1]. Tolerance graphs find numerous other applications in constrained-based
temporal reasoning, data transmission through networks to efficiently scheduling aircraft and
crews, as well as contributing to genetic analysis and studies of the brain [14, 15]. This class
of graphs has attracted many research efforts [2, 4, 8, 13–15, 17, 20, 25, 27], as it generalizes in
a natural way both interval graphs (when all tolerances are equal) and permutation graphs
(when ti = |Ii| for every i = 1, 2, . . . , n) [12]. For a detailed survey on tolerance graphs we
refer to [15].

A graph is perfect if the chromatic number of every induced subgraph equals the clique
number of that subgraph. Several difficult combinatorial problems can be solved efficiently,
i.e. in polynomial time, on the class of perfect graphs, such as minimum coloring, maximum
clique, and independent set [16]. Thus, since the class of tolerance graphs is a subclass of
perfect graphs [13], there exist polynomial algorithms for these problems on tolerance and
bounded tolerance graphs as well. In spite of this, faster algorithms have been designed for
tolerance and bounded tolerance graphs, which exploit their special structure [14,15,25,27].

A comparability graph is a graph which can be transitively oriented. A co-comparability
graph is a graph whose complement is a comparability graph. A trapezoid (resp. parallel-
ogram and permutation) graph is the intersection graph of trapezoids (resp. parallelograms
and line segments) between two parallel lines L1 and L2 [10]. Such a representation with
trapezoids (resp. parallelograms and line segments) is called a trapezoid (resp. parallelogram
and permutation) representation of this graph. A graph is bounded tolerance if and only if
it is a parallelogram graph [2, 21]. Permutation graphs are a strict subset of parallelogram
graphs [3]. Furthermore, parallelogram graphs are a strict subset of trapezoid graphs [29], and
both are subsets of co-comparability graphs [10, 15]. On the contrary, tolerance graphs are
not even co-comparability graphs [10,15]. Recently, we have presented in [25] a natural inter-
section model for general tolerance graphs, given by parallelepipeds in the three-dimensional
space. This representation generalizes the parallelogram representation of bounded tolerance
graphs, and has been used to improve the time complexity of minimum coloring, maximum
clique, and weighted independent set algorithms on tolerance graphs [25].

Although tolerance and bounded tolerance graphs have been studied extensively, the
recognition problems for both these classes have been the most fundamental open problems
since their introduction in 1982 [5, 10, 15]. Therefore, all existing algorithms assume that,
along with the input tolerance graph, a tolerance representation of it is given. The only result
about the complexity of recognizing tolerance and bounded tolerance graphs is that they have
a (non-trivial) polynomial sized tolerance representation, hence the problems of recognizing
tolerance and bounded tolerance graphs are in the class NP [17]. Recently, a linear time
recognition algorithm for the subclass of bipartite tolerance graphs has been presented in [5].
Furthermore, the class of trapezoid graphs (which strictly contains parallelogram, i.e. bounded
tolerance, graphs [29]) can be also recognized in polynomial time [22, 24, 31]. On the other
hand, the recognition of max-tolerance graphs is known to be NP-hard [19]. Unfortunately,
the structure of max-tolerance graphs differs significantly from that of tolerance graphs (max-
tolerance graphs are not even perfect, as they can contain induced C5’s [19]), so the technique
used in [19] does not carry over to tolerance graphs.

Since very few subclasses of perfect graphs are known to be NP-hard to recognize (for in-
stance, perfectly orderable graphs [26], EPT graphs [11], and – recently – triangle graphs [23]),
it was believed that the recognition of tolerance graphs was in P. Furthermore, as bounded
tolerance graphs are equivalent to parallelogram graphs [2, 21], which constitute a natural

2

subclass of trapezoid graphs and have a very similar structure, it was plausible that their
recognition was also in P.

1.2 Our contribution

In this article, we establish the complexity of recognizing tolerance and bounded tolerance
graphs. Namely, we prove that both problems are surprisingly NP-complete, by providing a
reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT) problem. Con-
sider a boolean formula φ in conjunctive normal form with three literals in every clause
(3-CNF), which is monotone, i.e. no variable is negated. The formula φ is called NAE-
satisfiable if there exists a truth assignment of the variables of φ, such that every clause has
at least one true variable and one false variable. Given a monotone 3-CNF formula φ, we
construct a trapezoid graph Hφ, which is parallelogram, i.e. bounded tolerance, if and only
if φ is NAE-satisfiable. Moreover, we prove that the constructed graph Hφ is tolerance if
and only if it is bounded tolerance. Thus, since the recognition of tolerance and of bounded
tolerance graphs are in the class NP [17], it follows that both problems are NP-complete.
Actually, our results imply that the recognition problems remain NP-complete even if the
given graph is trapezoid, since the constructed graph Hφ is trapezoid.

For our reduction we extend the notion of an acyclic orientation of permutation and
trapezoid graphs. Our main tool is a new algorithm that transforms a given trapezoid graph
into a permutation graph by splitting some specific vertices, while preserving this new acyclic
orientation property. One of the main advantages of this algorithm is that the constructed
permutation graph does not depend on any particular trapezoid representation of the input
graph G. Moreover, this approach based on splitting vertices has already been proved useful
for the design of polynomial recognition algorithms for other classes of graphs [24].

Organization of the paper. We first present in Section 2 several properties of permuta-
tion and trapezoid graphs, as well as the algorithm Split-U , which constructs a permutation
graph from a trapezoid graph. In Section 3 we present the reduction of the monotone-NAE-
3-SAT problem to the recognition of bounded tolerance graphs. In Section 4 we prove that
this reduction can be extended to the recognition of general tolerance graphs. Finally, we
discuss the presented results and further research directions in Section 5.

2 Trapezoid graphs and representations

In this section we first introduce (in Section 2.1) the notion of an acyclic representation of
permutation and of trapezoid graphs. This is followed (in Section 2.2) by some structural
properties of trapezoid graphs, which will be used in the sequel for the splitting algorithm
Split-U . Given a trapezoid graph G and a vertex subset U of G with certain properties, this
algorithm constructs a permutation graph G#(U) with 2|U | vertices, which is independent
of any particular trapezoid representation of the input graph G.

Notation. We consider in this article simple undirected and directed graphs with no
loops or multiple edges. In an undirected graph G, the edge between vertices u and v is de-
noted by uv, and in this case u and v are said to be adjacent in G. If the graph G is directed,
we denote by uv the arc from u to v. Given a graph G = (V,E) and a subset S ⊆ V , G[S]
denotes the induced subgraph of G on the vertices in S, and we use E[S] to denote E(G[S]).
Whenever we deal with a trapezoid (resp. permutation and bounded tolerance, i.e. parallel-
ogram) graph, we will consider without loss of generality a trapezoid (resp. permutation and
parallelogram) representation, in which all endpoints of the trapezoids (resp. line segments

3

and parallelograms) are distinct [9,15,18]. Given a permutation graph P along with a permu-
tation representation R, we may not distinguish in the following between a vertex of P and
the corresponding line segment in R, whenever it is clear from the context. Furthermore, with
a slight abuse of notation, we will refer to the line segments of a permutation representation
just as lines.

2.1 Acyclic permutation and trapezoid representations

Let P = (V,E) be a permutation graph and R be a permutation representation of P . For
a vertex u ∈ V , denote by θR(u) the angle of the line of u with L2 in R. The class of
permutation graphs is the intersection of comparability and co-comparability graphs [10].
Thus, given a permutation representation R of P , we can define two partial orders (V,<R)
and (V,�R) on the vertices of P [10]. Namely, for two vertices u and v of G, u <R v if
and only if uv ∈ E and θR(u) < θR(v), while u �R v if and only if uv /∈ E and u lies to
the left of v in R. The partial order (V,<R) implies a transitive orientation ΦR of P , such
that uv ∈ ΦR whenever u <R v.

Note that an alternative definition of the transitive orientation ΦR of P is that uv ∈ ΦR

if and only if u�R′ v in the representation R′ obtained by reversing in R the ordering of the
points on the top line L1. However, in the rest of the paper we will use the first definition
of ΦR that involves the angles θR(u) and θR(v) of the lines of u and v in R, respectively.
Intuitively, the main reason for using this definition of ΦR is that, in any parallelogram
representation, the two lines of every parallelogram have the same angle (see for example the
proof of Lemma 1 below).

Let G = (V,E) be a trapezoid graph, and R be a trapezoid representation of G, where for
any vertex u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since trapezoid
graphs are also co-comparability graphs [10], we can similarly define the partial order (V,�R)
on the vertices of G, such that u �R v if and only if uv /∈ E and Tu lies completely to the
left of Tv in R. In this case, we may denote also Tu �R Tv, instead of u�R v.

In a given trapezoid representation R of a trapezoid graph G, we denote by l(Tu) and r(Tu)
the left and the right line of Tu in R, respectively. Similarly to the case of permutation graphs,
we use the relation �R for the lines l(Tu) and r(Tu), e.g. l(Tu) �R r(Tv) means that the
line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids of all vertices
of a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu in R, we write
R(S) �R Tu (resp. Tu �R R(S)). Note that there are several trapezoid representations of
a particular trapezoid graph G. Given one such representation R, we can obtain another
one R′ by vertical axis flipping of R, i.e. R′ is the mirror image of R along an imaginary line
perpendicular to L1 and L2. Moreover, we can obtain another representation R′′ of G by
horizontal axis flipping of R, i.e. R′′ is the mirror image of R along an imaginary line parallel
to L1 and L2. We will use extensively these two basic operations throughout the article.

In the next two definitions we introduce the notions of acyclic permutation and acyclic
trapezoid graphs. These two new notions of acyclicity are essential for proving some basic
properties of our Algorithm Split-U (cf. Theorem 1), as well as for proving the correctness of
our reduction in Section 3.

Definition 1 Let P be a permutation graph with 2n vertices {u11, u21, u12, u22, . . . , u1n, u2n}.
Let R be a permutation representation and ΦR be the corresponding transitive orientation
of P . The simple directed graph FR is obtained by merging u1i and u2i into a single vertex ui,
for every i = 1, 2, . . . , n, where the arc directions of FR are implied by the corresponding di-
rections in ΦR. That is, uiuj is an arc in FR if and only if uxi u

y
j ∈ E(P) and θR(uxi) < θR(uyj)

for some x, y ∈ {1, 2}. Then,

4

1. R is an acyclic permutation representation with respect to {u1i , u2i }ni=1
∗, if FR has no

directed cycle,

2. P is an acyclic permutation graph with respect to {u1i , u2i }ni=1, if P has an acyclic
representation R with respect to {u1i , u2i }ni=1.

In Figure 1 we show an example of a permutation graph P with six vertices in Figure 1(a),
a permutation representation R of P in Figure 1(b), the transitive orientation ΦR of P
in Figure 1(c), and the corresponding simple directed graph FR in Figure 1(d). In the
figure, the pairs {u1i , u2i }3i=1 are grouped inside ellipses. In this example, R is not an acyclic
permutation representation with respect to {u1i , u2i }3i=1, since FR has a directed cycle of length
two. However, note that, by exchanging the lines u11 and u12 in R, the resulting permutation
representation R′ is acyclic with respect to {u1i , u2i }3i=1, and thus P is acyclic with respect
to {u1i , u2i }3i=1.

u1
1

u2
1

u1
2

u2
2

u1
3

u2
3

P :

(a)

L1

L2

u11 u21u12 u22u13u23

R :

θR(u
1
2)

(b)

u1
1

u2
1

u1
2

u2
2

u1
3

u2
3

ΦR :

(c)

u1

u2 u3

FR :

(d)

Figure 1: (a) A permutation graph P , (b) a permutation representation R of P , (c) the
transitive orientation ΦR of P , and (d) the corresponding simple directed graph FR.

Definition 2 Let G be a trapezoid graph with n vertices and R be a trapezoid representation
of G. Let P be the permutation graph with 2n vertices corresponding to the left and right lines
of the trapezoids in R, RP be the permutation representation of P induced by R, and {u1i , u2i }
be the vertices of P that correspond to the same vertex ui of G, i = 1, 2, . . . , n. Then,

1. R is an acyclic trapezoid representation, if RP is an acyclic permutation representation
with respect to {u1i , u2i }ni=1,

2. G is an acyclic trapezoid graph, if it has an acyclic representation R.

The following lemma follows easily from Definitions 1 and 2.

Lemma 1 Any parallelogram graph is an acyclic trapezoid graph.

Proof. Let G be a parallelogram graph with n vertices {u1, u2, . . . , un} and R be a par-
allelogram representation of G. That is, R is a trapezoid representation of G, such that
the left and right lines l(Tui) and r(Tui) of the trapezoid Tui , i = 1, 2, . . . , n, are paral-
lel in R, i.e. θR(l(Tui)) = θR(r(Tui)). Let P be the permutation graph with 2n vertices
{u11, u21, u12, u22, . . . , u1n, u2n} corresponding to the left and right lines of the trapezoids of G
in R, i.e. the vertices u1i and u2i correspond to l(Tui) and r(Tui), i = 1, 2, . . . , n, respectively.
Let RP be the permutation representation of P induced by R, and ΦRP

be the corresponding
transitive orientation of the permutation graph P . Recall that, for two intersecting lines a, b
in RP , it holds ab ∈ ΦRP

whenever θR(a) < θR(b). It follows that for any i = 1, 2, . . . , n,
the pair {u1i , u2i } of vertices in P has incoming edges from (resp. outgoing edges to) vertices
of other pairs {u1j , u2j} in ΦRP

, which have smaller (resp. greater) angle with the line L2

in RP . Thus, the simple directed graph FRP
defined in Definition 1 has no directed cycles,

and therefore RP is an acyclic permutation representation with respect to {u1i , u2i }ni=1, i.e. R
is an acyclic trapezoid representation of G by Definition 2.

∗To simplify the presentation, we use throughout the paper {u1
i , u

2
i }ni=1 to denote the set of n unordered

pairs {u1
1, u

2
1}, {u1

2, u
2
2}, . . . , {u1

n, u
2
n}.

5

2.2 Structural properties of trapezoid graphs

In the following, we state some definitions and notions concerning an arbitrary simple undi-
rected graph G = (V,E). These notions are essential in order to present and analyze our
Algorithm Split-U (in Section 2.3). Although these definitions apply to any graph, we will
use them only for trapezoid graphs. Similar definitions, for the restricted case where the
graph G is connected, were studied in [6]. For u ∈ V and U ⊆ V , N(u) = {v ∈ V | uv ∈ E}
is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and N(U) =

⋃
u∈U N(u) \ U . If

N(U) ⊆ N(W) for two vertex subsets U and W , then U is said to be neighborhood dominated
by W . Clearly, the relationship of neighborhood domination is transitive.

Let C1, C2, . . . , Cω, ω ≥ 1, be the connected components of G \N [u] and Vi = V (Ci),
i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in the sequel the compo-
nent Ci and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination
closure of Vi with respect to u is the set Du(Vi) = {Vp | N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of
connected components of G \N [u]. The closure complement of the neighborhood domination
closure Du(Vi) is the set D∗u(Vi) = {V1, V2, . . . , Vω} \Du(Vi).

For a subset S ⊆ {V1, V2, . . . , Vω}, a component Vi of S is called maximal, if there is
no component Vj ∈ S, such that N(Vi) $ N(Vj). Furthermore, a connected component Vi
of G\N [u] is called a master component of u, if Vi is a maximal component of {V1, V2, . . . , Vω}.

Intuitively, if G is a trapezoid graph and R is a trapezoid representation of G, one can
think of a master component Vi of u as the first connected component of G \ N [u] to the
right, or to the left of Tu in R. For example, consider the trapezoid graph G with ver-
tex set {u, u1, u2, u3, v1, v2, v3, v4}, which is given by the trapezoid representation R of Fig-
ure 2. The connected components of G \N [u] = {v1, v2, v3, v4} are V1 = {v1}, V2 = {v2},
V3 = {v3}, and V4 = {v4}. Then, N(V1) = {u1}, N(V2) = {u1, u3}, N(V3) = {u2, u3}, and
N(V4) = {u3}; thus V2 and V3 are the only master components of u. Furthermore,
Du(V1) = {V1}, Du(V2) = {V1, V2, V4}, Du(V3) = {V3, V4}, and Du(V4) = {V4}. Therefore,
D∗u(V1) = {V2, V3, V4}, D∗u(V2) = {V3}, D∗u(V3) = {V1, V2}, and D∗u(V4) = {V1, V2, V3}.

L1

L2

Tv1

Tv2

Tv3 Tv4

Tu

Tu2Tu1

Tu3

R :

Figure 2: A trapezoid representation R of a trapezoid graph G.

Lemma 2 Let G be a simple graph, u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1, be the
connected components of G \N [u]. If Vi is a master component of u, such that D∗u(Vi) 6= ∅,
then D∗u(Vj) 6= ∅ for every component Vj of G \N [u].

Proof. The proof is done by contradiction. Suppose that there exists a component Vj
of G \ N [u], such that D∗u(Vj) = ∅. That is, N(Vk) ⊆ N(Vj) for every component Vk of
G \ N [u]. Therefore, in particular, N(Vi) ⊆ N(Vj). Suppose first that N(Vi) = N(Vj).
Then N(Vk) ⊆ N(Vi) for every component Vk of G \ N [u], and thus D∗u(Vi) = ∅, which is a
contradiction. Suppose now that N(Vi) $ N(Vj). Then Vi is not a master component of u,
which is again a contradiction. Therefore D∗u(Vj) 6= ∅ for every component Vj of G \N [u].

In the following we investigate several properties of trapezoid graphs, in order to derive
the vertex-splitting algorithm Split-U in Section 2.3.

6

Remark 1 Similar properties of trapezoid graphs have been studied in [6], leading to another
vertex-splitting algorithm, called Split-All. However, the algorithm proposed in [6] is incorrect,
since it is based on an incorrect property†, as was also verified by [7]. In the sequel of this
section, we present new definitions and properties. In the cases where a similarity arises with
those of [6], we refer to it specifically.

The next lemma, which has been stated in Observation 3.1(4) in [6] (without a proof),
will be used in our analysis below. For the sake of completeness, we present in the following
its proof.

Lemma 3 Let R be a trapezoid representation of a trapezoid graph G, and Vi be a master
component of a vertex u of G, such that R(Vi)�RTu. Then, Tu�RR(Vj) for every component
Vj ∈ D∗u(Vi).

Proof. Suppose otherwise that R(Vj)�RTu, for some Vj ∈ D∗u(Vi). Consider first the case
where R(Vj)�RR(Vi)�RTu. Then, since Vi lies between Vj and Tu in R, all trapezoids that
intersect Tu and Vj , must also intersect Vi. Thus, N(Vj) ⊆ N(Vi), i.e. Vj ∈ Du(Vi), which
is a contradiction, since Vj ∈ D∗u(Vi). Consider now the case where R(Vi)�RR(Vj)�RTu.
Then, we obtain similarly that N(Vi) ⊆ N(Vj). If N(Vi) = N(Vj), then Vj ∈ Du(Vi), which
is a contradiction to the assumption, since Vj ∈ D∗u(Vi). Otherwise, if N(Vi) $ N(Vj),
then Vi is not a master component of u, which is again a contradiction to the assumption.
Thus, Tu�RR(Vj) for every Vj ∈ D∗u(Vi).

In the following two definitions, we partition the neighbors N(u) of a vertex u in a
trapezoid graph G into four possibly empty sets. In the first definition, these sets depend on
the graph G itself and on two particular connected components Vi and Vj of G \N [u], while
in the second one, they depend on a particular trapezoid representation R of G.

Definition 3 Let G be a trapezoid graph, and u be a vertex of G. Let Vi be a master com-
ponent of u, such that D∗u(Vi) 6= ∅, and Vj be a maximal component of D∗u(Vi). Then, the
vertices of N(u) are partitioned into four possibly empty sets:

1. N0(u, Vi, Vj): vertices not adjacent to either Vi or Vj,

2. N1(u, Vi, Vj): vertices adjacent to Vi but not to Vj,

3. N2(u, Vi, Vj): vertices adjacent to Vj but not to Vi,

4. N12(u, Vi, Vj): vertices adjacent to both Vi and Vj.

Definition 4 Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G.
Denote by D1(u,R) and D2(u,R) the sets of trapezoids of R that lie completely to the left
and to the right of Tu in R, respectively. Then, the vertices of N(u) are partitioned into four
possibly empty sets:

1. N0(u,R): vertices not adjacent to either D1(u,R) or D2(u,R),

2. N1(u,R): vertices adjacent to D1(u,R) but not to D2(u,R),

†In [6], a different definition of a master component has been given. Namely, according to [6], a compo-
nent Vi is called a master component of u if |Du(Vi)| ≥ |Du(Vj)| for all j = 1, 2, . . . , ω. In Observation 3.1(5)
of [6], it is claimed that for an arbitrary trapezoid representation R of a connected trapezoid graph G, where Vi

is a master component of u such that D∗u(Vi) 6= ∅ and R(Vi)�R Tu, it holds R(Du(Vi))�R Tu �R R(D∗u(Vi)).
However, the first part of the latter inequality is not true. For instance, in the trapezoid graph G of Figure 2,
V2 = {v2} is a master component of u (according to the definition of [6]), where D∗u(V2) = {V3} = {{v3}}6= ∅
and R(V2)�R Tu. However, V4 = {v4} ∈ Du(V2) and Tu �RTv4 , and thus, R(Du(V2)) 6�R Tu.

7

3. N2(u,R): vertices adjacent to D2(u,R) but not to D1(u,R),

4. N12(u,R): vertices adjacent to both D1(u,R) and D2(u,R).

The following lemma connects the last two definitions; in particular, it states that,
if R(Vi)�R Tu, then the partitions of the set N(u) defined in Definitions 3 and 4 coincide.
This lemma will enable us to define in the sequel a partition of the set N(u), independently
of any trapezoid representation R of G, and regardless of any particular connected compo-
nents Vi and Vj of G \N [u], cf. Definition 6.

Lemma 4 Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G.
Let Vi be a master component of u, such that D∗u(Vi) 6= ∅, and let Vj be a maximal component
of D∗u(Vi). If R(Vi)�R Tu, then NX(u, Vi, Vj) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

Proof. Since D∗u(Vi) 6= ∅ and R(Vi)�RTu, it follows by Lemma 3 that Tu�RR(Vj),
i.e. Vj ⊆ D2(u,R). Suppose that a component V` 6= Vj is the leftmost one of D2(u,R) in R,
i.e. Tu�RR(V`)�RR(Vj). Since V` lies between Tu and Vj in R, all trapezoids that inter-
sect Tu and Vj , must also intersect V`, and thus, N(Vj) ⊆ N(V`). It follows that V` ∈ D∗u(Vi),
i.e. V` /∈ Du(Vi), since otherwise Vj ∈ Du(Vi), which is a contradiction. Furthermore, since Vj
is a maximal component of D∗u(Vi), and since N(Vj) ⊆ N(V`), it follows that N(Vj) = N(V`),
i.e. NX(u, Vi, Vj) = NX(u, Vi, V`) for every X ∈ {0, 1, 2, 12}.

Suppose that a component Vk 6= Vi is the rightmost one of D1(u,R) in R,
i.e. R(Vi)�RR(Vk)�RTu. Then, Vk ∈ Du(Vi), since otherwise Tu�RR(Vk) by Lemma 3,
which is a contradiction. Thus, N(Vk) ⊆ N(Vi). Furthermore, since Vk lies between Vj and Tu
in R, all trapezoids that intersect Tu and Vj , must also intersect Vk, and thus, N(Vi) ⊆ N(Vk).
Therefore, N(Vi) = N(Vk), i.e. NX(u, Vi, V`) = NX(u, Vk, V`) for every X ∈ {0, 1, 2, 12}, and
thus, NX(u, Vi, Vj) = NX(u, Vk, V`) for every X ∈ {0, 1, 2, 12}.

Consider now a vertex v ∈ N(u), and recall that Vk (resp. V`) is the rightmost (resp. left-
most) component of D1(u,R) (resp. D2(u,R)) in R. Thus, if Tv intersects at least one com-
ponent of D1(u,R) (resp. D2(u,R)), then Tv intersects also with Vk (resp. V`). On the other
hand, if Tv does not intersect any component of D1(u,R) (resp. D2(u,R)), then Tv clearly
does not intersect Vk (resp. V`), since Vk ⊆ D1(u,R) (resp. Vj ⊆ D2(u,R)). It follows that
NX(u, Vk, V`) = NX(u,R), and thus, NX(u, Vi, Vj) = NX(u,R) for every X ∈ {0, 1, 2, 12}.
This proves the lemma.

Note that, given a trapezoid representation R of G, we may assume in Lemma 4 without
loss of generality that R(Vi)�RTu, by possibly performing a vertical axis flipping of R. Thus,
we can state now the following definition of the sets δu and δ∗u, regardless of the choice the
components Vi and Vj of u.

Definition 5 Let G = (V,E) be a trapezoid graph, u be a vertex of G, and Vi be an arbitrarily
chosen master component of u. Then, δu = Vi and

1. if D∗u(Vi) = ∅, then δ∗u = ∅,

2. if D∗u(Vi) 6= ∅, then δ∗u = Vj, for an arbitrarily chosen maximal component Vj ∈ D∗u(Vi).

From now on, whenever we speak about δu and δ∗u, we assume that these arbitrary choices
of Vi and Vj have been already made. Now, we are ready to define the following partition of
the set N(u), which will be used for the vertex splitting in Algorithm Split-U , cf. Definition 7.

Definition 6 Let G be a trapezoid graph and u be a vertex of G. The vertices of N(u) are
partitioned into four possibly empty sets:

8

1. N0(u): vertices not adjacent to either δu or δ∗u,

2. N1(u): vertices adjacent to δu but not to δ∗u,

3. N2(u): vertices adjacent to δ∗u but not to δu,

4. N12(u): vertices adjacent to both δu and δ∗u.

The next corollary follows now from Lemma 4 and Definitions 5 and 6. Intuitively,
Corollary 1 states that, by possibly performing a vertical axis flipping of a given trapezoid
representation R of G, the components Vi and Vj of Definition 3 can be thought as the
rightmost (resp. leftmost) connected component of G \ N [u] to the left (resp. to the right)
of Tu in R.

Corollary 1 Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G
with δ∗u 6= ∅. Let Vi be the master component of u that corresponds to δu. If R(Vi)�RTu, then
NX(u) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

The next lemma, which connects δ∗u with the sets N1(u,R) and N2(u,R) in an arbitrary
trapezoid representation R (see Definition 4), will be used in the proof of Theorem 1.

Lemma 5 Let G be a trapezoid graph, R be a trapezoid representation of G, and u be a
vertex of G. Then, δ∗u 6= ∅ if and only if N1(u,R) 6= ∅ and N2(u,R) 6= ∅.

Proof. Recall first by Definition 4 that D1(u,R) and D2(u,R) are the sets of trapezoids of
R that lie completely to the left and to the right of Tu in R, respectively. Furthermore, recall
by Definition 4 that N1(u,R) are the neighbors of u that are adjacent to D1(u,R) but not
to D2(u,R), while N2(u,R) are the neighbors of u that are adjacent to D2(u,R) but not to
D1(u,R).

Suppose first that δ∗u 6= ∅. Let δu = Vi and δ∗u = Vj , where Vi is a master component of u
and Vj is a maximal component ofD∗u(Vi). By possibly performing a vertical axis flipping of R,
we may assume without loss of generality that R(Vi)�RTu, and thus Corollary 1 implies that
N1(u) = N1(u,R) and N2(u) = N2(u,R). Recall by Definition 6 that N(Vi) = N1(u)∪N12(u)
and that N(Vj) = N2(u) ∪ N12(u). Assume that N2(u) = ∅. Then N(Vj) = N12(u) ⊆
N1(u)∪N12(u) = N(Vi), i.e. N(Vj) ⊆ N(Vi), and thus Vj ∈ Du(Vi), which is a contradiction.
Therefore N2(u) 6= ∅, and thus also N2(u,R) 6= ∅. Assume now that N1(u) = ∅. Then
N(Vi) = N12(u) ⊆ N2(u) ∪ N12(u) = N(Vj), i.e. N(Vi) ⊆ N(Vj). If N(Vi) $ N(Vj), then
Vi is not a master component, which is a contradiction. Otherwise, if N(Vi) = N(Vj), then
Vj ∈ Du(Vi), which is again a contradiction. Therefore N1(u) 6= ∅, and thus also N1(u,R) 6= ∅.
Summarizing, if δ∗u 6= ∅, then N1(u,R) 6= ∅ and N2(u,R) 6= ∅.

Conversely, suppose that N1(u,R) 6= ∅ and N2(u,R) 6= ∅. Assume that δ∗u = ∅. Let Vi
be the master component of u that corresponds to δu. Then, since δ∗u = ∅, it follows that
D∗u(Vi) = ∅. By possibly performing a vertical axis flipping of R, we may assume without loss
of generality that R(Vi)�RTu, and thus Corollary 1 implies that N1(u) = N1(u,R). Now,
since R(Vi)�RTu and N2(u,R) 6= ∅, there exists by Definition 4 a vertex v /∈ N(u) and a
vertex v′ ∈ N(u), such that Tu�RTv and v′ ∈ N(v) \N(Vi). Let Vj be the connected compo-
nent of G \N [u] that contains vertex v. Then v′ ∈ N(Vj) \N(Vi), and thus N(Vj) * N(Vi),
i.e. Vj ∈ D∗u(Vi). This is a contradiction, since D∗u(Vi) = ∅. Therefore δ∗u 6= ∅. This completes
the proof of the lemma.

9

Algorithm 1 Split-U

Input: A trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that δ∗ui 6= ∅ for
all i = 1, 2, . . . , k

Output: The permutation graph G#(U)

U ← V (G) \ U ; H0 ← G

for i = 1 to k do
Hi ← H#

i−1(ui) {Hi is obtained by the vertex splitting of ui in Hi−1}
G#(U)← Hk[V (Hk) \ U] {remove from Hk all unsplitted vertices}
return G#(U)

2.3 A splitting algorithm

We define now the splitting of a vertex u of a trapezoid graph G, where δ∗u 6= ∅. Note that
this splitting operation does not depend on any trapezoid representation of G. Intuitively,
if the graph G was given along with a specific trapezoid representation R, this would have
meant that we replace the trapezoid Tu in R by its two lines l(Tu) and r(Tu).

Definition 7 Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. The
graph G#(u) obtained by the vertex splitting of u is defined as follows:

1. V (G#(u)) = V (G) \ {u} ∪ {u1, u2}, where u1 and u2 are the two new vertices.

2. E(G#(u)) = E[V (G) \ {u}] ∪ {u1x | x ∈ N1(u)} ∪ {u2x | x ∈ N2(u)} ∪ {u1x, u2x | x ∈
N12(u)}.

The vertices u1 and u2 are the derivatives of vertex u.

We state now the notion of a standard trapezoid representation with respect to a particular
vertex.

Definition 8 Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. A trapezoid
representation R of G is standard with respect to u, if the following properties are satisfied:

1. l(Tu)�R R(N0(u) ∪N2(u)).

2. R(N0(u) ∪N1(u))�R r(Tu).

Now, given a trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such
that δ∗ui 6= ∅, N1(ui) \ U 6= ∅, and N2(ui) \ U 6= ∅, for every i = 1, 2, . . . , k, Algorithm Split-U
returns a graph G#(U) by splitting every vertex of U exactly once. At every step, Algorithm
Split-U splits a vertex of U , and finally, it removes all vertices of the set V (G) \ U , which
have not been split.

Remark 2 As mentioned in Remark 1, a similar algorithm, called Split-All, was presented
in [6]. We would like to emphasize here the following four differences between the two algo-
rithms. First, that Split-All gets as input a sibling-free graph G (two vertices u, v of a graph G
are called siblings, if N [u] = N [v]; G is called sibling-free if G has no pair of sibling ver-
tices), while our Algorithm Split-U gets as an input any graph (though, we will use it only for
trapezoid graphs), which may contain pairs of sibling vertices. Second, Split-All splits all the
vertices of the input graph, while Split-U splits only a subset of them, which satisfy a special
property. Third, the order of vertices that are split by Split-All depends on a certain property
(inclusion-minimal neighbor set), while Split-U splits the vertices in an arbitrary order. Last,
the main difference between these two algorithms is that they perform a different vertex split-
ting operation at every step, since Definitions 5 and 6 do not comply with the corresponding
Definitions 4.1 and 4.2 of [6].

10

Theorem 1 Let G be a trapezoid graph and U = {u1, u2, . . . , uk} be a vertex subset of G,
such that δ∗ui 6= ∅, N1(ui) \ U 6= ∅, and N2(ui) \ U 6= ∅, for every i = 1, 2, . . . , k. Then, the
graph G#(U) obtained by Algorithm Split-U , is a permutation graph with 2k vertices. Fur-
thermore, if G is acyclic, then G#(U) is acyclic with respect to {u1i , u2i }ki=1, where u1i and u2i
are the derivatives of ui, i = 1, 2, . . . , k.

Proof. Let R be a trapezoid representation of G. In order to prove that the graph G#(U)
constructed by Algorithm Split-All is a permutation graph, we will construct from R a per-
mutation representation R#(U) of G#(U). To this end, we will construct sequentially, for
every i = 1, 2, . . . , k, a standard trapezoid representation of Hi−1 with respect to ui, in which
all derivatives u1j , u

2
j , 1 ≤ j ≤ i− 1, are represented by trivial trapezoids, i.e. lines.

Let u = u1. If R is not a standard representation with respect to u, we construct first
from R a trapezoid representation R′ of G that satisfies the first condition of Definition 8.
Then, we construct from R′ a trapezoid representation R′′ of G that satisfies also the sec-
ond condition of Definition 8, i.e. R′′ is a standard trapezoid representation R′ of G with
respect to u.

For the sake of presentation, we divide the proof of the theorem into several parts.

Properties of the representation R. Let Vi be the master component of u that corre-
sponds to δu. By possibly performing a vertical axis flipping of R, we may assume without
loss of generality that R(Vi)�R Tu. Furthermore, the sets N0(u), N1(u), N2(u), and N12(u)
coincide by Corollary 1 with the sets N0(u,R), N1(u,R), N2(u,R), and N12(u,R), respec-
tively. Recall that, by Definition 4, D1(u,R) and D2(u,R) denote the sets of trapezoids of R
that lie completely to the left and to the right of Tu in R, respectively.

Let px and qx be the endpoints on L1 and L2, respectively, of the left line l(Tx) of an
arbitrary trapezoid Tx in R. Suppose that N0(u)∪N2(u) 6= ∅. Let pv and qw be the leftmost
endpoints on L1 and L2, respectively, of the trapezoids of N0(u) ∪N2(u), and suppose that
pv < pu and qw < qu, cf. Figure 3(a). Note that, possibly, v = w. Then, all vertices x,
for which Tx has an endpoint between pv and pu on L1 (resp. between qw and qu on L2)
are adjacent to u. Indeed, suppose otherwise that Tx ∩ Tu = ∅, for such a vertex x. Then,
Tx �R Tu, i.e. x ∈ D1(u,R), since Tx has an endpoint to the left of Tu in R. Furthermore,
since Tv ∩ Tu 6= ∅ (resp. Tw ∩ Tu 6= ∅), it follows that Tx ∩ Tv 6= ∅ (resp. Tx ∩ Tw 6= ∅).
However, since x ∈ D1(u,R), it follows that v ∈ N1(u,R) ∪ N12(u,R) = N1(u) ∪ N12(u)
(resp. w ∈ N1(u,R) ∪N12(u,R) = N1(u) ∪N12(u)), which is a contradiction.

Consider now a vertex z ∈N1(u)∪N12(u) with l(Tz)�R l(Tu), where pv < pz < pu (cf. the
vertices z1 and z2 in Figure 3(a)). Then, qz < qw. Indeed, suppose otherwise that qw < qz
(recall that all endpoints are assumed to be distinct). Then, since z ∈ N1(u) ∪ N12(u),
there exists a vertex x ∈ D1(u,R), i.e. with Tx �R Tu, such that Tz ∩ Tx 6= ∅. Since
v, w ∈ N0(u) ∪ N2(u), it follows that Tv ∩ Tx = ∅ and Tw ∩ Tx = ∅, and thus, Tx �R Tv
and Tx �R Tw. Therefore, since pv < pz and qw < qz, we obtain that Tx �R Tz, and thus,
Tz ∩ Tx = ∅, which is a contradiction. It follows that qz < qw. Moreover, z is adjacent to all
vertices x in G, whose trapezoid Tx has an endpoint on L1 between pv and pz, including pv.
Indeed, otherwise, Tx �R Tz, and thus, Tx �R Tu, since l(Tz) �R l(Tu). This is however
a contradiction, since x ∈ N(u), as we have proved above. Similarly, if qw < qz < qu, then
pz < pv and z is adjacent to all vertices x in G, whose trapezoid Tx has an endpoint on L2

between qw and qz, including qw (cf. vertex z′ in Figure 3(a)).

Construction of the representation R′. We construct now from R a new trapezoid rep-
resentation R′ of G as follows. First, for all vertices z ∈ N1(u)∪N12(u) with l(Tz)�R l(Tu),
for which pv < pz < pu (and thus qz < qw), we move the endpoint pz of l(Tz) directly be-
fore pv on L1 (cf. the vertices z1 and z2 in Figures 3(a) and 3(b)). Then, for all vertices
z′ ∈ N1(u) ∪N12(u) with l(Tz′)�R l(Tu), for which qw < qz′ < qu (and thus pz < pv), we

11

pu

qu

pv

qwqz1 qz2

pz1pz2

Tu

D∗u

L2

L1

Du

R :

qz′

pz′

(a)

pu

qu

pv

qwqz1 qz2

pz1pz2

L2

L1

D∗u

TuR′ :

Du

qz′

pz′

(b)

Figure 3: The movement of the left line l(Tu) of the trapezoid Tu, in order to construct a
standard trapezoid representation with respect to u.

move the endpoint qz′ of l(Tz′) directly before qw on L2 (cf. vertex z′ in Figures 3(a) and 3(b)).
During the movement of all these lines l(Tz) (resp. l(Tz′)), we keep the same relative posi-
tions of their endpoints pz on L1 (resp. qz′ on L2) as in R, and thus we introduce no new
line intersection among the lines of the trapezoids of G. Since all these vertices z (resp. z′)
are adjacent to all vertices x of G, whose trapezoid Tx has an endpoint on L1 (resp. L2)
between pv and pz, including pv (resp. between qw and qz, including qw), these movements
do not remove any adjacency from, and do not add any new adjacency to G.

Finally, we move both endpoints pu and qu of l(Tu) directly before pv and qw on L1 and L2,
respectively. Since u is adjacent to all vertices x, for which Tx has an endpoint between pv
and pu on L1, or between qw and qu on L2 in R, the resulting representation R′ is a trapezoid
representation of G, in which the first condition of Definition 8 is satisfied. Since we moved all
lines l(Tz) and l(Tz′) to the left of Tv and Tw, R′ has no additional line intersections than R.
Moreover, note that for any line intersection of two lines a and b in R′, the relative position
of the endpoints of a and b on L1 and L2 remains the same as in R. In the case where pv > pu
(resp. qw > qu) we replace in the above construction pv by pu (resp. qw by qu), while in the
case where N0(u) ∪ N2(u) = ∅, we define R′ = R. An example of the construction of R′ is
given in Figure 3. In this example, v ∈ N0(u), w ∈ N2(u), z1, z

′ ∈ N1(u) and z2 ∈ N12(u).

Construction of the representation R′′. If R′ is not a standard trapezoid representation
with respect to u, then we move r(Tu) to the right (similarly to the above), obtaining thus a
trapezoid representation R′′ of G, in which the second condition of Definition 8 is satisfied.
Since during the construction of R′′ from R′ only the line r(Tu), and other lines that lie
completely to the right of r(Tu), are moved to the right, the first condition of Definition 8 is
satisfied for R′′ as well. Thus, R′′ is a standard representation ofG with respect to u. Similarly
to R′, R′′ has no additional line intersections than R. Moreover, for any line intersection of
two lines a and b in R′′, the relative position of the endpoints of a and b on L1 and L2 remains
the same as in R.

Splitting of vertex u. Since R′′ is standard with respect to u, the left line l(Tu) of Tu
in R′′ intersects exactly with those trapezoids Tz, for which z ∈ N1(u)∪N12(u). On the other
hand, the right line r(Tu) of Tu in R′′ intersects exactly with those trapezoids Tz, for which

12

z ∈ N2(u) ∪N12(u). Thus, if we replace in R′′ the trapezoid Tu by the two trivial trapezoids
(lines) l(Tu) and r(Tu), we obtain a trapezoid representation R#(u) of the graph G#(u)
defined in Definition 7.

Consider now a vertex v ∈ {u2, u3, . . . , uk}. Recall by the assumption in the statement
of the theorem that δ∗v 6= ∅, N1(v) \ U 6= ∅, and N2(v) \ U 6= ∅ in G (before the splitting of
vertex u). We now prove in the next claim that the same conditions on v remain true also in
the trapezoid graph G#(u) (after the splitting of vertex u), and thus the above construction
can be iteratively applied to eventually split all vertices of U .

Claim 1 Let v ∈ {u2, u3, . . . , uk}. Then, in G#(u) (i.e. after the splitting of u = u1), it
remains δ∗v 6= ∅, N1(v) \ U 6= ∅, and N2(v) \ U 6= ∅.

Proof of Claim 1. Let Vi and Vj be the components that correspond to δv and δ∗v , respec-
tively (before the vertex splitting of u). By possibly performing a vertical axis flipping of R′′,
we may assume without loss of generality that R′′(Vi) �R′′ Tv, and thus Corollary 1 im-
plies that N1(v) = N1(v,R

′′) and N2(v) = N2(v,R
′′). Since by assumption N1(v) \ U 6= ∅

and N2(v) \ U 6= ∅ before the splitting of u, there exist vertices xv ∈ N1(v) = N1(v,R
′′)

and yv ∈ N2(v) = N2(v,R
′′), such that xv, yv /∈ U . That is, the trapezoid Txv is adjacent to

the trapezoids to the left (but not to the right) of Tv in R′′, and the trapezoid Tyv is adjacent
to the trapezoids to the right (but not to the left) of Tv in R′′. Furthermore, since xv, yv /∈ U ,
the trapezoids Txv and Tyv are never split during the execution of Algorithm Split-U . Thus,
in particular, Txv and Tyv remain unchanged in both R′′ and R#(u), i.e. both before and after
the splitting of vertex u.

Let now ul and ur be the two derivatives of vertex u, which correspond to the lines l(Tu)
and r(Tu) of Tu, respectively. Suppose first that v ∈ N(u) (before the splitting of u). Then,
in R#(u), each of the lines of ul and ur, either intersects Tv, or lies to the left/right of Tv. In
both cases, the trapezoid Txv remains adjacent to the trapezoids to the left (but not to the
right) of Tv in R#(u), and the trapezoid Tyv remains adjacent to the trapezoids to the right
(but not to the left) of Tv in R#(u). Suppose now that u /∈ N(u) (before the splitting of u),
i.e. either Tu �R′′ Tv or Tv �R′′ Tu. Since the two cases are exactly symmetrical, it suffices
to consider only the case where Tu �R′′ Tv. In this case, u ∈ N(xv) before the splitting of u
if and only if ur ∈ N(xv) after the splitting of u. Furthermore, since yv ∈ N2(v,R

′′), it follows
that u /∈ N(yv) before the splitting of u and also that ul, ur /∈ N(yv) after the splitting of u.
Thus, the trapezoid Txv remains adjacent to the trapezoids to the left (but not to the right)
of Tv in R#(u), and the trapezoid Tyv remains adjacent to the trapezoids to the right (but
not to the left) of Tv in R#(u).

Summarizing, in both cases where v ∈ N(u) and v /∈ N(u) before the splitting of u, it
follows that xv ∈ N1(v,R

#(u)) and yv ∈ N2(v,R
#(u)) after the splitting of u. Therefore,

since xv, yv /∈ U , it follows that N1(v,R
#(u)) \ U 6= ∅ and N2(v,R

#(u)) \ U 6= ∅ after the
splitting of u. Furthermore, since N1(v,R

#(u)) 6= ∅ and N2(v,R
#(u)) 6= ∅, Lemma 5

implies that δ∗u 6= ∅ after the splitting of u. Therefore, Corollary 1 implies that the
sets N1(v) and N2(v) are the same as the sets N1(v,R

#(u)) and N2(v,R
#(u)), and

thus also N1(v) \ U 6= ∅ and N2(v) \ U 6= ∅ after the splitting of u. Summarizing, after
the splitting of u = u1, we have that δ∗v 6= ∅, N1(v) \ U 6= ∅, and N2(v) \ U 6= ∅, for ev-
ery v ∈ {u2, u3, . . . , uk}. 2

Iterative splitting of all the vertices of the set U . Due to Claim 1, we can iteratively
apply the above construction for all u = ui, where i = 2, 3, . . . , k, i.e. we can split sequentially
all vertices of U exactly once. Then, after k vertex splittings, and after removing from the
resulting graph the vertices of U = V (G) \U , we obtain a trapezoid representation R#(U) of
the graph G#(U) returned by Algorithm Split-U . Since every trapezoid Tu, u ∈ U , has been

13

replaced by two trivial trapezoids (i.e. lines) in R#(U), it follows that G#(U) is a permutation
graph with 2k vertices, and R#(U) is a permutation representation of G#(U).

Acyclicity of the permutation graph G#(U). Finally, suppose that R is an acyclic
trapezoid representation of G. According to Definition 2, let P be the permutation graph
with 2n vertices corresponding to the left and right lines of the trapezoids in R, RP be
the permutation representation of P induced by R, and {u1i , u2i } be the vertices of P that
correspond to the same vertex ui of G, i = 1, 2, . . . , n. Since R is an acyclic trapezoid
representation of G, it follows by Definition 2 that RP is an acyclic permutation representation
with respect to {u1i , u2i }ni=1. That is, the simple directed graph FRP

obtained (according to
Definition 1) by merging u1i and u2i in P into a single vertex ui, for every i = 1, 2, . . . , n, has
no directed cycle.

Since, during the construction of R#(U), the trapezoid representation obtained after
every vertex splitting has no additional line intersections than the previous one, it follows
that R#(U) has no additional line intersections than R. Moreover, for any line intersection
of two lines a and b in R#(U), the relative position of the endpoints of a and b on L1 and L2

remains the same as in R. Thus, the simple directed graph FR#(U) obtained (according to

Definition 1) by merging u1i and u2i in G#(U) into a single vertex ui, for every i = 1, 2, . . . , k,
is a subdigraph of FRP

. Therefore, since FRP
has no directed cycle, FR#(U) has no directed

cycle as well, i.e. G#(U) is an acyclic permutation graph with respect to {u1i , u2i }ki=1. This
completes the proof of the theorem.

3 The recognition of bounded tolerance graphs

In this section we provide a reduction from the monotone-Not-All-Equal-3-SAT (monotone-
NAE-3-SAT) problem to the problem of recognizing whether a given graph is a bounded
tolerance graph. A boolean formula φ is called monotone if no variable in φ is negated.
Given a monotone boolean formula φ in conjunctive normal form with three literals in each
clause (3-CNF), φ is NAE-satisfiable if there is a truth assignment of φ, such that every
clause contains at least one true literal and at least one false one. The problem of deciding
whether a given 3-CNF formula φ is NAE-satisfiable is known to be NP-complete [30]. In the
next lemma we provide a reduction of the NAE-3-SAT problem to the monotone-NAE-3-SAT
problem, which proves that monotone-NAE-3-SAT is NP-complete.

Lemma 6 Monotone-NAE-3-SAT problem is NP-complete.

Proof. To reduce NAE-3-SAT to monotone-NAE-3-SAT, consider first a 3-CNF formula φ
(the input of NAE-3-SAT). We construct from φ a monotone 3-CNF formula φ′ as follows.
Replace each appearance of a variable x in φ with two variables x0 and x1 (depending on
whether x appears negated or not), add variables x2, x3, x4, and add the clauses (x0∨x1∨x2),
(x0∨x1∨x3), (x0∨x1∨x4), and (x2∨x3∨x4). Then, it is easy to check that the constructed
3-CNF formula φ′ is monotone (i.e. no variable appears negated in φ′) and that φ′ is NAE-
satisfiable if and only if φ is NAE-satisfiable.

We can assume in the following without loss of generality that each clause has three dis-
tinct literals, i.e. variables. Given a monotone 3-CNF formula φ, we construct in polynomial
time a trapezoid graph Hφ, such that Hφ is a bounded tolerance graph if and only if φ is
NAE-satisfiable. To this end, we construct first a permutation graph Pφ and a trapezoid
graph Gφ.

14

3.1 The permutation graph Pφ

Consider a monotone 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses and n
boolean variables x1, x2, . . . , xn, such that αi = (xri,1 ∨ xri,2 ∨ xri,3) for i = 1, 2, . . . , k, where
1 ≤ ri,1 < ri,2 < ri,3 ≤ n. We construct the permutation graph Pφ, along with a permutation
representation RP of Pφ, as follows. Let L1 and L2 be two parallel lines and let θ(`) denote the
angle of the line ` with L2 in RP . For every clause αi, i = 1, 2, . . . , k, we correspond to each of
the literals, i.e. variables, xri,1 , xri,2 , and xri,3 a pair of intersecting lines with endpoints on L1

and L2. Namely, we correspond to the variable xri,1 the pair {ai, ci}, to xri,2 the pair {ei, bi}
and to xri,3 the pair {di, fi}, respectively, such that θ(ai) > θ(ci), θ(ei) > θ(bi), θ(di) > θ(fi),
and such that the lines ai, ci lie completely to the left of ei, bi in RP , and ei, bi lie completely
to the left of di, fi in RP , as it is illustrated in Figure 4. Denote the lines that correspond to
the variable xri,j , j = 1, 2, 3, by `1i,j and `2i,j , respectively, such that θ(`1i,j) > θ(`2i,j). That is,

(`1i,1, `
2
i,1) = (ai, ci), (`1i,2, `

2
i,2) = (ei, bi), and (`1i,3, `

2
i,3) = (di, fi). Note that no line of a pair

{`1i,j , `2i,j} intersects with a line of another pair {`1i′,j′ , `2i′,j′}.

L1

L2

`1i,1 = ai `2i,1 = ci `1i,2 = ei `2i,2 = bi `1i,3 = di `2i,3 = fi

xri,1 xri,2 xri,3

θ(ai)

Figure 4: The six lines of the permutation graph Pφ, which correspond to the clause
αi = (xri,1 ∨ xri,2 ∨ xri,3) of the boolean formula φ.

Denote by Sp, p = 1, 2, . . . , n, the set of pairs {`1i,j , `2i,j} that correspond to the variable xp,

i.e. ri,j = p. We order the pairs {`1i,j , `2i,j} such that any pair of Sp1 lies completely to the left of
any pair of Sp2 , whenever p1 < p2, while the pairs that belong to the same set Sp are ordered
arbitrarily. For two consecutive pairs {`1i,j , `2i,j} and {`1i′,j′ , `2i′,j′} in Sp, where {`1i,j , `2i,j} lies

to the left of {`1i′,j′ , `2i′,j′}, we add a pair {ui
′,j′

i,j , v
i′,j′

i,j } of parallel lines that intersect both

`1i,j and `1i′,j′ , but no other line. Note that θ(`1i,j) > θ(ui
′,j′

i,j) and θ(`1i′,j′) > θ(ui
′,j′

i,j), while

θ(ui
′,j′

i,j) = θ(vi
′,j′

i,j). This completes the construction. Denote the resulting permutation graph
by Pφ, and the corresponding permutation representation of Pφ by RP . Observe that Pφ
has n connected components, which are called blocks, one for each variable x1, x2, . . . , xn.

An example of the construction of Pφ and RP from φ with k = 3 clauses and n = 4

variables is illustrated in Figure 5. In this figure, the lines ui
′,j′

i,j and vi
′,j′

i,j are drawn in bold.

The formula φ has 3k literals, and thus the permutation graph Pφ has 6k lines `1i,j , `
2
i,j

in RP , one pair for each literal. Furthermore, two lines ui
′,j′

i,j , v
i′,j′

i,j correspond to each pair of

consecutive pairs {`1i,j , `2i,j} and {`1i′,j′ , `2i′,j′} in RP , except for the case where these pairs of
lines belong to different variables, i.e. when ri,j 6= ri′,j′ . Therefore, since φ has n variables,

there are 2(3k − n) = 6k − 2n lines ui
′,j′

i,j , v
i′,j′

i,j in RP . Thus, RP has in total 12k − 2n lines,
i.e. Pφ has 12k − 2n vertices. In the example of Figure 5, k = 3, n = 4, and thus, Pφ has 28
vertices.

Let m = 6k − n, where 2m is the number of vertices in Pφ. We group the lines of RP ,
i.e. the vertices of Pφ, into pairs {u1i , u2i }mi=1, as follows. For every clause αi, i = 1, 2, . . . , k,
we group the lines ai, bi, ci, di, ei, fi into the three pairs {ai, bi}, {ci, di}, and {ei, fi}. The
remaining lines are grouped naturally according to the construction; namely, every two lines

{ui
′,j′

i,j , v
i′,j′

i,j } constitute a pair.

15

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2

x1 x2 x3 x4

b1e1

RP :

Figure 5: The permutation representation RP of the permutation graph Pφ for φ = α1∧α2∧
α3 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Lemma 7 If the permutation graph Pφ is acyclic with respect to {u1i , u2i }mi=1 then the formula
φ is NAE-satisfiable.

Proof. Suppose that Pφ is acyclic with respect to {u1i , u2i }mi=1, and let R0 be an acyclic
permutation representation of Pφ with respect to {u1i , u2i }mi=1. Then, in particular, R0 is
acyclic with respect to {ai, bi}, {ci, di}, {ei, fi}, for every i = 1, 2, . . . , k. We will construct a
truth assignment of the variables x1, x2, . . . , xn that NAE-satisfies φ, as follows. For every
i = 1, 2, . . . , k, we define xri,1 = 1 if and only if θ(ci) < θ(ai) in R0, xri,2 = 1 if and only if
θ(bi) < θ(ei) in R0, and xri,3 = 1 if and only if θ(f i) < θ(di) in R0.

Note that this assignment is consistent; that is, all variables xri,j that correspond to
the same xk are assigned the same value. Indeed, every block (i.e. connected component)
of the permutation graph Pφ is a very particular graph, namely an odd path with pendent
vertices on alternating vertices and duplicating the other vertices. It is easy to see that each
such connected component of Pφ has exactly two permutation representations (related by the
horizontal axis flipping), where these representations correspond to the values 0 and 1 of xk
in the assignment, respectively. In other words, the existence of the lines ui

′,j′

i,j , v
i′,j′

i,j (cf. the

bold lines in Figure 6(a)) forces all pairs of crossing lines {`1i,j , `2i,j} in the same connected
component to correspond to either 0 or 1 in the assignment.

Now, we show that in each clause αi, i = 1, 2, . . . , k, there exists at least one true and
at least one false variable. For an arbitrary index i ∈ {1, 2, . . . , k}, let Pi be the subgraph
induced by the vertices ai, bi, ci, di, ei, fi in Pφ, and Ri be the permutation representation
of Pi, which is induced by R0. According to Definition 1, we construct the simple directed
graph FRi by merging into a single vertex each of the pairs {ai, bi}, {ci, di} and {ei, fi} of
vertices of Pi. The arc directions of FRi are implied by the corresponding directions in ΦRi

(or equivalently, in ΦR0). Then, since R0 is acyclic with respect to {ai, bi}∪{ci, di}∪{ei, fi},
so is Ri. Thus, it follows by Definition 1 that FRi has no directed cycle. Therefore, it does not
hold simultaneously ciai, biei, fidi ∈ ΦR0 , or aici, eibi, difi ∈ ΦR0 . That is, it does not hold
simultaneously θ(ci) < θ(ai), θ(bi) < θ(ei), and θ(f i) < θ(di), or θ(ai) < θ(ci), θ(ei) < θ(bi),
and θ(di) < θ(f i) in R0, respectively. Then, by the definition of the above truth assignment,
it follows that it does not hold simultaneously xri,1 = xri,2 = xri,3 = 1, or xri,1 = xri,2 =
xri,3 = 0, and therefore, the clause αi = (xri,1 ∨ xri,2 ∨ xri,3) is NAE-satisfied. Finally, since
this holds for every i = 1, 2, . . . , k, φ is NAE-satisfiable.

Note here that the converse of Lemma 7 is also true, i.e. if the formula φ is NAE-satisfiable,
then the permutation graph Pφ is acyclic with respect to {u1i , u2i }mi=1 (this can be easily proved,
similarly to the necessity part of the proof of Theorem 2 below). That is, the permutation
graph Pφ is acyclic with respect to {u1i , u2i }mi=1 if and only if the monotone formula φ is NAE-
satisfiable. Therefore, since monotone-NAE-3-SAT problem is NP-complete by Lemma 6, it
follows that, given a permutation graph P with vertices {u11, u21, . . . , u1m, u2m}, it is NP-hard
to decide whether P is acyclic with respect to {u1i , u2i }mi=1.

16

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2b1e1

x1 = 1 x2 = 1 x3 = 0 x4 = 0

R0 :

(a)

d1 e1 f1c1

a1

b1

x2 = 1
x1 = 1

x3 = 0

x2 = 1
x3 = 0 x2 = 1x1 = 1

α1 α2 α3

x4 = 0

x4 = 0

a2

b2

c2

d2 e2 f2 c3

d3 e3 f3

a3

b3
ΦR0 :

(b)

Figure 6: The NAE-satisfying truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of the formula φ
of Figure 5: (a) an acyclic permutation representation R0 of Pφ and (b) the corresponding
transitive orientation ΦR0 of Pφ.

For the formula φ of Figure 5, an example of an acyclic permutation representation R0

of Pφ with respect to {u1i , u2i }mi=1, along with the corresponding transitive orientation ΦR0

of Pφ, is illustrated in Figure 6. This transitive orientation corresponds to the NAE-satisfying

truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of φ. Similarly to Figure 5, the lines ui
′,j′

i,j

and vi
′,j′

i,j are drawn in bold in Figure 6(a). Furthermore, for better visibility, the vertices
that correspond to these lines are grouped in shadowed ellipses in Figure 6(b), while the arcs
incident to them are drawn dashed.

3.2 The trapezoid graphs Gφ and Hφ

Let {u1i , u2i }mi=1 be the pairs of vertices in the constructed permutation graph Pφ and RP be
its permutation representation. We construct now from Pφ the trapezoid graph Gφ with m
vertices {u1, u2, . . . , um}, as follows. We replace in the permutation representation RP for
every i = 1, 2, . . . ,m the lines u1i and u2i by the trapezoid Tui , which has u1i and u2i as its left
and right lines, respectively. Let RG be the resulting trapezoid representation of Gφ.

Finally, we construct from Gφ the trapezoid graph Hφ with 7m vertices, by adding to
every trapezoid Tui , i = 1, 2, . . . ,m, six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 in the trapezoid
representation RG, as follows. Let ε be the smallest distance in RG between two different
endpoints on L1, or on L2. The right (resp. left) line of Tu1,1 lies to the right (resp. left) of u11,
and it is parallel to it at distance ε

2 . The right (resp. left) line of Tu1,2 lies to the left of u11, and
it is parallel to it at distance ε

4 (resp. 3ε
4). Moreover, the right (resp. left) line of Tu1,3 lies to

the left of u11, and it is parallel to it at distance 3ε
8 (resp. 7ε

8). Similarly, the left (resp. right)
line of Tu1,4 lies to the left (resp. right) of u21, and it is parallel to it at distance ε

2 . The left
(resp. right) line of Tu1,5 lies to the right of u21, and it is parallel to it at distance ε

4 (resp. 3ε
4).

Finally, the right (resp. left) line of Tu1,6 lies to the right of u21, and it is parallel to it at
distance 3ε

8 (resp. 7ε
8), as illustrated in Figure 7.

After adding the parallelograms Tu1,1 , Tu1,2 , . . . , Tu1,6 to a trapezoid Tu1 , we update the

17

L1

L2

u2
iu1

i

Tui

Tui,2
Tui,1Tui,3

Tui,4 Tui,5
Tui,6

Figure 7: The addition of the six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 to the trapezoid Tui ,
i = 1, 2, . . . ,m, in the construction of the trapezoid graph Hφ from Gφ.

smallest distance ε between two different endpoints on L1, or on L2 in the resulting represen-
tation, and we continue the construction iteratively for all i = 2, . . . ,m. Denote by Hφ the
resulting trapezoid graph with 7m vertices, and by RH the corresponding trapezoid represen-
tation. Note that in RH , between the endpoints of the parallelograms Tui,1 , Tui,2 , and Tui,3
(resp. Tui,4 , Tui,5 , and Tui,6) on L1 and L2, there are no other endpoints of Hφ, except those
of u1i (resp. u2i), for every i = 1, 2, . . . ,m. The next lemma is crucial in the proof of Theorem 2.

Lemma 8 In the trapezoid graph Hφ, let U = {u1, u2, . . . , um}. Then δ∗ui 6= ∅, N1(ui)\U 6= ∅,
and N2(ui) \ U 6= ∅, for every i = 1, 2, . . . ,m.

Proof. Consider the trapezoid representation RH of Hφ. Let i ∈ {1, 2, . . . ,m}. Recall by
Definition 4 that D1(ui, RH) (resp. D2(ui, RH)) denotes the set of trapezoids of Hφ that lie
completely to the left (resp. to the right) of Tui in RH . In particular, Tui,2 , Tui,3 ∈ D1(ui, RH)
and Tui,5 , Tui,6 ∈ D2(ui, RH). Furthermore, recall by Definition 4 that N1(ui, RH) are the
neighbors of ui that are adjacent to D1(ui, RH) but not to D2(ui, RH), while N2(ui, RH)
are the neighbors of ui that are adjacent to D2(ui, RH) but not to D1(ui, RH). In
particular, ui,1 ∈ N1(ui, RH) and ui,4 ∈ N2(ui, RH). Therefore, since ui,1, ui,4 /∈ U , it fol-
lows that N1(ui, RH) \ U 6= ∅ and N2(ui, RH) \ U 6= ∅. Furthermore, since N1(ui, RH) 6= ∅
and N2(ui, RH) 6= ∅, Lemma 5 implies that δ∗ui 6= ∅.

By the construction of RH , note that Tui,2 ∪ Tui,3 (resp. Tui,5 ∪ Tui,6) is the right-
most (resp. leftmost) connected component of D1(ui, RH) (resp. D2(ui, RH)). There-
fore N(Vk) ⊆ N({ui,2, ui,3}) (resp. N(V`) ⊆ N({ui,5, ui,6})), for every connected compo-
nent Vk (resp. V`) of D1(ui, RH) (resp. D2(ui, RH)). Let Vp be the master compo-
nent of ui that corresponds to δui . Then, either Vp = {ui,2, ui,3}, or Vp = {ui,5, ui,6}.
In the case where Vp = {ui,2, ui,3}, Corollary 1 implies that N1(ui) = N1(ui, RH)
and N2(ui) = N2(ui, RH). Thus, since N1(ui, RH) \ U 6= ∅ and N2(ui, RH) \ U 6= ∅ by
the previous paragraph, it follows that N1(ui) \ U 6= ∅ and N2(ui) \ U 6= ∅. Simi-
larly, in the case where Vp = {ui,5, ui,6}, Corollary 1 implies (by performing a vertical
axis flipping of RH) that N1(ui) = N2(ui, RH) and N2(ui) = N1(ui, RH). Thus, since
N2(ui, RH) \ U 6= ∅ and N1(ui, RH) \ U 6= ∅ by the previous paragraph, it follows that
N1(ui) \ U 6= ∅ and N2(ui) \ U 6= ∅. Summarizing, δ∗ui 6= ∅, N1(ui)\U 6= ∅, and N2(ui)\U 6= ∅,
for every i = 1, 2, . . . ,m. This completes the proof of the lemma.

Let i ∈ {1, 2, . . . ,m}. Note that, by the construction of RH , the left line l(Tui) (resp. the
right line r(Tui)) of Tui intersects in RH exactly with the trapezoids that intersect Tui,2 ∪ Tui,3
(resp. Tui,5 ∪ Tui,6). That is, the left line l(Tui) intersects exactly with the trapezoids
of N1(ui, RH) ∪N12(ui, RH), while the right line r(Tui) intersects exactly with the trapezoids
of N2(ui, RH) ∪N12(ui, RH). Let now Vp be the master component of ui that corresponds
to δui in Hφ. Recall by the proof of Lemma 8 that either Vp = {ui,2, ui,3} or Vp = {ui,5, ui,6},
since {ui,2, ui,3} and {ui,5, ui,6} are the two master components of ui (i.e. the two maximal

18

connected components of Hφ \N [ui]). However, since δui = Vp is an arbitrarily chosen mas-
ter component of ui by Definition 5, we can choose Vp = {ui,2, ui,3}, i.e. RH(VP)�RH

Tui .
Furthermore, since δ∗ui 6= ∅ by Lemma 8, it follows by Corollary 1 that N1(ui) ∪N12(ui) =
N1(ui, RH) ∪N12(ui, RH) and that N2(ui) ∪N12(ui) = N2(ui, RH) ∪N12(ui, RH). Therefore,
the left line l(Tui) of Tui intersects in RH exactly with the trapezoids of N1(ui) ∪N12(ui),
while the right line r(Tui) intersects exactly with the trapezoids of N2(ui, RH) ∪N12(ui, RH).
Thus, by Definition 8, RH is a standard trapezoid representation with respect to ui.

Theorem 2 The formula φ is NAE-satisfiable if and only if the trapezoid graph Hφ is a
bounded tolerance graph.

Proof. Since a graph is a bounded tolerance graph if and only if it is a parallelogram
graph [2,21], it suffices to prove that φ is NAE-satisfiable if and only if the trapezoid graph Hφ

is a parallelogram graph.

(⇐) Suppose that Hφ is a parallelogram graph, and let U = {u1, u2, . . . , um}. Then, Hφ is

an acyclic trapezoid graph by Lemma 1. Consider the permutation graphH#
φ (U) with 2m ver-

tices, which is obtained by Algorithm Split-U on Hφ. Starting with the trapezoid represen-
tation RH of Hφ, we obtain by the construction of Theorem 1 a permutation representa-

tion R#
H(U) of H#

φ (U). Note that, since RH is a standard trapezoid representation of Hφ

with respect to every ui, i = 1, 2, . . . ,m, the line u1i (resp. u2i) of Tui is not moved during the

construction of R#
H(U) from RH , for every i = 1, 2, . . . ,m. Therefore, H#

φ (U) = Pφ. On the
other hand, since by Lemma 8 δ∗ui 6= ∅, N1(ui) \ U 6= ∅, and N2(ui) \ U 6= ∅ for every vertex

ui ∈ U , and since Hφ is an acyclic trapezoid graph, Theorem 1 implies that H#
φ (U) = Pφ

is an acyclic permutation graph with respect to {u1i , u2i }mi=1. Thus, φ is NAE-satisfiable
by Lemma 7.

(⇒) Conversely, suppose that φ has a NAE-satisfying truth assignment τ . We will con-
struct first a permutation representation R0 of Pφ, and then two trapezoid representations R′0
and R′′0 of Gφ and Hφ, respectively, as follows. Similarly to the representation RP , the repre-
sentation R0 has n blocks, i.e. connected components, one for each variable x1, x2, . . . , xn. R0

is obtained from RP by performing a horizontal axis flipping of every block, which corresponds
to a variable xp = 0 in the truth assignment τ . Every other block, which corresponds to a
variable xp = 1 in the assignment τ , remains the same in R0, as in RP . Thus, θ(`1i,j) > θ(`2i,j)

if xri,j = 1 in τ , and θ(`1i,j) < θ(`2i,j) if xri,j = 0 in τ , for every pair {`1i,j , `2i,j} of lines in R0

(which correspond to the literal xri,j of the clause αi in φ). An example of the construc-
tion of this representation R0 of Pφ for the truth assignment τ = (1, 1, 0, 0) is illustrated in
Figure 6(a).

Since τ is a NAE-satisfying truth assignment of φ, at least one literal is true and at
least one is false in τ in every clause αi, i = 1, 2, . . . , k. Thus, there are six possible truth
assignments for every clause, namely (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), and (1, 0, 0).
For the first three ones, we can assign appropriate angles to the lines ai, bi, ci, di, ei, and fi
in the representation R0, such that the relative positions of all endpoints in L1 and L2 remain
unchanged, and such that ai is parallel to bi, ci is parallel to di, and ei is parallel to fi, as
illustrated in Figure 8. The last three truth assignments of αi are the complement of the first
three ones. Thus, by performing a horizontal axis flipping of the blocks in Figure 8, to which
the lines ai, bi, ci, di, ei, and fi belong, it is easy to see that for these assignments, we can
also assign appropriate angles to these lines in the representation R0, such that the relative
positions of all endpoints in L1 and L2 remain unchanged, and such that ai is parallel to bi,
ci is parallel to di, and ei is parallel to fi.

Recall that for every two consecutive pairs {`1i,j , `2i,j} and {`1i′,j′ , `2i′,j′} of lines in RP
(resp. R0), which belong to the same block, i.e. where ri,j = ri′,j′ , there are two parallel lines

19

L1

L2

ai ci ei bi fi di

xri,1 = 1 xri,2 = 1
xri,3 = 0

(a)

L1

L2

eibi fidi

xri,2 = 0 xri,3 = 1

ai ci

xri,1 = 1

(b)

L1

L2

ei bi fidi

xri,3 = 1

aici

xri,1 = 0 xri,2 = 1

(c)

Figure 8: The relative positions of the lines ai, bi, ci, di, ei, and fi for the truth assignments
(a) (1, 1, 0), (b) (1, 0, 1), and (c) (0, 1, 1) of the clause αi.

ui
′,j′

i,j , v
i′,j′

i,j that intersect both `1i,j and `1i′,j′ . Thus, after assigning the appropriate angles to

the lines {`1i,j , `2i,j}, i = 1, 2, . . . , k, j = 1, 2, 3, we can clearly assign the appropriate angles

to the lines ui
′,j′

i,j , v
i′,j′

i,j , such that the relative positions of all endpoints in L1 and L2 remain

unchanged, and such that ui
′,j′

i,j remains parallel to vi
′,j′

i,j . Summarizing, the lines u1i and u2i
are parallel in R0, for every i = 1, 2, . . . ,m.

We construct now the trapezoid representation R′0 of Gφ from the permutation represen-
tation R0, by replacing for every i = 1, 2, . . . ,m the lines u1i and u2i by the trapezoid Tui ,
which has u1i and u2i as its left and right lines, respectively. Since R0 is obtained by per-
forming horizontal axis flipping of some blocks of RP , and then changing the angles of the
lines, while respecting the relative positions of the endpoints, R′0 is indeed another trapezoid
representation of Gφ than RG. Since u1i is now parallel to u2i for every i = 1, 2, . . . ,m, it
follows clearly that R′0 is a parallelogram representation, and thus, Gφ is a parallelogram
graph.

Finally, we construct the trapezoid representation R′′0 of Hφ from R′0, similarly to the
construction of RH from RG. Namely, we add for every trapezoid Tui , i = 1, 2, . . . ,m, six
parallelograms Tui,1 , Tui,2 , . . . , Tui,6 , resulting in a trapezoid graph with 7m vertices. Since
in R′′0 the parallelograms Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 , and Tui,6) are sufficiently close
to the left line u1i (resp. right line u2i) of Tui , i = 1, 2, . . . ,m, and since between the endpoints
of the parallelograms Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 , and Tui,6) on L1 and L2, there
are no other endpoints, it follows that R′′0 is indeed another trapezoid representation of Hφ

than RH . Finally, since R′0 is a parallelogram representation, and since Tui,1 , Tui,2 , . . . , Tui,6 ,
i = 1, 2, . . . ,m, are all parallelograms, R′′0 is also a parallelogram representation, and thus,
Hφ is a parallelogram graph.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing
bounded tolerance graphs is NP-hard by Theorem 2. Moreover, since the recognition of
bounded tolerance graphs lies in NP [17], we can summarize our results as follows.

Theorem 3 It is NP-complete to decide whether a given graph G is a bounded tolerance
graph.

20

4 The recognition of tolerance graphs

In this section we show that the reduction from the monotone-NAE-3-SAT problem to the
problem of recognizing bounded tolerance graphs presented in Section 3, can be extended
to the problem of recognizing general tolerance graphs. In particular, we prove that a given
monotone 3-CNF formula φ is NAE-satisfiable if and only if the graph Hφ constructed in
Section 3.2 is a tolerance graph.

4.1 Structural properties of tolerance graphs

In the following we assume without loss of generality that any tolerance graph has a tolerance
representation, in which all tolerances are distinct and no two different intervals share an
endpoint [13, 14]. We state now similarly to [14, 15] some definitions and lemmas concerning
tolerance graphs. In a certain tolerance representation 〈I, t〉 of a tolerance graph G = (V,E),
a vertex v is called bounded if tv ≤ |Iv|; otherwise, v is called unbounded. An unbounded
vertex v of G is called inevitable (for a certain tolerance representation), if v is not an
isolated vertex, and if setting tv = |Iv| creates a new edge in the representation, that is, the
representation is no longer a tolerance representation of G. A tolerance representation of G
is called inevitable unbounded, if every unbounded vertex in this representation is inevitable.
For an inevitable unbounded vertex v of G (for a certain tolerance representation), a vertex u
is called a hovering vertex of v, if uv /∈ E and Iv ⊆ Iu. The next lemma follows easily from
the above definitions.

Lemma 9 There exists a hovering vertex u for every inevitable unbounded vertex v of the
tolerance graph G (for a certain tolerance representation).

Proof. Since v is an inevitable unbounded vertex, setting tv = |Iv| creates a new edge in G;
let uv be such an edge. Then, clearly Iu ∩ Iv 6= ∅. Since initially uv /∈ E, it follows that
|Iu ∩ Iv| < min{tu, tv} ≤ tu. Furthermore, since setting tv = |Iv| creates a new edge in G, we
obtain that min{tu, |Iv|} ≤ |Iu ∩ Iv| < tu, and thus, |Iu ∩ Iv| = |Iv|, i.e. Iv ⊆ Iu. Therefore,
since uv /∈ E and Iv ⊆ Iu, it follows that u is a hovering vertex of v.

Lemma 10 ([25]) Every tolerance representation can be transformed into an inevitable one
in O(n log n) time.

Lemma 11 Let v be an inevitable unbounded vertex of a tolerance graph G and u be a
hovering vertex of v, in a certain tolerance representation of G. Then, N(v) ⊆ N(u) in G.

Proof. Since v is an inevitable unbounded vertex, N(v) 6= ∅. Let w ∈ N(v) be a neighbor of v
in G. Since u is a hovering vertex of v, it follows that uv /∈ E, and thus, w 6= u. Furthermore,
since vw ∈ E, and since v is unbounded, we obtain that min{tv, tw} ≤ |Iv ∩ Iw| ≤ |Iv| < tv,
and thus, tw ≤ |Iv ∩ Iw|. Then, since Iv ⊆ Iu, it follows that |Iv ∩ Iw| ≤ |Iu ∩ Iw|, and thus,
tw ≤ |Iu ∩ Iw|, i.e. w ∈ N(u). Therefore, N(v) ⊆ N(u) in G.

4.2 The reduction

Consider now a monotone 3-CNF formula φ and the trapezoid graph Hφ constructed from φ
in Section 3.2.

Lemma 12 In the trapezoid graph Hφ, there are no two vertices u and v, such that
uv /∈ E(Hφ) and N(v) ⊆ N(u) in Hφ.

21

Proof. The proof is done by investigating all cases for a pair of non-adjacent vertices u, v.
First, observe that, by the construction of Hφ from Gφ, we have N [ui,2] = N [ui,3], N [ui,1] =
N [ui,2] ∪ {ui}, N [ui,5] = N [ui,6], and N [ui,4] = N [ui,5] ∪ {ui}.

Consider first two vertices ui and uk in Hφ, for some i, k = 1, 2, . . . ,m and i 6= k. Then, by
the construction of Hφ from Gφ, and since ui and uk are non-adjacent, ui,1 ∈ N(ui) \N(uk)
and uk,1 ∈ N(uk) \N(ui). Consider next the vertices ui and uk,j , for some i, k = 1, 2, . . . ,m
and j = 1, 2, . . . , 6. If i = k, then j ∈ {2, 3, 5, 6}, since ui,1, ui,4 ∈ N(ui). In the case where
j ∈ {2, 3}, we have ui,4 ∈ N(ui) \ N(uk,j) and uk,5−j ∈ N(uk,j) \ N(ui), while in the case
where j ∈ {5, 6}, we have ui,1 ∈ N(ui) \ N(uk,j) and uk,11−j ∈ N(uk,j) \ N(ui). Suppose
that i 6= k. Then, it follows by the construction of Hφ from Gφ that ui,1 ∈ N(ui) \N(uk,j).
Furthermore, if j ∈ {1, 2, 3} (resp. j ∈ {4, 5, 6}), then uk,j′ ∈ N(uk,j) \ N(ui) for any index
j′ ∈ {1, 2, 3} \ {j} (resp. j′ ∈ {4, 5, 6} \ {j}).

Consider finally the vertices ui,` and uk,j , for some i, k = 1, 2, . . . ,m and `, j = 1, 2, . . . , 6.
If i = k, then without loss of generality ` ∈ {1, 2, 3} and j ∈ {4, 5, 6}, since ui,` and uk,j
are non-adjacent. In this case, ui,`′ ∈ N(ui,`) \N(uk,j) and uk,j′ ∈ N(uk,j) \N(ui,`), for
all indices `′ ∈ {1, 2, 3} \ {`} and j′ ∈ {4, 5, 6} \ {j}. Suppose that i 6= k. If j ∈ {1, 2, 3}
(resp. j ∈ {4, 5, 6}), let j′ be any index of {1, 2, 3} \ {j} (resp. {4, 5, 6} \ {j}). Similarly,
if ` ∈ {1, 2, 3} (resp. ` ∈ {4, 5, 6}), let `′ be any index of {1, 2, 3} \ {`} (resp. {4, 5, 6} \ {`}).
Then, it follows by the construction of Hφ from Gφ that ui,`′ ∈ N(ui,`) \N(uk,j)
and uk,j′ ∈ N(uk,j) \N(ui,`).

Therefore, for all possible choices of non-adjacent vertices u, v in the trapezoid graph Hφ,
we have N(u) \N(v) 6= ∅ and N(v) \N(u) 6= ∅, which proves the lemma.

Lemma 13 If Hφ is a tolerance graph then it is a bounded tolerance graph.

Proof. Suppose that Hφ is a tolerance graph, and consider a tolerance representation R
of Hφ. Due to Lemma 10, we may assume without loss of generality that R is an inevitable
unbounded representation. If R has no unbounded vertices, then we are done. Otherwise,
there exists at least one inevitable unbounded vertex v in R, which has a hovering vertex u by
Lemma 9, where uv /∈ E(Hφ). Then, N(v) ⊆ N(u) in Hφ by Lemma 11, which contradicts
Lemma 12. Thus, there exists no unbounded vertex in R, i.e. Hφ is a bounded tolerance
graph.

Theorem 4 The formula φ is NAE-satisfiable if and only if Hφ is a tolerance graph.

Proof. Suppose that φ is NAE-satisfiable. Then, by Theorem 2, Hφ is a bounded toler-
ance graph, and thus, Hφ is a tolerance graph. Suppose conversely that Hφ is a tolerance
graph. Then, by Lemma 13, Hφ is a bounded tolerance graph. Thus, φ is NAE-satisfiable by
Theorem 2.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing toler-
ance graphs is NP-hard by Theorem 4. Moreover, since the recognition of tolerance graphs
lies in NP [17], and since Hφ is a trapezoid graph, we obtain the following theorem.

Theorem 5 It is NP-complete to decide whether a given graph G is a tolerance graph, even
if G is a trapezoid graph.

5 Concluding remarks

In this article we proved that both tolerance and bounded tolerance graph recognition prob-
lems are NP-complete, by providing a reduction from the monotone-NAE-3-SAT problem,

22

thus answering a longstanding open question. Furthermore, our reduction implies that, given
a trapezoid graph, it is NP-complete to decide whether this graph is a tolerance or a bounded
tolerance (i.e. parallelogram) graph. A unit interval representation is an interval representa-
tion in which all intervals have the same length. A proper interval representation is one in
which no interval is properly contained in another. These terms can apply to both interval
graphs and tolerance graphs. It is known that the subclasses of unit and proper interval
graphs are equal [28], but the corresponding tolerance subclasses are different [2]. The recog-
nition of unit and of proper tolerance graphs, as well as of any other subclass of tolerance
graphs, except bounded tolerance and bipartite tolerance graphs [5], remain interesting open
problems [15].

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. Journal of molecular biology, 215(3):403–410, 1990.

[2] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs.
Discrete Applied Mathematics, 60(1-3):99–117, 1995.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. SIAM Monographs on
Discrete Mathematics and Applications, 1999.

[4] A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied Mathematics,
154(3):471–477, 2006.

[5] A. H. Busch and G. Isaak. Recognizing bipartite tolerance graphs in linear time. In Proceedings
of the 33rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pages 12–20, 2007.

[6] F. Cheah and D. G. Corneil. On the structure of trapezoid graphs. Discrete Applied Mathematics,
66(2):109–133, 1996.

[7] F. Cheah and D. G. Corneil, 2009. Personal communication.

[8] S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28:129–140, 1998.

[9] P. C. Fishburn and W. Trotter. Split semiorders. Discrete Mathematics, 195:111–126, 1999.

[10] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics,
Vol. 57). North-Holland Publishing Co., 2nd edition, 2004.

[11] M. C. Golumbic and R. E. Jamison. Edge and vertex intersection of paths in a tree. Discrete
Mathematics, 55(2):151–159, 1985.

[12] M. C. Golumbic and C. L. Monma. A generalization of interval graphs with tolerances. In Pro-
ceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and Computing,
Congressus Numerantium 35, pages 321–331, 1982.

[13] M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs. Discrete Applied Mathe-
matics, 9(2):157–170, 1984.

[14] M. C. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: reasoning and scheduling
with interval constraints. In Proceedings of the Joint International Conferences on Artificial
Intelligence, Automated Reasoning, and Symbolic Computation (AISC/Calculemus), pages 196–
207, 2002.

[15] M. C. Golumbic and A. N. Trenk. Tolerance graphs. Cambridge Studies in Advanced Mathemat-
ics, 2004.

[16] M. Grötshcel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combi-
natorial optimization. Combinatorica, 1:169–197, 1981.

[17] R. B. Hayward and R. Shamir. A note on tolerance graph recognition. Discrete Applied Mathe-
matics, 143(1-3):307–311, 2004.

23

[18] G. Isaak, K. L. Nyman, and A. N. Trenk. A hierarchy of classes of bounded bitolerance orders.
Ars Combinatoria, 69, 2003.

[19] M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs
as intersection graphs: cliques, cycles, and recognition. In Proceedings of the 17th annual ACM-
SIAM symposium on Discrete Algorithms (SODA), pages 832–841, 2006.

[20] J. M. Keil and P. Belleville. Dominating the complements of bounded tolerance graphs and the
complements of trapezoid graphs. Discrete Applied Mathematics, 140(1-3):73–89, 2004.

[21] L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, 1993.

[22] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of
Algorithms, 17(2):251–268, 1994.

[23] G. B. Mertzios. The recognition of triangle graphs. In Proceedings of the 28th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 591–602, 2011.

[24] G. B. Mertzios and D. G. Corneil. Vertex splitting and the recognition of trapezoid graphs.
Discrete Applied Mathematics, 159(11):1131–1147, 2011.

[25] G. B. Mertzios, I. Sau, and S. Zaks. A new intersection model and improved algorithms for
tolerance graphs. SIAM Journal on Discrete Mathematics, 23(4):1800–1813, 2009.

[26] M. Middendorf and F. Pfeiffer. On the complexity of recognizing perfectly orderable graphs.
Discrete Mathematics, 80(3):327–333, 1990.

[27] G. Narasimhan and R. Manber. Stability and chromatic number of tolerance graphs. Discrete
Applied Mathematics, 36:47–56, 1992.

[28] F. S. Roberts. Indifference graphs. Proof Techniques in Graph Theory, Academic Press, New
York, 139-146, 1969.

[29] S. P. Ryan. Trapezoid order classification. Order, 15:341–354, 1998.

[30] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing (STOC), pages 216–226, 1978.

[31] J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs. American
Mathematical Society, 2003.

24

