
Fast Minor Testing in Planar Graphs ?

Isolde Adler1, Frederic Dorn2, Fedor V. Fomin2,
Ignasi Sau3, and Dimitrios M. Thilikos4

1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany.
iadler@informatik.uni-frankfurt.de

2 Department of Informatics, University of Bergen, Norway.
{frederic.dorn,fedor.fomin}@ii.uib.no

3 AlGCo team, CNRS, LIRMM, Montpellier, France
ignasi.sau@lirmm.fr

4 Department of Mathematics, National and Kapodistrian
University of Athens, Greece.

sedthilk@math.uoa.gr

Abstract. Minor containment is a fundamental problem in Algorithmic
Graph Theory used as a subroutine in numerous graph algorithms. A
model of a graph H in a graph G is a set of disjoint connected subgraphs
of G indexed by the vertices of H, such that if {u, v} is an edge of H, then
there is an edge ofG between components Cu and Cv. GraphH is a minor
of G if G contains a model of H as a subgraph. We give an algorithm that,
given a planar n-vertex graph G and an h-vertex graph H, either finds
in time O(2O(h) ·n+n2 · logn) a model of H in G, or correctly concludes
that G does not contain H as a minor. Our algorithm is the first single-
exponential algorithm for this problem and improves all previous minor
testing algorithms in planar graphs. Our technique is based on a novel
approach called partially embedded dynamic programming.

Keywords: graph minors, planar graphs, branchwidth, parameterized
complexity, dynamic programming.

1 Introduction

For two input graphs G and H, the Minor Containment problem
is to decide whether H is a minor of G. This is a classical NP-
complete problem [18], and remains NP-complete even when both
graphs G and H are planar, as it is a generalization of the Hamil-
tonian Cycle problem. When H is fixed, by the celebrated result
of Robertson and Seymour [30], there is an algorithm to decide if H
is a minor of an input graph G that runs in time f(h) ·n3, where n is
the number of vertices of G, h is the number of vertices in H, and f is
some recursive function. One of the significant algorithmic implica-
tions of this result is that, combined with the Graph Minor Theorem

? An extended abstract of this work appeared in the proceedings of ESA’10 [2].

2 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

of Robertson and Seymour [32], it shows the polynomial-time solv-
ability of many graph problems, some of which were previously not
even known to be decidable [17]. However, these algorithmic results
are highly non-practical. This triggered an ongoing quest in the The-
ory of Algorithms since then –next to on simplifying the 20-papers
proof of the Graph Minors Theorem– for making Graph Minors con-
structive and for making its algorithmic proofs practical for a wide
range of applications (e.g., [10, 23]).

Unfortunately, in the minor testing algorithm of Robertson and
Seymour [30], the function f(h) has an immense exponential growth,
which makes the algorithm absolutely impractical even for very sim-
ple patterns (see [24] for recent theoretical improvements of this
function). There were several attempts to improve the running time
of the algorithm of Robertson and Seymour. One direction of such
improvements is decreasing the degree of the polynomial in n. For
example, Reed and Li gave a linear time algorithm solving K5-minor
containment [29]. The second direction of improvements is towards
reducing the exponential dependency in the function f(h), which is a
natural direction of study for Parameterized Complexity [16]. A sig-
nificant step in this direction was done by Hicks [21], who provided in
graphs of branchwidth k and m edges an O(3k2 ·(h+k−1)! ·m) time
algorithm, following the algorithm sketched by Robertson and Sey-
mour [30]. Recently, this was improved to O(2(2k+1) log k ·h2k ·22h2 ·m)
on general graphs, and in planar, and more generally, in graphs of
bounded genus, to 2O(k) · h2k · 2O(h) · n [1].

In this paper we focus on the case where the input graph G is
planar.

Planar H-Minor Containment
Input: A planar graph G.
Objective: Either find a model M of H in G, or conclude that

G does not contain such a model.

Over the last four decades, many different algorithmic techniques
in planar graphs were developed for different type of problems and
algorithms, including approximation [5,9], exact [14,26], and param-
eterized algorithms [3, 8, 15]. However, it seems that none of these
approaches can be used to speed up the algorithm for Planar H-
Minor Containment.

Fast Minor Testing in Planar Graphs 3

Our results and key ideas. By arguments inspired by Bidimen-
sionality Theory [7], we first show that the 2O(k) · h2k · 2O(h) · n
time algorithm from [1], combined with the grid minor Theorem
of Robertson, Thomas, and Seymour [31], can be used to solve Pla-
nar H-Minor Containment in time O(2O(h log h) · n+ n2 · log n).
This directly sets up the challenge of designing a single-exponential
(on the size h of the pattern H) algorithm for this problem.

Our main result is the following theorem.

Theorem 1. Given a planar graph G on n vertices and a graph H
on h vertices, Planar H-Minor Containment is solvable in time
O(2O(h) · n+ n2 · log n).

That is, we prove that when G is planar the behaviour of the function
f(h) can be made single-exponential, improving over all previous
results for this problem [1, 21, 30]. In addition, we can enumerate
and count the number of models within the same time bounds. Let
us remark that by Theorem 1, Planar H-Minor Containment
is solvable in polynomial time when the size of the pattern graph H
is O(log n), therefore substantially improving the existing algorithms
for small patterns [12].

In order to prove Theorem 1, we introduce a novel approach of
dynamic programming in planar graphs of bounded branchwidth,
namely partially embedded dynamic programming. This approach is
extremely helpful in computing graph minors but we believe that this
technique can be used in many related problems including Planar
Disjoint Paths. Our technique is inspired by the technique of em-
bedded dynamic programming introduced in [13] for solving Planar
Subgraph Isomorphism for a pattern of size h and an input graph
of size n in time 2O(h) · n. There, one controls the partial solutions
by the ways the separators of G can be routed through the pattern.
The difference (and difficulty) concerning Planar H-Minor Con-
tainment is that we look for a model M of size O(n) out of 2O(n)

possible non-isomorphic models of H in G. In partially embedded
dynamic programming, we look for potential models of H in G with
a “magnifying glass” only at a given separator S of G. That is, we
consider a collection A of graphs A arising from ‘inflating’ a part of
H, namely the part interacting with S. Thus, each A behaves like a
subgraph of G inside the intersection with S, and outside that inter-

4 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

section A behaves like a minor of G; this is why we call our dynamic
programming technique “partially embedded”.

After giving some preliminaries in Section 2, we first show in
Section 3 how Planar H-Minor Containment can be solved in
polynomial time for input graphs of large branchwidth (in compari-
son to the pattern size). If the branchwidth is small, we compute the
collection A in Section 3.1 and give the partially embedded dynamic
programming approach in Section 3.2.

2 Preliminaries

We use standard graph terminology, see for instance [11].

Graphs and graph minors. All graphs considered in this article
are simple and undirected. Given a graph G, we denote by V (G) and
E(G) the vertex set and the edge set of G, respectively. A graph H
is a subgraph of a graph G, H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆
E(G). We define graph operation contracting edge e = {x, y} ∈ G by
removing e, including x and y, and making a new vertex ve adjacent
to the former neighbors of x and y (excluding x and y).

Graph H is a minor of graph G (denoted by H � G), if H can
be obtained from a subgraph of G by a (possibly empty) sequence of
edge contractions. In this case we also say that G is a major of H.
Graph H is a contraction minor of graph G (denoted by H �c G),
if H can be obtained from G by a (possibly empty) sequence of edge
contractions.

A model M of minor H in G is a subgraph of G, where the edge
set E(M) is partitioned into c-edges (contraction edges) and m-edges
(minor edges) such that the graph resulting from contracting all c-
edges is isomorphic to H.

For an illustration, see Fig. 1.

Branchwidth. A branch decomposition (T, µ) of a graph G consists
of an unrooted ternary tree T (i.e., all internal vertices are of degree
three) and a bijection µ : L → E(G) from the set L of leaves of T
to the edge set of G. We define for every edge e of T the middle
set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected
components of T \ {e}. Then let Gi be the graph induced by the
edge set {µ(f) : f ∈ L∩ V (Ti)} for i ∈ {1, 2}. The middle set is the

Fast Minor Testing in Planar Graphs 5

Fig. 1. On the left hand side we illustrate a graph G. In the middle we have a subgraph
M of G. Contracting the edges of M indicated by the dashed lines, we obtain minor H
illustrated on the right hand side. M is a model of H in G. The dashed lines illustrate
its c-edges, the solid lines its m-edges.

intersection of the vertex sets of G1 and G2, i.e., mid(e) = V (G1)∩
V (G2). The width of (T, µ) is the maximum order of the middle sets
over all edges of T , i.e., width(T, µ) := max{|mid(e)| : e ∈ E(T)}.
The branchwidth of G is defined as bw(G) := min{width(T, µ) |
(T, µ) branch decomposition of G}. Note that for each e ∈ E(T),
mid(e) is a separator of G, unless mid(e) = ∅.

Remark 1 For every two edges e, f ∈ E(T) with e∩f 6= ∅, we have
|mid(e) ∪mid(f)| ≤ 1.5 · width(T, µ).

Intuitively, a graph G has small branchwidth if G is close to being
a tree. The fundamental grid minor Theorem says that, roughly, a
graph has either small branchwidth, or it contains a large grid as a
minor. We use the variant for planar graphs.

Proposition 1 ([6, 20, 31]) Given a planar graph G on n vertices
with bw(G) ≥ k, a model of the (bk/3c × bk/3c)-grid in G can be
found in time O(n2 · log n).

On the other hand, every planar graph is minor of a large enough
grid.

Proposition 2 ([31]) If H is a planar graph with |V (H)|+2|E(H)| ≤
`, then H is isomorphic to a minor of the (2`× 2`)-grid.

Planar graphs and equivalent drawings. Let Σ be the unit
sphere. A planar drawing Φ, or simply drawing Φ, of a graph G with
vertex set V (G) and edge set E(G) maps vertices to points in the

6 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

sphere, and edges to simple curves between their end-vertices, such
that edges do not cross, except in common end-vertices. A plane
graph 〈G,Φ〉 is a graph G together with a planar drawing Φ1. A
planar graph is a graph that admits a planar drawing. The set of faces
F (G) of a plane graph G is defined as the union of the connected
regions of Σ \ G. A subgraph of a plane graph G, induced by the
vertices and edges incident to a face f ∈ F (G), is called a bound
of f (for further reading, see e.g. [11]). Consider any two drawings
Φ1 and Φ2 of a planar graph G. A homeomorphism of Φ1 onto Φ2 is
a homeomorphism of Σ onto itself which maps vertices, edges, and
faces of Φ1 onto vertices, edges, and faces of Φ2, respectively. We call
two planar drawings equivalent, if there is a homeomorphism from
one onto the other.

Proposition 3 (e.g. [28]) Every planar n-vertex graph has 2O(n)

non-equivalent drawings. A set of all such drawings can be computed
in time 2O(n).

Proposition 4 ([36]) The number of non-isomorphic edge-maximal
planar graphs on n vertices is 2O(n).

Nooses and combinatorial nooses. A noose of a Σ-plane graph
G is a simple closed curve in Σ that meets G only in vertices. From
the Jordan Curve Theorem (e.g. [27]), it follows that nooses separate
Σ into two regions.

Let V (N) = N ∩ V (G) be the vertices and F (N) be the faces
intersected by a noose N . The length of N is |V (N)|, the number of
vertices in V (N). The clockwise order in which N meets the vertices
of V (N) is a cyclic permutation π on the set V (N).
A combinatorial noose NC = [v0, f0, v1, f1, . . . , f`−1, v`] in a plane
graph G is an alternating sequence of vertices and faces of G, such
that

• fi is a face incident to both vi, vi+1 for all i < `;

• v0 = v` and the vertices v1, . . . , v` are mutually distinct; and

• if fi = fj for any i 6= j and i, j = 0, . . . , ` − 1, then the vertices
vi, vi+1, vj, and vj+1 do not appear in the order (vi, vj, vi+1, vj+1)
on the bound of face fi = fj.

The length of a combinatorial noose [v0, f0, v1, f1, . . . , f`−1, v`] is `.

1 If the drawing Φ is clear from the context, we may also simply write plane graph G.

Fast Minor Testing in Planar Graphs 7

Remark 2 The order in which a noose N intersects the faces F (N)
and the vertices V (N) of a plane graph G gives a unique alternating
face-vertex sequence of F (N)∪V (N) which is a combinatorial noose
NC. Conversely, for every combinatorial noose NC there exists a
noose N with face-vertex sequence NC.

We will refer to combinatorial nooses simply as nooses if it is
clear from the context.

Proposition 5 ([13]) Every plane n-vertex graph has 2O(n) combi-
natorial nooses.

Sphere cut decompositions. For a plane graph G, we define
a sphere cut decomposition (or sc-decomposition) 〈T, µ, π〉 as a branch
decomposition, which for every edge e of T has a noose Ne that di-
vides Σ into two regions ∆1 and ∆2 such that Gi ⊆ ∆i ∪Ne, where
Gi is the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)}
for i ∈ {1, 2} and T1∪̇T2 = T \ {e}. Thus Ne meets G only in
V (Ne) = mid(e) and its length is |mid(e)|. The vertices of mid(e) =
V (G1) ∩ V (G2) are ordered according to a cyclic permutation π =
(πe)e∈E(T) on mid(e).

Theorem 2 ([15, 35]). Let G be a planar graph of branchwidth at
most k without vertices of degree one embedded on a sphere. Then
there exists a sc-decomposition of G of width at most k.

3 Minor testing in planar graphs

For solving Planar H-Minor Containment in single-exponential
timeO(2O(h)·n+n2·log n), we introduce in this section the method of
partially embedded dynamic programming. We present Algorithm 3.1
as a roadmap on how we proceed in proving our main Theorem 1.

We divide Algorithm 3.1 into three parts, presented in the fol-
lowing sections.

From the next proposition we can find a model of H in G in the
case of G having large branchwidth.

Proposition 6 Let G and H be planar graphs with |V (G)| = n and
|V (H)| = h. There exists constant c ≤ 42 such that if bw(G) >
c · h, then G contains a model of H, which can be found in time
O(n2 · log n+ h4).

8 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Algorithm 3.1: The main routine for Planar H-Minor
Containment.
Input : A planar graph G.
Output : A model M of H in G, if it exists.
Compute sc-decomposition 〈T, µ, π〉 of G of width bw(G).
if bw(G) > 42 · h then Compute M (Proposition 6)
else Run pre-proc(H) to produce a collection A of plane majors of H
(Section 3.1, Algorithm 3.2);
Run partially embedded dynamic programming on 〈T, µ, π〉 to find a model M
of H in G by using A (Section 3.2).

Proof: Since any planar graph H with at least three vertices satisfies
|E(H)| ≤ 3|V (H)| − 6, by Proposition 2 any planar graph on h
vertices is isomorphic to a minor of the (14h× 14h)-grid.

With the algorithm of [35], we can find bw(G) in time O(n2). If
bw(G) > 42h, then by Proposition 1, we can find in time O(n2 log n)
a model of a (14h× 14h)-grid in G. From this grid we find a model
of H in G using Proposition 2. To conclude, let us discuss how the
proof of Proposition 2 provided in [31] can be easily made construc-
tive. For the sake of presentation, we omit many details that can be
found in [31]. Indeed, the proof of [31, Fact (1.5)] consists in subdi-
viding H to obtain an auxiliary planar graph H1 with |V (H1)| ≤ 7h,
which is isomorphic to a minor of a planar Hamiltonian graph H2

with |V (H2)| ≤ 14h. It is then proved that such a graph H2 is iso-
morphic to a minor of a (|V (H2)| × |V (H2)|)-grid. Then the proof
uses simple operations on vertices, edges, and separating triangles.
At one point it uses a Hamiltonian cycle, which existence is guaran-
teed by Whitney’s Theorem [37]2 There exist a constructive version
of Whitney’s Theorem, i.e. an algorithm finding a Hamiltonian cycle
in triangulated planar graph in linear time [34]. One can then check
that the overall running time is dominated by the inductive proof
of [31, Fact (1.4)], in which one must find O(h) times a separating
triangle in a graph on 7h vertices. This procedure can be näıvely
done in time O(h4). Therefore, a rough upper bound for the algo-
rithm that follows from Proposition 2 is O(h4). �

2 Whitney’s Theorem states that each triangulated planar graph without separating
triangles is Hamiltonian.

Fast Minor Testing in Planar Graphs 9

Otherwise, let us assume that bw(G) ≤ c · h. In this case, pre-
proc(H) (basically) computes a list of all plane majors A of H up
to a fixed size linear in h. This “preprocessing step” is presented in
Section 3.1. In the sequel, we are interested in graphs A of our list,
if A is a minor of G obtained from H by “uncontracting” some part,
such that on a given subset S ⊆ V (G), our graph A looks like a sub-
graph of G. That is, we consider such A that have a model MA in G
such that every edge of MA[S] is an m-edge and for every pair of ver-
tices u, v ∈ V (MA[S]) there is no path of c-edges in MA connecting
u and v. Finally, in Section 3.2, we proceed by partially embedded
dynamic programming bottom-up along a sphere cut decomposition
of G. Here we make use of the fact that every middle set S yields a
separating noose in an embedding of G. If H has a model M ⊆ G
that intersects S, then the noose comes from a noose in M , which
in turn is present in some major A of H of our list. We use this fact
to restrict the number of candidates A we need to consider in every
single dynamic programming step.

3.1 Preprocessing

If the branchwidth of G is at most c·h, then we compute a sphere cut
decomposition of width O(h) in time O(n2) by using the algorithm
of [19], and we continue with dynamic programming.

In the first step we do preprocessing. Namely, we compute for H a
list of auxiliary graphs A with H � A and |V (A)| = O(h), such that
A is a candidate for a model M in G. We will need this collection
in the dynamic programming algorithm described in Section 3.2. To
be precise, we compute a collection A of edge-colored plane graphs,
each consisting of

• a planar graph Am,c with |V (Am,c)| ≤ h+ 1.5 · bw(G), such that
H is a contraction minor of Am,c;

• a bipartition of the edge set E(Am,c) into m-edges and c-edges
such that contracting the c-edges of Am,c creates a graph isomor-
phic to H; and

• a drawing Φ of Am,c.

We describe the preprocessing in Algorithm 3.2: the routine pre-
proc takes as input H and outputs the collection A of edge-colored
plane graphs 〈Am,c, Φ〉.

10 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Algorithm 3.2: The preprocessing algorithm: pre-proc.
Input : Planar graph H on h vertices and ` edges.
Output : Collection A of edge-colored plane graphs .
Compute all non-isomorphic planar graphs A satisfying
h ≤ |V (A)| ≤ 1.5 · bw(G) + h and |E(A)| ≥ `.
for every such graph A do

for every subset X of E(A) of size ` do
mark the edges in X as m-edges and the edges in E(A) \X as
c-edges, resulting in a edge-colored graph Am,c.

for every graph Am,c do
if the graph resulting from contracting the c-edges of Am,c is isomorphic to
H then compute its non-equivalent drawings Φ1, . . . , Φq, and
add the plane graphs 〈Am,c, Φi〉 for all 1 ≤ i ≤ q to A.

When doing dynamic programming in Section 3.2, we compute in
each dynamic programming step a subset of collection A consisting
of minors of M which represent both H and M .

Lemma 1. For every planar graph H on h vertices and every con-
stant d, the cardinality of the collection A of non-isomorphic edge-
colored plane graphs on d · h vertices containing a minor isomorphic
to H is 2O(h). Furthermore, we can compute A in time 2O(h).

Proof: By Proposition 4, the number of non-isomorphic planar graphs
A on d · h vertices (for a constant d) is 2O(h). We compute this set
in time 2O(h) using the algorithm of [25]. We partition the edge set
of each A into three subsets: the edges that we need to delete, the
c-edges, and the m-edges. There are again 2O(h) possible such parti-
tions, which can be computed in time 2O(h). We use the linear time
algorithm for planar graph isomorphism [22] to check if after apply-
ing the graph operations the resulting graph A′ is isomorphic to H.
If so, we generate all non-equivalent drawings of A and add them to
A by using Proposition 3 and Algorithm 4.1 in [13], again in time
2O(h). �

Using Lemma 1, we get the following corollary.

Corollary 1. Algorithm 3.2 is correct and runs in time 2O(bw(G)+h).

Fast Minor Testing in Planar Graphs 11

3.2 Partially embedded dynamic programming

From now on, we will refer to an edge-colored plane graph 〈Am,c, Φ〉 ∈
A simply as A. In this section, we present the technique of partially
embedded dynamic programming. Before proceeding to a formal de-
scription, we provide the basic intuition behind our algorithm. To-
wards this, let us consider graphs A ∈ A satisfying H �c A and
A � G.

We define subgraphs past, present, and future of A with

• V (A) = V (past) ∪ V (present) ∪ V (future);

• E(A) = E(past)∪̇E(present)∪̇E(future);

• present ⊆ G, (i.e., we can obtain A as a minor of G with
present being subgraph of G); and

• E(past) ⊆ E(H), (i.e., we can obtain H as a contraction minor
of A without contracting edges in past).

Here, we slightly abuse notation by assuming that edge sets in dif-
ferent graphs are actually the same, instead of introducing bijective
mappings. Note that we make no assumption about the edges in
future. Intuitively speaking, in partially embedded dynamic pro-
gramming, we look for potential models M of H with a magnifying
glass only in the separators of the sc-decomposition of G. By decon-
tracting H at the separators, we obtain the part present, which
yields a subgraph of G for which we are enabled to apply embed-
ded dynamic programming. For memorizing the rest of the potential
model M , we contract all necessary edges to past in the processed
graph and (almost) all edges to future in the graph remainder.
The picture will be concretized in what follows.

Given a sc-decomposition of G, we proceed with dynamic pro-
gramming: Every edge e of the sc-decomposition defines a separator
mid(e) ⊆ V (G) and an associated noose Ne, which separates the
graph Gsub ⊆ G processed so far from G \ Gsub. At every edge e of
the sc-decomposition, we check for every graph A of A all the ways in
which the graph Gsub can be obtained as a major of Asub ⊆ A with
Asub = (V (past) ∪ V (present), E(past) ∪ E(present)), where
mid(e) determines V (present). The noose Ne comes from a noose
in A, and this is controlled by the ways in which Ne can be routed
through the vertices of A. The number of solutions we get—the valid
partial solutions—is bounded by the number of combinatorial nooses
in A onto which we can map Ne. When updating the valid partial

12 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

solutions at two incident edges of the sc-decomposition, we unite
present and past of two solutions and set the graph remainder
to future. In a post-processing step, we contract part of present,
namely those edges with at most one endpoint in the newly obtained
separator of the sc-decomposition; this part becomes past. We then
decontract some edges of future for the next updating step. This
concludes the informal description of the algorithm.

In the remaining part of this section, we will precisely describe
and analyze the dynamic programming routine with which we achieve
the following result:

Lemma 2. For a plane graph G with a given sc-decomposition 〈T, µ, π〉
of G of width bw(G) and a planar graph H on h vertices, we can
decide in time 2O(bw(G)+h) · n whether G contains a model M of H.

Dynamic programming. We root the sc-decomposition 〈T, µ, π〉
at some node r ∈ V (T). For each edge e ∈ T , let Le be the set of
leaves of the subtree rooted at e. The subgraph Ge of G is induced
by the edge set {µ(v) | v ∈ Le}. The vertices of mid(e) form a
combinatorial noose N that separates Ge from the residual graph.

Let A be a given plane graph in A. If A is a minor of G, then
there exists a plane model M of A in G. Furthermore, for above noose
N the intersection M ∩ N forms a noose, both in model M and in
candidate A. One basic point of partially embedded dynamic pro-
gramming is to check how the vertices of the combinatorial noose N
are mapped to faces and vertices of A. For a combinatorial noose NA

in A, we can map N to NA bounding (clockwise) a unique subgraph
Asub of A.

In each step of the algorithm, we compute the solutions for a sub-
problem in Ge, where each solution consists of three parts, namely

• a plane edge-colored graph A ∈ A;

• a combinatorial noose NA in A; and

• a mapping γ from combinatorial noose N to NA (defined below).

NA has the properties that a) it bounds (clockwise) a subgraph
Asub ⊆ A and b) no vertex in V (Asub) \ V (NA) is incident to a
c-edge. The subgraph Asub is representing the part of model M al-
ready computed, whereas the residual graph of A represents the part

Fast Minor Testing in Planar Graphs 13

of M which still has to be verified. For every middle set, we store
this information in an array of triples 〈A,NA, γ〉.

We define now valid mappings between combinatorial nooses and
describe how partial solutions are stored in the dynamic program-
ming. Then, we give the different DP-steps and finally verify the
approach.

Valid partial solutions. For a middle set mid(e) of the rooted sc-
decomposition 〈T, µ, π〉 of plane graph G, N = Ne is the associated
combinatorial noose in G with face-vertex sequence of F (N)∪V (N)
separating Ge from the residual graph. Let N denote the set of all
combinatorial nooses of A whose length is at most the length of N
and which bound (clockwise) a subgraph Asub ⊆ A such that no
vertex in V (Asub)\V (NA) is an end-vertex of a c-edge. We now map
N to nooses NA ∈ N, preserving the order. More precisely, we map
vertices of N to both vertices and faces of A. Therefore, we consider
partitions of V (N) = V1(N)∪̇V2(N) where vertices in V1(N) are
mapped to vertices of V (A) and vertices in V2(N) to faces of F (A).

We define a mapping γ : V (N) ∪ F (N)→ V (A) ∪ F (A) relating
N to the combinatorial nooses in N. For every NA ∈ N on faces and
vertices of set F (NA)∪V (NA) and for every partition V1(N)∪̇V2(N)
of V (N), mapping γ is valid if

a) γ restricted to V1(N) is a bijection to V (NA);
b) every v ∈ V2(N) and f ∈ F (N) satisfy γ(v) ∈ F (NA) and γ(f) ∈

F (NA);
c) for every vi ∈ V (N) and subsequence [fi−1, vi, fi] of N : if vi ∈

V2(N), then face γ(vi) is equal to both γ(fi−1) and γ(fi), and
if vi ∈ V1(N), then vertex γ(vi) is incident to both γ(fi−1) and
γ(fi); and

d) Asub is a minor of Ge with respect to a)− c).

Items a) and b) say where to map the faces and vertices of N to.
Item c) (with a)) makes sure that if two vertices vh, vj in sequence
N = [. . . , vh, . . ., vj, . . .] are mapped to two vertices wi, wi+1 that
appear in sequence NA as [. . . , wi, fi, wi+1, . . .], then every face and
vertex between vh, vj in sequence N (here underlined) is mapped
to face fi. Item d) simply makes clear that the boundary of Ge is
mapped to the boundary Asub such that contracting some part of
Ge \N leads to Asub. For an illustration, see Fig. 2.

14 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Ge

N

G A

NA

Asub

N NAγ

G

Fig. 2. The figure on the left hand side illustrates the graph G of Fig. 1 with an oriented
noose N (dashed) enclosing subgraph Ge. The figure in the middle shows a graph A of
collection A (that is, A is a major of the graph H of Fig. 1) with a noose NA enclosing
Asub. The figure on the right hand side shows a mapping γ from the faces and vertices
of N to NA.

We assign an array Ψe to each mid(e) consisting of triples, where
each triple 〈A,NA, γ〉 represents a minor candidate A together with
a valid mapping γ from a combinatorial noose N corresponding to
mid(e) to a combinatorial noose NA ∈ N. The vertices and faces of
N are oriented clockwise around the drawing of Ge. Without loss of
generality, we assume for every 〈A,NA, γ〉 the orientation of NA to
be clockwise around the drawing of subgraph Asub of A.

Step 0: Initializing the leaves. For every parent edge e of a leaf
v of T , we initialize for every A ∈ A the valid mappings from the
combinatorial noose bounding the edge µ(v) of G to every combina-
torial noose of length at most two in A (clockwise bounding at most
one edge of A).

Step 1a): Update process. We update the arrays of the middle
sets bottom-up in post-order manner from the leaves of T to root r.
During this updating process it is guaranteed that the local solutions
for each minor associated with a middle set of the sc-decomposition
are combined into a global solution for the overall graph G.

In each dynamic programming step, we compare the arrays of
two middle sets mid(e) and mid(f) in order to create a new array
assigned to the middle set mid(g), where e, f , and g have a vertex of
T in common. From [15] we know that the combinatorial noose Ng

is formed by the symmetric difference of the combinatorial nooses
Ne, Nf and that Gg = Ge∪Gf . In other words, we are ensured that if
two solutions on Ge and Gf bounded by Ne and Nf fit together, then

Fast Minor Testing in Planar Graphs 15

they form a new solution on Gg bounded by Ng. We now determine
when two solutions represented as tuples in the arrays Ψe and Ψf fit
together. We update two triples 〈A1, N1

A, γ1〉 ∈ Ψe and 〈A2, N2
A, γ2〉 ∈

Ψf to a new triple in Ψg if

• A1 = A2 =: A ∈ A and every edge of A with no endpoint in
V (N1

A) ∪ V (N2
A) is an m-edge;

• for every x ∈ (V (Ne) ∪ F (Ne)) ∩ (V (Nf) ∪ F (Nf)), we have
γ1(x) = γ2(x); and

• for the subgraph A1
sub of A separated by N1

A and the subgraph
A2

sub of A separated by N2
A, we have that E(A1

sub) ∩ E(A2
sub) = ∅

and V (A1
sub) ∩ V (A2

sub) ⊆ {γ(v) | v ∈ V (Ne) ∩ V (Nf)}.
That is, we only update solutions with the same graph A and with
the two nooses N1

A and N2
A bounding (clockwise) two edge-disjoint

parts of A and intersecting in a consecutive subsequence of both N1
A

and N2
A. If the two solutions on Ne and Nf fit together, we get a

valid mapping γ3 : Ng → N3
A to a noose N3

A of A as follows:

• for every x ∈ (V (Ne) ∪ F (Ne)) ∩ (V (Nf) ∪ F (Nf)) ∩ (V (Ng) ∪
F (Ng),) we have γ1(x) = γ2(x) = γ3(x);

• for every y ∈ (V (Ne)∪F (Ne))\(V (Nf)∪F (Nf)) we have γ1(y) =
γ3(y); and

• for every z ∈ (V (Nf)∪F (Nf))\(V (Ne)∪F (Ne)) we have γ2(z) =
γ3(z).

We have that γ3 is a valid mapping from Ng to the combinatorial
noose N3

A that bounds subgraph A3
sub = A1

sub ∪ A2
sub.

Step 1b): Post-processing. Before adding a triple 〈A,N3
A, γ3〉 to

array Ψg, we need to manipulate A so that a) it does not grow too big
and b) it is suitable for future update operations. In A restricted to
subgraph A3

sub, we contract all c-edges with at least one end-vertex
not in N3

A in order to fulfill a). Concerning b), for every B ∈ A
we check for all its nooses NB with |V (NB)| = |V (N3

A)| if there is a
bijection β from N3

A to NB such that the following holds. If in a copy
of B we contract those c-edges which i) are in the subgraph counter-
clockwise bounded by NB and ii) have at least one end-vertex not in
NB, then we obtain a edge-colored graph isomorphic to A. We define
δ = γ3 ◦ β and we replace 〈A,N3

A, γ3〉 in array Ψg by those triples
〈B,NB, δ〉 which validate properties i) and ii).

16 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Step 2: Termination. If, at some step, we have a solution where
the entire minor H is formed, we terminate the algorithm accepting.
That is the case, if for some triple we have that H � Asub � A and
Asub is bounded by NA. We output model M of H in G represented
by this A by reconstructing a solution top-down in 〈T, µ, π〉. If at
root r no A ∈ A has been computed, we reject.

Correctness of the algorithm. In Corollary 1, we already showed
that the preprocessing correctly computes the collection A of pair-
wise non-isomorphic edge-colored plane graphs A on at least h and
at most 1.5 · bw(G) + h vertices containing H as a minor. In the
update process on the nooses N1, N2 of two incident edges of the
sc-decomposition, we produce graphs with as many vertices since we
have for candidate A of H in G that A intersects V (N1) ∪ V (N2),
and by Remark 1 that |V (N1) ∪ V (N2)| ≤ 1.5 · bw(G) and up to h
vertices of A might be outside N1

A and N2
A.

We have already seen how to map every combinatorial noose of G
that identifies a separation of G via a valid mapping γ to a combina-
torial noose of A determining a separation of A. Step 0 ensures that
every edge of A is bounded by a combinatorial noose NA of length
two, which is determined by triple 〈A,NA, γ〉 in an array assigned to
a leaf edge of T . We need to show that Step 1a) and 1b) compute
a valid solution for Ng from Ne and Nf , given incident edges e, f, g.
We note that the property that the symmetric difference of the com-
binatorial nooses Ne and Nf forms a new combinatorial noose Ng is
passed on to the combinatorial nooses N1

A, N
2
A, and N3

A of A, too.
If the two solutions fit together, then A1

sub of A separated by N1
A

and subgraph A2
sub of A separated by N2

A only intersect in the im-
age of V (Ne) ∩ V (Nf). We observe that N1

A and N2
A intersect in

a consecutive alternating subsequence with order reversed to each
other, i.e., N1

A |Ne∩Nf
= N2

A |Ne∩Nf
, where NA means the reversed se-

quence NA. Since every oriented NA uniquely identifies a separation
of E(A), we can easily decide whether two triples 〈A,N1

A, γ〉 ∈ Ψe

and 〈A,N2
A, γ〉 ∈ Ψf fit together and bound a new subgraph A3

sub of
A. In Step 1b), we contract all c-edges in A3

sub with an end-vertex in
V (A3

sub)\V (N3
A) such that A3

sub represents a subgraph of H. Next we

blow up A3
sub, that is the subgraph of A on the other side which N3

A

bounds counter-clockwise. From A we compute every possible graph
partitioned into one subgraph isomorphic to A3

sub and one subgraph

Fast Minor Testing in Planar Graphs 17

major of A3
sub separated by a noose bijectively mapped from N3

A. If
there exists an A ∈ A which is a minor of G, then at some point we
will enter Step 2 and produce the entire model M .

Running time of the algorithm. By Corollary 1, computing the
collectionA in the preprocessing step can be done in time 2O(bw(G)+h).
We now give an upper bound on the size of each array Ψ . For each
A ∈ A, the number of combinatorial nooses in N we are considering
is bounded by the total number of combinatorial nooses in A, which
is 2O(bw(G)+h) by Proposition 5. The number of partitions of vertices
of any combinatorial noose N is bounded by 2|V (N)|. Since the order
of both NA and N is given, we only have 2 · |V (A)| possibilities to
map vertices of N to NA, once the vertices of N are partitioned.
Thus, in an array Ψe we may have up to 2O(|V (A)|) · 2|V (N)| · |V (A)|
triples 〈A,NA, γ〉. We first create all triples in the arrays assigned to
the leaves. Since middle sets of leaves only consist of an edge in G, we
get arrays of size O(|V (A)|2), which we compute in the same asymp-
totic running time. When updating middle sets mid(e),mid(f), we
compare every triple of array Ψe to every triple in array Ψf to check
if two triples fit together. We can compute the unique subgraph
A1

sub (resp. A2
sub) described by a triple in Ψe (resp. Ψf), compare two

triples in Ψe and Ψf , and create a new triple in time linear in the
order of V (N) and V (H). For adding a new triple to Ψg in the post-
processing, we apply the color coding technique [4] for computing
each of the 2O(bw(G)+h) nooses in N in the same asymptotic running
time.

This completes the proof of Lemma 2.

Proof of Theorem 1. We put everything together by verifying Al-
gorithm 3.1. We produce in time O(n2 · log n) a sc-decomposition
of input graph G [19]. Next, either we can immediately compute a
minor model of G in time O(n2 · log n + h4) (Proposition 6) or we
run our 2-step-algorithm: we produce all majors of the minor pat-
tern (Lemma 1) with Algorithm 3.2 in time 2O(h), and run partially
embedded dynamic programming in time 2O(h) · n (Lemma 2). ut

18 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

4 Conclusions and further research

In this paper we showed that Planar H-Minor Containment is
solvable in time O(2O(h) ·n+n2 · log n) for a host graph on n vertices
and a pattern H on h vertices. That is, we showed that the problem
can be solved in single-exponential time in h, significantly improving
all previously known algorithms. Similar to [13], we can enumerate
and count the number of models within the same time bounds.

Let us discuss some interesting avenues for further research con-
cerning minor containment problems. First, it seems possible to solve
in single-exponential time other variants of planar minor contain-
ment using our approach, like looking for a contraction minor, an
induced minor, or a topological minor, as it has been recently done
in [1] for general host graphs using completely different techniques.
Also, it would be interesting to count the number of non-isomorphic
models faster than just by enumerating models and removing iso-
morphic duplicates.

An important question is if, up to some assumption from com-
plexity theory, the running time of our algorithm is tight. In other
words, is there a 2o(h) · nO(1) algorithm (i.e., a subexponential algo-
rithm) solving Planar H-Minor Containment, or the existence
of such an algorithm would imply the failure of, say, the Exponen-
tial Time Hypothesis? A first step could be to study the existence of
subexponential algorithms when the pattern is further restricted to
be a k-outerplanar graph for some constant k, or any other subclass
of planar graphs.

Conversely, single-exponential algorithms may exist for host graphs
more general than planar graphs. The natural candidates are host
graphs embeddable in an arbitrary surface. One possible approach
could be to use the framework recently introduced in [33] for per-
forming dynamic programming for graphs on surfaces. The main
ingredient of this framework is a new type of branch decomposition
of graphs on surfaces, called surface cut decomposition, which plays
the role of sphere cut decompositions for planar graphs.

Fast Minor Testing in Planar Graphs 19

References

[1] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Faster Parameterized
Algorithms for Minor Containment. In Proc. of the 12th Scandinavian Sympo-
sium and Workshops on Algorithm Theory (SWAT), volume 6139 of LNCS, pages
322–333, 2010.

[2] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Fast Minor Testing in
Planar Graphs. In Proc. of the 18th Annual European Symposium on Algorithms
(ESA), volume 6346 of LNCS, pages 97–109, 2010.

[3] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed
parameter algorithms for dominating set and related problems on planar graphs.
Algorithmica, 33:461–493, 2002.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
[5] B. S. Baker. Approximation algorithms for NP-complete problems on planar

graphs. Journal of the ACM, 41:153–180, 1994.
[6] H. L. Bodlaender, A. Grigoriev, A. M. C. A. Koster. Treewidth Lower Bounds

with Brambles. Algorithmica, 51(1): 81-98, 2008.
[7] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexpo-

nential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

[8] E. D. Demaine and M. Hajiaghayi. Bidimensionality. In M.-Y. Kao, editor,
Encyclopedia of Algorithms. Springer, 2008.

[9] E. D. Demaine and M. T. Hajiaghayi. Bidimensionality: new connections between
FPT algorithms and PTASs. In Proc. of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 590–601, 2005.

[10] E. D. Demaine, M. T. Hajiaghayi, and K. i. Kawarabayashi. Algorithmic Graph
Minor Theory: Decomposition, Approximation, and Coloring. In Proc. of the
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 637–646, 2005.

[11] R. Diestel. Graph Theory, volume 173. Springer-Verlag, 2005.
[12] M. Dinneen and L. Xiong. The Feasibility and Use of a Minor Containment

Algorithm. Computer Science Technical Reports 171, University of Auckland,
2000.

[13] F. Dorn. Planar Subgraph Isomorphism Revisited. In Proc. of the 27th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS), pages
263–274, 2010.

[14] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algo-
rithms. Computer Science Review, 2(1):29–39, 2008.

[15] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact al-
gorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica,
58(3):790–810, 2010.

[16] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[17] M. R. Fellows and M. A. Langston. On search, decision and the efficiency of

polynomial-time algorithms. J. Comp. Syst. Sc., 49:769–779, 1994.
[18] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.
[19] Q.-P. Gu and H. Tamaki. Constant-factor approximations of branch-

decomposition and largest grid minor of planar graphs in O(n1+ε) time. In Proc.
of the 20th International Symposium Algorithms and Computation (ISAAC), vol-
ume 5878 of LNCS, pages 984–993, 2009.

20 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

[20] Q. P. Gu and H. Tamaki. Improved bound on the planar branchwidth with
respect to the largest grid minor size. Technical Report SFU-CMPT-TR 2009-
17, Simon Fraiser University, 2009.

[21] I. V. Hicks. Branch decompositions and minor containment. Networks, 43(1):1–9,
2004.

[22] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In Proc. of the 6th Annual ACM Symposium on
Theory of Computing (STOC), pages 172–184, 1974.

[23] K. i. Kawarabayashi and B. A. Reed. Hadwiger’s conjecture is decidable. In
Proc. of the 41st Annual ACM Symposium on Theory of Computing (STOC),
pages 445–454, 2009.

[24] K. i. Kawarabayashi and P. Wollan. A shorter proof of the Graph Minor Al-
gorithm - The Unique Linkage Theorem -. In Proc. of the 42st Annual ACM
Symposium on Theory of Computing (STOC), 2010. To appear.

[25] Z. Li and S.-I. Nakano. Efficient generation of plane triangulations without rep-
etitions. In Proc. of the 28th International Colloquium on Automata, Languages
and Programming (ICALP), volume 2076 of LNCS, pages 433–443, 2001.

[26] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM
J. Comput., 9:615–627, 1980.

[27] B. Mohar and C. Thomassen. Graphs on surfaces. John Hopkins University
Press, 2001.

[28] D. Osthus, H. J. Prömel, and A. Taraz. On random planar graphs, the number of
planar graphs and their triangulations. J. Comb. Theory, Ser. B, 88(1):119–134,
2003.

[29] B. A. Reed and Z. Li. Optimization and Recognition for K5-minor Free Graphs
in Linear Time. In Proc. of the 8th Latin American Symposium on Theoretical
Informatics (LATIN), pages 206–215, 2008.

[30] N. Robertson and P. Seymour. Graph Minors. XIII. The Disjoint Paths Problem.
J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

[31] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph.
J. Comb. Theory, Ser. B, 62(2):323–348, 1994.

[32] N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner’s Conjecture. J.
Comb. Theory, Ser. B, 92(2):325–357, 2004.

[33] J. Rué, I. Sau, and D. M. Thilikos. Dynamic Programming for Graphs on Sur-
faces. In Proc. of the 37th International Colloquium on Automata, Languages
and Programming (ICALP), volume 6198 of LNCS, pages 372–383, 2010.

[34] D. P. Sanders. On Hamilton cycles in certain planar graphs. J. Graph Theory,
21(1):43–50, 1998.

[35] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

[36] W. T. Tutte. A census of planar triangulations. Canadian Journal of Mathemat-
ics, 14:21–38, 1962.

[37] H. Whitney. A theorem on graphs. Annals of Mathematics, 32:378–390, 1931.

