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Abstract. The OUTERPLANAR DIAMETER IMPROVEMENT problem asks, given a graph
G and an integer D, whether it is possible to add edges to G in a way that the resulting
graph is outerplanar and has diameter at most D. We provide a dynamic programming
algorithm that solves this problem in polynomial time. OUTERPLANAR DIAMETER IM-
PROVEMENT demonstrates several structural analogues to the celebrated and challenging
PLANAR DIAMETER IMPROVEMENT problem, where the resulting graph should, instead,
be planar. The complexity status of this latter problem is open.
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1 Introduction

In general, a graph completion problem asks, given some i it is possible to add edges to it so
that the resulting graph satisfies some target property. There are two different ways of defining
the optimization measure for such problems. The first, and most common, is the number of
edges to be added, while the second is the value of some graph invariant on the resulting
graph. Problems of the first type are HAMILTONIAN COMPLETION [16], INTERVAL GRAPH
COMPLETION (18], PROPER INTERVAL GRAPH COMPLETION [17,20], CHORDAL GrRAPH COM-
PLETION [20,24], and STRONGLY CHORDAL GRAPH COMPLETION |[20], where the property is
being Hamiltonian, interval, proper interval, chordal, and strongly chordal, respectively.

We focus our attention to the second category of problems where, for some given param-
eterized graph property Py, the problem asks, given a graph G and an integer k, whether it
is possible to add edges to G such that the resulting graph belongs to Pj. Usually Py is a
parameterized graph class whose graphs are typically required (for every k) to satisfy some
sparsity condition. There are few problems of this type in the bibliography. Such a comple-
tion problem is the PLANAR DISJOINT PATHS COMPLETION problem that asks, given a plane
graph and a collection of k pairs of terminals, whether it is possible to add edges such that
the resulting graph remains plane and contains k vertex-disjoint paths between each pair of
terminals. While this problem is trivially NP-complete, it has been studied from the point of
view of parameterized complexity [1]. In particular, when all edges should be added in the same
face, it can be solved in f(k) - n? steps [1], i.e., it is fixed parameter tractable (FPT in short).

Perhaps the most challenging problem of the second category is the PLANAR DIAMETER
IMPROVEMENT problem (PDI in short), which was first mentioned by Dejter and Felows [9]
(and made an explicit open problem in [12]). Here we are given a planar (or plane) graph and
we ask for the minimum integer D such that it is possible to add edges so that the resulting
graph is a planar graph with diameter at most D (according the the general formalism, for
each D, the parameterized property Pp contains all planar graphs with diameter at most D).
The computational complexity of PLANAR DIAMETER IMPROVEMENT is open, as it is not
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even known whether it is an NP-complete problem, even in the case where the embedding is
part of the input. Interestingly, PLANAR DIAMETER IMPROVEMENT is known to be FPT: it
is easy to verify that, for every D, its YEs-instances are closed under taking minors E| which,
according to the meta-algorithmic consequence of the Graph Minors series of Robertson and
Seymour [21,22], implies that PLANAR DIAMETER IMPROVEMENT is FPT. Unfortunately, this
implication only proves the existence of such an algorithm for each D, while it does not give
any way to construct it. A uniform FPT algorithm for this problem remains as one of the most
intriguing open problems in parameterized algorithm design. To our knowledge, when it comes
to explicit algorithms, it is not even clear how to get an O(nf(P))-algorithm for this problem
(in parameterized complexity terminology, such an algorithm is called an XP-algorithm).

Notice that, in both aforementioned problems of the second type, the planarity of the graphs
in Pp is an important restriction, as it is essential for generating a non-trivial problem; other-
wise, one could immediately turn a graph into a clique that trivially belongs to P;. For practical
purposes, such problems are relevant where instead of generating few additional links, we mostly
care about maintaining the network topology. The algorithmic and graph-theoretic study on
diameter improvement problems has focused both on the case of minimizing the number (or
weight) of added edges [2,3)6,{11,/14119], as well as on the case of minimizing the diameter [3//15].
In contrast, the network topology, such as acyclicity or planarity, as a constraint to be preserved
has received little attention in the context of complementing a graph; see for example [14].

In this paper we study the OUTERPLANAR DIAMETER IMPROVEMENT problem, or OPDI
in short. An instance of OPDI consists of an outerplanar graph G = (V, E) and a positive
integer D, and we are asked to add a set F' of missing edges to G so that the resulting graph
G' = (V,E U F) has diameter at most D, while G’ remains outerplanar. Note that we are
allowed to add arbitrarily many edges as long as the new graph is outerplanar. Given a graph
G=(V,E), we call G’ = (V,EUF) a completion of G.

It appears that the combinatorics of OPDI demonstrate some interesting parallelisms with
the notorious PDI problem. We denote by opdi(G) (resp. pdi(G)) the minimum diameter
of an outerplanar (resp. planar) completion of G. It can be easily seen that the treewidth
of a graph with bounded pdi(G) is bounded, while the pathwidth of a graph with bounded
opdi(G) is also bounded. In that sense, the OPDI can be seen as the “linear counterpart”
of PDI. We stress that the same “small pathwidth” behavior of OPDI holds even if, instead
of outerplanar graphs, we consider any class of graphs with bounded outerplanarity. It also
follows that both pdi(G) and opdi(G) are trivially 2-approximable. To see this, let G’ be a
triangulation of a plane (resp. outerplane) embedding of G where, in every face of G, all edges
added to it have a common endpoint. It easily follows that, for both graph invariants, the
diameter of G’ does not exceed twice the optimal value.

Another closely related notion is that of t-spanners. Given a graph G = (V, E), a t-spanner
of G is a spanning subgraph G’ = (V, E’) such that for every pair of vertices, the distance in G’
is within a factor ¢ to their distance in G. The measure ¢ for the quality of a spanner is called
the stretch factor. The problem of identifying a ¢-spanner, or the -SPANNER problem, has been
extensively studied in geometry as well as in communication network design [4,/5,/7,(13}[23].
A sparse or planar t-spanner is of particular importance: in wireless ad hoc networks, certain
routing protocols require the network topology to be planar |23]. The notion of ¢-spanner is,
in a sense, dual to OPDI. The former allows losing the established links and the latter allows
having additional links while, in both cases, our interest lies in preserving the constraint on the
network topology. Note that in both cases, we want to improve (or do not deteriorate a lot)
the performance of the network, which is measured by the lags in information transfer such as
diameter or stretch factor.

1 To see this, if a graph G can be completed into an outerplanar graph G’ of diameter D, then G’ is
also a valid completion of any subgraph H C G. Similarly, by merging two adjacent vertices uv in
both G and G’, one sees that the diameter is also closed under edge contraction.
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Our results. In this work, we show that OUTERPLANAR DIAMETER IMPROVEMENT is
polynomial-time solvable. Our algorithm, described in Section [2] is based on dynamic pro-
gramming and works in full generality, even when the input graph may be disconnected. Also,
our algorithm does not assume that the input comes with some specific embedding (in the case
of an embedded input, the problem becomes considerably easier to solve).

Further research. Our algorithm for OPDI runs in time O(n?) for connected input graphs,
and in time O(n") or O(n) for disconnected input graphs, depending on whether D is odd
or even, which can probably be improved. By the Graph Minors series of Robertson and
Seymour [21[22] we know that for each fixed integer D, the set of minor obstructions of OPDI
is finite. We have some preliminary results in this direction, but we managed to obtain a
complete list only for small values of D. We believe that our approach might be interesting for
generalizations of the OPDI problem, such as the one where we demand that the completed
graph has fixed outerplanarity. Settling the computational complexity of PDI remains the main
open problem in this area. An explicit FPT-algorithm, or even an XP-algorithm, would also
be significant. Again, we have some partial NP-completeness results in this direction, but for
problems which are slightly more complicated than PDI, in particular involving edge weights.

2 Description of the algorithm

The aim of this section is to describe a polynomial-time dynamic program that, given an
outerplanar graph G and an integer D, decides whether G admits an outerplanar completion
with diameter at most D. Note that such an algorithm easily yields a polynomial-time algorithm
to compute, given an outerplanar graph G, the smallest integer D such that G admits an
outerplanar completion with diameter D.

Before describing the algorithm, we show some properties of outerplanar completions. In
particular, Subsection handles the case where the input outerplanar graph has cut vertices.
Its objective is to prove that we can apply a reduction rule to such a graph which is safe for
the OPDI problem. In Subsection [2:2] we deal with 2-vertex separators, and in Subsection [2-3]
we present a polynomial-time algorithm for connected input graphs. Finally, due to space
limitations, we present the algorithm for disconnected input graphs in Appendix [A]

Some notation. We use standard graph-theoretic notation, see for instance [10]. It is well
known that a graph is outerplanar if and only if it excludes K4 and K5 3 as a minor. An outer-
planar graph is triangulated if all its inner faces (in an outerplanar embedding) are triangles.
An outerplanar graph is mazimal if it is 2-connected and triangulated. Note that, when solv-
ing the OPDI problem, we may always assume that the completed graph G’ is maximal. For
us, a block in a graph is either a 2-connected component or an edge. Given a graph G and a
subset S C V(G), we denote by 9(S) the set of vertices in S that have at least one neighbor in
V(G)\ S.

2.1 Reducing the input graph when there are cut vertices

Given a graph G, let the eccentricity of a vertex u be ecc(u, G) = max,cy () distg(u, v). Given
an outerplanar graph G, a vertex u € V(G), and an integer D, let us define ecch(u,G) as
ming ecc(u, H), where the minimum is taken over all the outerplanar completions H of G of
diameter at most D. If all the outerplanar completions have diameter more than D, we set
this value to co. Unless said otherwise, we assume henceforth that D is a fixed given integer,
so we may just write ecc*(u, G) instead of ecch,(u, G). (The value of D will change only in the
description of the algorithm at the end of Subsection 2:3] and in that case we will make the
notation explicit).

As admitting an outerplanar completion with bounded eccentricity is a minor-closed prop-
erty, let us observe the following:
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Lemma 1. For any connected outerplanar graph G, any vertex v € V(QG), and any connected
subgraph H of G with v € V(H), we have that ecc*(v, H) < ecc*(v,G).

Proof: Let G’ be an outerplanar completion of G achieving ecc*(v,G), that is such that
ecc(v, G') = ecc* (v, G). Contracting the edges of G’ that have at least one end out of V(H)
one obtains an outerplanar completion H' of H (as outerplanar graphs are minor-closed). As
contracting an edge does not elongate any shortest path, the diameter of H’ is at most the
diameter of G’, and disty:(v,u) < distgs(v,u) for any vertex u € V(H). We thus have that

ecc* (v, H) < ecc(v, H') < ecc(v,G") = ecc*(v, Q). O

Consider a connected graph G with a separating vertex v, and let C1,...,C; be the vertex
sets of the connected components of G\ {v}. For 1 < i < t, we call the vertex set B; = C; U{v}
a branch of G' at v. To shorten notations, we abbreviate B; U ... U B; =: B, _;, for any

1 <4 < j <t. Also, when referring to the eccentricity, we simply denote G[B;] by B;. Thus, for
example, when considering the value ecc*(v, By, ;), it will refer to the minimum eccentricity
with respect to v that an outerplanar completion of the graph G[Bj. ;] with diameter at most
D can have.

The following lemma, which is crucial in order to obtain a polynomial-time algorithm,
implies that if G has a cut vertex v with many branches, it is safe to remove most of them.

Lemma 2. Consider an outerplanar graph G with a separating vertex v that belongs to at least
7 branches. Denote these branches By, ..., By, with t > 7, in such a way that ecc* (v, By) >
ecc*(v, By) > ... > ecc*(v, By). The graph G has an outerplanar completion with diameter at
most D if and only if ecc*(v, By, g) + ecc*(Br) < D.

Proof: “<:” If ecc*(v, By g) + ecc*(B7y) < D, gluing on v the outerplanar completions
of G[By.. 6], G[Br],...,G[B], respectively achieving ecc*(v, By ¢),ecc*(Br), ..., ecc*(By), one
obtains an outerplanar completion G’ of G with diameter at most D. Indeed,

e The graph obtained is outerplanar and contains G.

e Two vertices x,y of G[Bj. ¢] (resp. of G[B;] for 7 < i < t) are at distance at most D from
each other, as ecc*(v, B1..g) < 0o (resp. as ecc*(v, B;) < 00).

e Any vertex x of G[Bi. ¢] and y of G[B;], with 7 < i < ¢, are respectively at distance at
most ecc* (v, By, ¢) and ecc*(v, B;) < ecc*(v, By) from v. They are thus at distance at most
ecc*(v, By, g) + ecc*(v, By) < D from each other.

o Any vertex x of G[B;] and y of G[B;], with 7 < i < j < t, are respectively at dis-
tance at most ecc*(v, B;) < ecc*(v, B1) < ecc*(v, Bi..¢) (By Lemma |l) and ecc*(v, B;) <
ecc* (v, By) from v. They are thus at distance at most D from each other.

“=" In the following, we consider towards a contradiction an outerplanar graph G admiting
an outerplanar completion with diameter at most D, but such that

ecc”(v, By..g) + ecc* (v, By) > D. (1)

Among the triangulated outerplanar completions of G with diameter at most D, let G’ be
one that minimizes the number of edges added among distinct branches of G. Let us say that
these edges are lianas. Let ¢ be the number of branches at v in G’, and denote these branches
i,...,Bi, in such a way that ecc*(v, B}) > ecc*(v, B}) > ... > ecc*(v, B},). Then, since G’
has diameter at most D and shortest paths among distinct branches of G’ contain v,
1§i’<vj/§t’ ecc* (v, Bjy) + ecc*(v, B},) < D (2)
is clear. Let Sy := {i | B; € Bl,} for all 1 <4’ <t and note that {S1,...,Sy} is a partition
of {1,...,t}. The branches B}, with |S;/| = 1 are called atomic. Observe that an atomic branch
does not contain any liana. In contrast, for a non-atomic branch B}, any B; with ¢ € S is
incident to at least one liana in G’ in order to connect the graph G'[B}, \ v].
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Claim 1 Let Bj, be a non-atomic branch and let S C Sy. Then, ecc*(v,|J;cq Bi) +
ecc* (v, Uiesﬂ\S’ B;) > D.

Proof: Let B := ;. B; and B := B, \B. If the claim is false, then ecc*(v, B)+ecc* (v, B) < D.
Furthermore, for all j" # 4/,

Lemma[I] (2)
ecc” (v, B) +ecc*(v,Bj,) < ecc™(v, Bj) +ecc*(v,Bj) < D

and, likewise, ecc*(v, B) + ecc*(v,B}) < D. Thus, the result of replacing G'[B},] with the
disjoint union of an outerplanar completion achieving ecc* (v, B) and an outerplanar completion

achieving ecc*(v, B) yields a diameter-D outerplanar completion containing less lianas than
G’, contradicting our choice of G'. O

Claim 2 Let 2 < i <t'. Then, the branch B], is atomic.

Proof: Towards a contradiction, assume that BJ, is not atomic and let ¢ € S;. Then,

ecc*(v, B, \ (B; \ v))) + ecc* (v, B;) Lerngmaﬂ:l2ecc*(v7 B.,)
ilél ecc*(v, B]) +ecc*(v,B},) < D,
contradicting Claim O
In the following, we abbreviate |S1| =: s.

Claim 3 S; ={1,...,s}.

Proof: First, assume 1 ¢ S7. Then, by Claim [2| there is some ¢’ with B], = Bj. Let j’ such
that 2 € Sj. Let G” denote the result of, for each j', replacing G'[B},] with an outerplanar
completion of B; achieving ecc*(v, B;-,). The diameter of G” is

m;x{ecc* (v, B;) +ecc*(v,B;)} = ecc”(v,Bq) + ecc*(v, Bs)
i#]

Lemma [Tl 2)
< ecc*(v, Bjy) + ecc*(v, B/) g D,

contradicting Equation .
Second, assume that there is some i ¢ S7 with i + 1 € S;. By Claim [2| there is some i’ > 1
with B], = B;. Then,
Lemma [I]
ecc*(v, B\ (Biy1 \v))) +ecc*(v, Biy1) < ecc*(v, B}) + ecc* (v, Bi11)
< ecc*(v, By) + ecc*(v, B;)

2
ecc* (v, By) +ecc*(v,Bl,) < D,

IN

contradicting Claim O

Claim 4 Let 1 < i <s. Then, ecc*(v, By, i—1) + ecc*(v, B;) > D.

Proof: Since by Claim [3, B;. ;1 and B; are subsets of Bf, this is a direct consequence of
Claimwith S ={i,...,s}. O

Note that, by , ecc™ (v, By ) + ecc™(

v,Bsy1) < D. By , this implies s > 7. Thus, a
special case of Claim {4]is ecc* (v, B1) + ecc*(v, B

2) > D, implying ecc*(v, By) > D/2.
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Claim 5 Let S’ C {1,...,t} and let B :=J,cq Bi. Then, there is a vertex in B that is, in G’,
at distance at least ecc*(v, B) to any vertex of V(G)\ (B \ v)).

Proof: Let H result from G’ by contracting all vertices of V(G) \ B onto v. If the claim
is false, then for any vertex u € B there exists a vertex w € V(G) \ (B \ v)) such that
dister (u, w) < ecc*(v,B), so contracting contracting all vertices of V(G) \ B onto v yields
a path in H between u and v of length strictly smaller than ecc*(v,B). As this argument
holds for any vertex u € B, it implies that ecc(v, H) < ecc*(v,B). Since H is an outerplanar
completion of G[B], this contradicts the definition of ecc*. O

Two sub-branches B; and B; of Bi are linked if G’ has a liana linking them, that is, an
edge intersecting both B; \ {v} and B; \ {v}.

Claim 6 Let1 <i < j <s and let ecc*(v, By, ;) +ecc*(v, Bj) > D. Then, Bj is linked to one
OfBl,...,Bi.

Proof: By Claim there is a vertex x € B; that is, in G’, at distance at least ecc*(v, B;) to
any vertex in Bj._ ;. Likewise, there is a vertex y € Bi. ; that is, in G’, at distance at least
ecc*(v, By..;) to any vertex in Bj. Let P be any shortest path of G’ between z and y. By
Claim 5}, the maximal subpath of P in B; \ v containing = has length at least ecc*(v, Bj) — 1
and the maximal subpath of P in By _; \ v containing y has length at least ecc*(v, By, ;) — 1.
Since these subpaths are vertex disjoint and, by Claim {4} ecc*(v, By, ;) + ecc*(v, Biy1) > D,
there is only one edge of P out of these subpaths and this edge intersects both B ; and B;.
This edge realizes the desired link. O
Claim [4] and Claim [6] clearly imply that for any 1 < i <'s, B;41 is linked to one of By, ..., B;.
A consequence of the next claim will be that B;1; is linked to exactly one of these branches.

Claim 7 The graph (with vertez set 1, ..., s) induced by the relation linked (ij is an edge iff B;
is linked to Bj) is a path. Furthermore, the subgraph induced by {1,...,i}, for any 1 <i <'s,
is connected.

Proof: The first statement is a consequence of the following three facts.

1. This graph is connected. Otherwise, v would be separating in G’[Bj], contradicting the
definition of branch.

2. This graph has maximum degree 2. Consider for contradiction that some branch B; is
linked to three branches Bj,, Bj,, and Bj,. As each of B; \ v, B;, \ v, Bj, \ v, and Bj, \ v
induces a connected graph in G’, these four sets together with v induce a K3 g-minor in
G', contradicting its outerplanarity.

3. This graph is not a cycle. Assume otherwise, so in particular it implies that s > 3. As each
B;\ v induces a connected graph in G’, these sets together with v would induce a K4-minor

in G’, contradicting its outerplanarity.

The second statement is a direct consequence of the fact that for any 1 < i < s, B;y1 is linked
to one of By,...,B;. |

Hence, for any 1 <14 < s, the graph G’[Bj..; \ v] is connected.
Claim 8 For any 1 <i<s—3, ecc*(v, By, jt+2) > ecc*(v, By._;).

Proof: By Lemma it suffices to show ecc*(v, By ;1+2) # ecc*(v, By, ;). Suppose this is false.
Then, Claim {4] implies that ecc*(v, By, ;) + ecc*(v,B;) > D for all j € {i+ 1,7+ 2,i + 3}.
Thus, by Claim @ each of B;i1, Bit2, and B;13 is linked to one of Bj,...,B;. As each of
Bi..i\v, Bix1\ v, Biy2 \ v, and B;13\ v induces a connected graph in G’, these sets together
with vertex v induce a K3 3-minor, contradicting the outerplanarity of G’. (]
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In the following let ¢ be any integer such that 4 < ¢ < s and By is not linked to B;. Note
by Claim that ecc*(v, B1.. 4—1) > ecc*(v, B1) > D/2. Let p < g be such that B, and B, are
linked. By Claim [7| p is unique. In the following we study the structure of G’ between these
two branches.

As there is a liana between B, and B, and G’ is triangulated, there is a path (v =
Zo,T1,%2,...,%,), for some r > 1, of vertices of B, (resp. a path (v = yo,y1,%2,--.,Yr),
for some r’ > 1, of vertices of By) such that a vertex belongs to this path if and only if it is
adjacent to a vertex of By \ {v} (resp. B, \ {v}) in G’. As G’ is triangulated, it contains the
edge {x1,11}, and there are r + r' — 1 lianas between B, and B,,.

As for any 0 < ¢ < r there is a path from z;_; to x;41 whose inner vertices are y;’s, note
that in the graph G'[B;.. 4—1], the blocks containing the edges z;_12; and z;z;4+1 are distinct.
Indeed, otherwise the vertices x;_1,x;—1, and z; 41 together with a path between x;_; and z;_1
in G [Bi...g—1], plus the vertex resulting from the contraction of B, would induce a K4-minor,
contradicting the outerplanarity of G’. Let X be the block of G'[B;.. 4—1] containing the edge
vxy. Note that every branch B; with ¢ < ¢ and ¢ # p belongs to X. Similarly the blocks
containing the edges y;y;+1 are all distinct.

Claim 9 In G, there is no vertex of By 4,—1 at distance more than ecc*(v, By 4—1) to any
verter of By.

Proof: Suppose there exists such a vertex z. As by Claim [5| some vertex y of B, is
at distance ecc*(v, B,) to any vertex of Bi_ ,_1, the two vertices z,y would be at least
ecc*(v, B1..q—1) +ecc* (v, By) apart. By Claim [4] this distance is more than D, a contradiction.
O

Claim 10 Let x € By 4—1 be, in G’, at distance at least ecc*(v, B1.. q—1) to any vertex of By
(including v) — x exists by Claim[5 Then, v € X.

Proof: Towards a contradiction, assume = ¢ X. Then, the distance of z and z; in G’ is
at least ecc*(v, B1..4—1) — 1. By Claim [5] there is a vertex y € By (thus y € X) that is, in
G, at distance at least ecc*(v, B1) to both v and z; (as #1 € B, # B1). As a shortest path
between z and y in G’ necessarily contains v or x1, these vertices are at distance at least
ecc*(v, By, q—1) — 1 + ecc*(v, B1) to each other. This distance is more than 2 ecc*(v, B1) > D,
a contradiction. g

Claim 11 ecc*(v, By, 4) = ecc*(v, B1. q-1).

Proof: By Lemma it suffices to show ecc*(v, B1._4) < ecc*(v, By, q—1). To this end, let H
be the outerplanar completion of B; . 4 obtained from G’ by contracting every branch B;, with
i > ¢, onto v. Since H is a minor of G’, H is an outerplanar completion of By, with diameter
at most D. We show ecc(v, H) < ecc*(v, B1..4-1)-

Let = be a vertex that is, in G’ and in H, at distance ecc*(v, B1.. 4—1) to v, and at distance
at least ecc*(v, Bi. 4—1) — 1 to 1. By Claim z € X. As H has diameter at most D, any
vertex out of X is either at distance at most D — ecc*(v, B1. 4—1) to v, or at distance at
most D + 1 — ecc*(v, Bi..q—1) to 1 (and thus at distance at most D + 2 — ecc*(v, B1._ 4-1)
to v). As ecc*(v,B1.. 4-1) > D/2 4+ 1, any vertex out of X is thus at distance at most
ecc*(v, B1.. 4—1) from v. Finally Claim |§| implies that the vertices of X are also at distance at
most ecc*(v, By, 4—1) from v in H. O

We now claim that there exist two consecutive such values ¢ between 4 and s > 7. Indeed,
note first that B ia linked to at most two other branches, as otherwise these branches together
with v and B; would induce a K> 3-minor. Note also that by Claim@ and Claim@ By is linked



8 N. Cohen, D. Gongalves, E. Kim, C. Paul, I. Sau, D. M. Thilikos, and M. Weller

to Bi, so it follows that B is linked to at most one branch B; with j > 3. Therefore, for
4 < g <7, there are at least two consecutive values of ¢ such that B, is not linked to By, as
we wanted to prove.

Once we have two consecutive such values ¢ between 4 and s > 7, we have by Claim [T that
ecc*(v, By, ;) = ecc* (v, By i42), for some i < s — 2, contradicting Claim This concludes the
proof of the lemma. O

Our algorithm will compute the eccentricity of a given “root” vertex in a diameter-D
outerplanar completion G’ of G in which this eccentricity is minimal, that is, ecc*(r, G). Then,
however, the branch containing the root (By in Algorithm [l Subsection should not be
removed. Therefor, although Lemma [2] already implies that G has an outerplanar completion
with diameter at most D if and only if G[Bj.. 7] does, we instead use the following corollary to
identify removable branches.

Corollary 1. Let G be an outerplanar graph with a separating vertex v that belongs to at least
8 branches. Denote these branches Bu, ..., By, with t > 8, in such a way that ecc*(v, By) >
ecc*(v, Ba) = ... > ecc*(v, By). For each 8 < i <'t, the graph G; = U,eqy, 7,4 Bj has an
outerplanar completion with diameter at most D if and only if G does.

Proof: Recall that the property of having an outerplanar completion with bounded diameter is
minor closed. Thus G; being a minor of G, we have that if G admits an outerplanar completion
with diameter at most D so does G;.

On the other hand, if GG; admits an outerplanar completion with diameter at most D,
by Lemma [2| applied to G; we have that ecc*(v,Bj. ¢) + ecc*(v,B7) < D. Thus gluing

on v the outerplanar completions of G[Bj. ¢],G[By],...,G[B:], respectively achieving
ecc*(v, By..6),ecc*(v, By),...,ecc*(v, By), one obtains an outerplanar completion of G with
diameter at most D. O

2.2 Dealing with 2-vertex separators

In this subsection, we extend the definition of eccentricity to the pairs (u,v) such that
wv € E(G). Namely, ecc(u,v,G) is defined as the set of pairs obtained by taking the max-
imal elements of the set {(distg(u,w),distg(v,w)) | w € V(G)}. The pairs are ordered such
that (di,ds) < (df,d}) if and only if d; < d} and dy < d. As u and v are adjacent, note that
distg (u, w) and distg (v, w) differ by at most one. Hence, ecc(u, v, G) equal to one of {(d,d)},
{(d,d+ 1)}, {(d+1,d)}, and {(d,d+ 1), (d + 1,d)}, for some positive integer d.

Claim 12 Consider a connected graph G = (X, E(G)) with a triangle vow and two sets
Xu, Xy C X such that X, UX, =X, X, N X, ={w}, 9(X,) C {u,w}, and 9(X,) C {v,w}.
Then ecc(u, v, G) equals the mazimal elements of the set

{(dy, min{d, + 1,dy, +1}) | (du,dw) € ecc(u, w, X;,)} U
{(min{d,, + 1,d, + 1},d,) | (dw,d,) € ecc(w, v, X,)}.

Proof: Clear from the fact that a shortest path from X, \ {u} to w does not go through
X, \ {w} (as it should go through w € N(u)), from the fact that a shortest path from X, to
v goes through {u,w} C N(v), and from the fact that any subpath of a shortest path is a
shortest path (for some pair of vertices). O

Given a connected outerplanar graph G, for any two vertices v, v € V(G) and any vertex set
X C V(G) with u,v € X such that 9(X) C {u,v}, let us define ecch(u, v, X) as the minimal
elements of the set

diameter at most D such that wv € E(H)

H is an outerplanar completion of G[X] of}
and such that uv lies on the outer face.

{ecc(u,v,H)
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If this set is empty, we set ecch, (u, v, X) to (00, 00). Similarly to Subsection we may drop the
subindex D from the notation ecch(u, v, X). Here, ecc(u, v, H) < ecc(u,v, H') if and only if for
any (di,ds2) € ecc(u,v, H) there exists a (d},d5) € ecc(u,v, H') such that (di,ds) < (d,d5).
According to the possible forms of ecc(u,v, H), we have that ecc*(u,v, X) is of one of the
following five forms:

{(d,d)}},
{{(d,d+1)
{{(d+1,d)
{{(d,d+1)
{{(d,d+1)

1
}

2
,(d+1,d)}}, or
FAld+1,d)},

for some positive integer d.

Considering ecc*(u, X) for some u and X, note that u has at least one incident edge uv on
the outer face in the outerplanar completion achieving ecc*(u, X). Thus, we can observe the
following.

Observation 1 ecc*(u, X) = min, e x mingeeces (u,v, x) MAX(d,,,d,)eS u-

2.3 The algorithm for connected outerplanar graphs

We now proceed to describe a polynomial-time algorithm that solves OUTERPLANAR DiAM-
ETER IMPROVEMENT when the input outerplanar graph is assumed to be connected. In Ap-
pendix [A] we will deal with the disconnected case. Before proceeding to the formal description
of the algorithm, let us provide a high-level sketch.

Algorithm [1] described below receives a connected outerplanar graph G, an arbitrary non-
separating vertex r of G (called the root), and a positive integer D. In order to decide whether
G admits an outerplanar completion of diameter at most D, we will compute in polynomial
time the value of ecc},(r, G), which, by definition, is distinct from oo if and only if G admits
an outerplanar completion of diameter at most D.

In order to compute ecch)(r, G), the algorithm proceeds as follows. In the first step (lines
E[), we consider an arbitrary block B of G containing r (line, and in order to reduce the input
graph GG, we consider all vertex separators v of G in B. For each such separator v, we order its
corresponding branches according to their eccentricity w.r.t. v (line , and by Corollary [1fit is
safe to keep just a constant number of them, namely 8 (line E[) For computing the eccentricity
of the branches not containing the root (lines , the algorithm calls itself recursively, by
considering the branch as input graph, and vertex v as the new root.

In the second step of the algorithm (lines , we try all 2-vertex separators u, v in the
eventual completed graph G’ (note that G’ cannot be 3-connected, as otherwise it would contain
a Ky g-minor), together with a set X consisting of a subset of the connected components of
G’ \ {u, v}, not containing the root r. For each such triple (u, v, X), our objective is to compute
the value of ecc,(u,v, X). For doing so, after initializing its value (lines , we consider
all possible triples w, X,, X, chosen as in Claim (line , for which we already know the
values of ecch, (u, w, X,,) and ecch(w, v, X,), since the sets X are processed by increasing size.
Among all choices of one element in ecc},(u, w,X,) and another in ecch(w,v, X,) (line ,
only those whose corresponding completion achieves diameter at most D are considered for
updating the value of ecch,(u,v, X) (line [15)). For updating ecc},(u,v, X) (line , we first
compute eccp(u, v, X) using Claim [12] (line [L6]).

Finally, once we have computed all values of ecc},(u, v, X), we can easily compute the value
of ecch(u, X) by using Observation (1] (line . We can now provide a formal description of
the algorithm.
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Algorithm 1: OPDI-Connected

Input : A connected outerplanar graph G, a root r € V(G) such that G\ {r} is
connected, and a positive integer D.
Output: ecch,(r, G).

// all over the recursive calls of the algorithm, G is a global variable,
which gets updated whenever some vertices are removed in line

Let B be a block of G containing 7.

// we consider all l-separators of B and we reduce G

2 foreach separating vertex v € V(B) do

3 Let Cy,...,Ct be the connected components of G \ {v}, where r € Cy.

4 Let Bp <~ Cy. // the branch containing the root

5

6

7

=

for i< 1 tot do
Let B; < G[C; U{v}]. // the branches around v
ecc; <— OPDI-Connected(B;,v, D).// recursive call to compute ecch (v, B;)

Reorder the B;’s so that ecc; > eccg > ... > ecc;.
Remove Bs,...,B; from G. // by Corollary

®

©

// we now guess all 2-separators u,v in the target completion G’,
together with a subset X of the connected components of G'\ {u,v}
10 foreach triple (u,v, X) such that r ¢ X and 9(X) C {u,v} do
// by increasing size of X, and only if the triple (u,v,X) has not
already been considered before in a previous iteration
11 Tabgco(u, v, X) < (00,00). // it corresponds to ecch,(u,v,X)
12 if X = {u,v} then Tabgpcc(u,v,X) {{(OH, (1,0)}}.

13 else foreach w, X,, X, chosen as in Claim do

// eccentricities of smaller subgraphs have been already computed
14 foreach S, € Tabgco(u,w, X,) and S, € Tabgoo(w,v, X,) do
15 if for all (dy,dY) € S, and (dy,,dY) € S,, we have (d¥ + d¥, < D) or

(dy +1+d, < D) then
// if the diameter of the considered completion of X does not
exceed D, we compute eccp(u,v,X) using Claim
16 Ecc < max{ {(dy,min{d, + 1,dy, +1}) | (du,dw) € Su} U
{(min{dy + 1,dy + 1},dy) | (dw,dy) € Sp} }.
// we now update ecc},(u,v,X)
17 Tabgcc(u, v, X) < min{Tabgcc (u, v, X) U Ecc}.

// finally, we compute ecc},(r,G) using Observation
18 return min, ey (G)\ {r} MiNgeTabpee (o, V(G)) MAX(d, d,)es Du-

The correctness of Algorithm [I] follows from the results proved in Subsections [2.1] and
It remains to analyze its running time.

Running time analysis of Algorithm [I] Note that at line[6] each B; is recursively replaced
by an equivalent (by Corollary (1)) subgraph such that its separating vertices have at most 8
branches attached.

Let us first focus on the second step of the algorithm, that is, on lines The algorithm
considers in line at most O(n?) pairs {u,v}. As each of u and v has at most 7 attached
branches avoiding the root, and G \ {u,v} has at most 2 connected components with vertices
adjacent to both u and v (as otherwise G would contain a K5 z-minor), there are at most
27 .27 .22 = 216 possible choices for assigning these branches or components to X or not. In
line the algorithm considers O(n) vertices w. Similarly, as w belongs to at most 7 branches
not containing u nor v, there are at most 27 choices for assigning these branches to X, or
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X,. In lines the algorithm uses values that have been already computed in previous
iterations, as the sets X are considered by increasing order. Note that each of ecch (u, w, X,,)
and ecc},(w, v, X)) contains at most 2 elements, so at most 4 choices are considered in line
Again, at most 4 choices are considered in line Therefore, lines are executed in
constant time.

As for the first step of the algorithm (lines , the algorithm calls itself recursively. The
number of recursive calls is bounded by the number of blocks of GG, as by construction of the
algorithm each block is assigned a single root. Therefore, the number of recursive calls is O(n).
Once the algorithm calls itself and the corresponding branch has no separating vertex other
than the root, the algorithm enters in lines whose time complexity has already been
accounted above. (Note that each triple (u,v,X) is considered only once, and the value of
ecch(u,v, X) is stored in the tables.)

Finally, in line the algorithm considers O(n) vertices, and for each of them it chooses
among constantly many numbers. Summarizing, we have that the algorithm has overall com-
plexity O(n?).

It is worth mentioning that Algorithm [I| can also compute the actual completion achieving
diameter at most D, if any, within the same time bound. Indeed, it suffices to keep track of
which edges have been added to G when considering the guessed triangles uvw (recall that we
may assume that the completed graph is triangulated).

Theorem 1. Algorithm[1] solves OUTERPLANAR DIAMETER IMPROVEMENT for connected in-
put graphs in time O(n?).

Note that we can compute opdi(G) by calling Algorithm With an arbitrary root r € V(G)
for increasing values of D.

Corollary 2. Let G be a connected outerplanar graph. Then, opdi(G) can be computed in
time O(n*).
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A The algorithm for disconnected outerplanar graphs

In this subsection we will focus on the case where the input outerplanar graph is disconnected.
The radius of a graph is defined as the eccentricity of a “central” vertex, that is, the minimum
eccentricity of any of its vertices.

Lemma 3 ([8], Theorem 3). Let G be a mazimal outerplanar graph of diameter D and
radius r. Then, r < |D/2] + 1.

In the following, we denote the minimum radius of a diameter-D outerplanar completion of
a graph or connected component G by r*(G). If G has no diameter-D outerplanar completion,
then let r*(G) = co.

Definition 1. Let G be a connected graph and let D be an integer. Let G’ be the graph resulting
from G by adding an isolated vertex v. Let G* be a diameter-D outerplanar completion of G’
that minimizes the eccentricity of v. Then, G* is called escalated completion of (G, D) with
respect to v and the eccentricity ecc(v, G*), denoted by r+(G), is called escalated eccentricity
of (G, D). Again, if such a G* does not exist, let 7+ (G) = oco.

We will apply Definition [1] also to connected components of a graph and, if clear from context,
we omit D. Note that we can compute r*(G) by guessing an edge between the isolated vertex v
and G and running OPDI-Connected, the algorithm for connected graphs. Hence this can be
done in O(n*) time. Also note that r*(G) < r¥(G) < r*(G) + 1.

Lemma 4. Given a graph G with a connected component C such that r*(C) < D/2, then G
has a diameter-D outerplanar completion if and only if G\ C does.

Proof: In a diameter-D outerplanar completion of G \ C there is a vertex v with eccentricity
at most |D/2| +1, by Lemma In this completion, adding the completion of C'+ v achieving
rT(C) < D/2, yields a diameter-D outerplanar completion of G. O

Observation 2 Let C be a connected component of G, let G' be an outerplanar completion
of G and let C' be a connected component of G' \ C. Then, there is a vertexr v € C at distance
at least 7 (C') to each vertex of C" in G'.

Proof: Let the result of contracting all vertices in G’ \ (C' U C") onto vertices in C' and con-
tracting C” onto a single vertex u be G”. Then, G” is a subgraph of an outerplanar completion
of the result of adding u as isolated vertex to G'[C]. By definition, ecc(u,G") > r*(C),
implying that there is a vertex v € C at distance at least »™(C) to u in G”. Thus, v is at
distance at least 7 (C') to each vertex of C’ in G’. O

Observation [2]immediately implies that any cutset separating two connected components C4
and Cy of G in G’ has distance at least r™(Cy) and r™(Cs) to some vertex in C; and Cj,
respectively. Thus, these two vertices are at distance at least r(Cy) + 77 (Cs) in G'.

Corollary 3. Let C; and Cy be connected components of G such that r+(Cy) +rT(Cy) > D
and let G’ be a diameter-D outerplanar completion of G. Then, C1 and Cy are adjacent in G',
i.e. G' has an edge with an end in Cy and an end in Cs.

Corollary allows us to conclude that all connected components C' with r(C) > D/2 have
to be pairwise adjacent in any diameter-D outerplanar completion of G. Thus, there cannot be
more than three such components.
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Lemma 5. An outerplanar graph G with more than 38 connected components C such that
r*(C) > D/2 has no diameter-D outerplanar completion.

On the other hand, if G has no connected component C such that r*(C) > D/2, then G
necessarily has a diameter-D outerplanar completion.

Proof: The first statement comes from the above comments. The proof of the second
statement is similar to the one of Lemma [4 For some component C' of G, let v be such that
ecc(v,C) =r*(C) < r*t(C) < D/2, and complete C in order to achieve this value. Then for the
other components C’ consider their escalated completion with respect to v. As r*(C’) < D/2
this graph has diameter at most D. (Il

Hence, assume G has p = 1,2 or 3 connected components C' such that r+(C) > D/2.
By Corollary [3] these p components are pairwise adjacent in the desired completion. Note
that with O(n?P=2) tries, we can guess p — 1 edges connecting all such components into one
larger component. Thus, in the following, we assume that there is only one component C
with »(C) > D/2, denoted Cpax.

Lemma 6. Consider an outerplanar graph G with exactly one connected components Cpaq
such that D/2 < 7 (Cpaz) < 00. If 7*(Cnaz) < D/2, then G necessarily has a diameter-D
outerplanar completion.

Proof: Same proof as Lemma O
Let us now distinguish two cases according to the parity of D.

Lemma 7. For odd D, if an outerplanar graph G has at most one component Cpqr such that
D/2 < rT(Cmas) < 00, then G has a diameter-D outerplanar completion.

Proof: Indeed, by Lemma [ it is sufficient to consider the component Cpax alone. As
7 (Crnax) < 00, Cmax has a diameter-D outerplanar completion, and so does G. O

The case where D is even is more technical.

Lemma 8. For even D, Let p and q respectively denote the number of connected components
C such that D/2 < r*(C) < oo and r*(C) = D/2, of an outerplanar graph G. If p > 2 and
p+q > 5, then G has no diameter-D outerplanar completion.

Proof: By Corollary in a diameter-D outerplanar completion G’ of G the p components are
pairwise adjacent, and any of the ¢ components is adjacent to every of the p ones. For p = 2,
as ¢ > 3, this would induce a K» s-minor in G’, a contradition. For the other cases, this would
induce a K -minor in G’, a contradition. O

Lemma 9. For even D, if an outerplanar graph G has one component, denoted Cpqz, Such
that D/2 < 1*(Cpaz) < 00, and at least 4 other components C such that D/2 < r*(C) < oo,
then G has no diameter-D outerplanar completion.

Proof: Let us denote C1, Cy, C3, and Cy the connected components such that r+(C;) > D/2,
distinct from Cpax. Assume for contradiction that G admits a diameter-D outerplanar comple-
tion, denoted G’.

Claim 13 For each C;, C;, either C; and C; are adjacent in G', or C; and C; have a common
neighbor in G’.



A Polynomial-time Algorithm for Outerplanar Diameter Improvement 15

Proof: Assume for contradiction that C; and C; are not adjacent and do not have a common
neighbor in G’. Let us now construct the graph G” from G’ as follows. For any component C
of G"\ (C; U C)) that is not adjacent to both C; and Cj, contract C' onto vertices of C; or
C; (According to the one C is neighboring). As G” is obtained from G’ by contracting edges,
G" also is a diameter-D outerplanar completion (for some graph containing C; and C;). Let
N; = Ng//(ci), let Nj = NGn(Cj), and note that C; ﬁNj =0, N; ij =0, and N; ﬂNj = (.
Then, by Observation [2| (as G” \ C; and G” \ C; are connected), there are vertices v; € C;
and v; € C; at distance at least D/2 to each vertex in N; and Nj, respectively, in G”. Since N;
and N; are at distance at least one, v; and v, are at distance at least D + 1, contradicting G”
having diameter D. ]

Claim 14 There is a vertex u € Cpqz that is adjacent in G' to 8 of the components Cy, Ca, Cs,
and Cy.

Proof: First, note that there is a vertex u and 3 components, say C1,Ca, Cs3, with u € Ng/[C}]
for all 1 < i < 3, since otherwise, there would be internally vertex-disjoint paths between each
two of the four components C;, implying the existence of a K4-minor in G'.

If w is neither in Cyax nor in Cj, for 1 < ¢ < 3, then, since all the C; are adjacent to Cpax
(by Corollary , G’ would have a K3 s-minor on the vertex sets {u,Cpax} and {C1, Ca, Cs}.

Hence, in the following, we assume that v € C;. Let z be a neighbor of C7 in Cpax
and, for i € {2,3} let w; denote a neighbor of Cy in N[C;]. We note that wy # 2z and
w3 # z, since otherwise, the claim follows and we are done. Furthermore, wes # wu and
w3 # u, since otherwise there is a K g-minor on the vertex sets {u,Cmax} and {Cs, Cs, C4}.
Let X := (Cy U{wz,w3}) \ (C2 U C5) and note that X is adjacent to Cy and Cs, respectively.
Let Y be the connected component of Cpayx \ {we, w3} containing z, and note that Y is adjacent
to Cq1 and X. Finally, since X, Y, C1, Co, and C5 are pairwise disjoint, G’ has a K3 3-minor
on the vertex sets {X,C;} and {C5,C3,Y}. O

Let v denote a vertex of Cpax that is at distance at least D/2 + 1 to v in G’ and consider
the result G’ \ {u} of removing u from G’. Let C' denote the connected component of G’ \ {u}
that contains v. Towards a contradiction, assume there is a connected component C; that is
adjacent to u but not to C' in G’, then all paths between v and any vertex in C; contain u.
Since G’ has diameter D, all vertices in C; are at distance at most D/2 — 1 to u in G’,
contradicting r*(C;) > D/2. Thus there is a K3 3-minor in G’ on the vertex sets {C, Ca, Cs}
and {u, X} where X is the connected component of G’ \ (Cy U Cy U C3 U {u}) containing v.
This concludes the proof of the lemma. O

Hence, assume G has ¢ = 0,1,2 or 3 connected components C' such that r*(C) = D/2.
By Corollary [3] these ¢ components are adjacent to each of the p components such that
r+(C) > D/2. Note that with O(n??) tries, we can guess ¢ edges connecting each of the ¢
components to one of the p component. Then we are left with a connected graph, and we can
call OPDI-Connected.

The algorithm itself. We now describe a polynomial-time algorithm that solves the OuT-
ERPLANAR DIAMETER IMPROVEMENT problem when the input contains a disconnected out-
erplanar graph. Algorithm [2| described below receives a (disconnected) outerplanar graph G,
and a positive integer D. At the beginning, the algorithm computes r(C) and 7*(C) for each
connected component C' of G. For computing r+(C) the algorithm adds a vertex v, guessing
(with O(n) tries) an edge connecting v to C, and then calls OPDI-Connected for this compo-
nent and root v. For computing r*(C) the algorithm guesses a root u (with O(n) tries), and
then calls OPDI-Connected for C' and root u.

If 7*(C) = oo for some component C then, as r*(G) > r*(C), G has no diameter-D
outerplanar completion.
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Then, as they could be added in a diameter-D outerplanar completion (by Lemma , the
algorithm removes the components C' with small escalated eccentricity, that is those such that
rt(C) < D/2.

Then the algorithm tests if there is no component C such that r™(C) > D/2, or if there is
only one component C such that r*(C) > D/2, and if r*(C) < D/2. In both cases by Lemma
and Lemmalf] G is a positive instance.

Then the algorithm tests if there is more than 3 component C' such that r*(C) > D/2. In
this cases, by Lemmal5] G is a negative instance. Otherwise, G has p = 1,2 or 3 such connected
components, and the algorithm guesses p — 1 edges (in time O(n?*~2)) to connect them (as
they should be by Corollary . For each such graph we compute OPDI-Connected to check
that this graph has a diameter-D outerplanar completion.

Then the algorithm proceeds differently according to D’s parity. If D is odd, then G is
a positive instance (By Lemma .If D is even, if G has (still) more than 5 — p connected
components (by Lemma and Lemma@, then G is a negative instance. Then we are left with
a graph G with 1+ g connected components, and again the algorithm guesses g edges (in time
O(n?7)), connecting G. For each of these graphs the algorithm calls 0PDI-Connected(G, v, D)
(for any v) to check whether this graph admits a diameter-D outerplanar completion.

Finally if none of these “guessed” connected graphs has a diameter-D outerplanar comple-
tion, then the algorithm concludes that G is a negative instance.
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Algorithm 2: OPDI-Disconnected

Input : A disconnected outerplanar graph G = (V, E) and an integer D.
Output: “TRUE” if and only if G has an outerplanar completion with diameter < D.

1 foreach connected component C of G do

2 | rH(C)+

3 r*(C) + oo

4 foreach v € V(C) do

5 Ecc+— OPDI-Connected(C,u, D)

6 r*(C) + min{r*(C), Ecc}

7 C'" + C with add vertex v and added edge uv
8 Ecc+ OPDI-Connected(C’,v, D)

9 rt(C) < min{r*(C), Ecc}

10 if 77(C) = co then return FALSE

11 if »7(C) < D/2 then Remove C from G

12 if 77(C) < D/2 for every C then return TRUE
13 if 77 (C) < D/2 for every C except one, Cpaz, and r*(Cpmaz) < D/2 then
14 L return TRUFE

15 if T (C) > D/2 for at least 4 conn. component C' then return FALSE
16 foreach choice of edges interconnecting these p = 1,2, or 3 connected components do

// choose p—1 edges
17 Let Cpax be this new conn. component
18 if OPDI-Connected(C oz, v, D) < 0o then
19 if D is odd then return TRUEFE if G has more than 5 — p conn. comp. then
// Cuaxy and ¢ conn. comp. such that r7(C) = D/2
20 return FALSE
21 else
22 foreach choice of q edges connecting G do
23 L if OPDI-Connected(G,v, D) < oo then return TRUE
24 return FALSE

25 return FALSE

Theorem 2. Algorithm [ solves OUTERPLANAR DIAMETER IMPROVEMENT for disconnected
input graphs in polynomial time. For odd D the running time is O(n"), while it is O(n®) for
even D.

Proof: Indeed, the algorithm runs in time O(n”) for odd D (at most O(n*) at line times
O(n3) for the call to OPDI-Connected in line . The algorithm runs in O(n?*29+1) time
for even D (O(n?’~2) in line times O(n??) in line times O(n3) for the call to
OPDI-Connected in line , where p and ¢ respectively denote the number of connected
components C such that »7(C) > D/2 and r+(C) = D/2. As p+ q < 4 we are done. O



