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Abstract4

Given a graph G and a demand function p : V (G) → N, a proper n-[p]coloring is5

a mapping f : V (G) → 2{1,...,n} such that |f(v)| ≥ p(v) for every vertex v ∈ V (G)6

and f(v) ∩ f(u) = ∅ for any two adjacent vertices u and v. The least integer n for7

which a proper n-[p]coloring exists, χp(G), is called the multichromatic number of8

G. Finding the multichromatic number of induced subgraphs of the triangular lattice9

(called hexagonal graphs) has applications in cellular networks. The weighted clique10

number of a graph G, ωp(G), is the maximum weight of a clique in G, where the weight11

of a clique is the total demand of its vertices. McDiarmid and Reed [8] conjectured that12

χp(G) ≤ (9/8)ωp(G)+C for triangle-free hexagonal graphs, where C is some absolute13

constant. In this article we provide an algorithm to find a 7-[3]coloring of triangle-14

free hexagonal graphs (that is, when p(v) = 3 for all v ∈ V (G)), which implies that15

χp(G) ≤ (7/6)ωp(G)+C. Our result constitutes a shorter alternative to the inductive16

proof of Havet [5] and improves the short proof of Sudeep and Vishwanathan [13], who17

proved the existence of a 14-[6]coloring. All steps of our algorithm take time linear18

in |V (G)|, except for the 4-coloring of an auxiliary planar graph. The new techniques19

may shed some light on the conjecture of McDiarmid and Reed [8].20

Keywords: graph algorithm, approximation algorithm, graph coloring, frequency21

planning, cellular networks.22

1 Introduction23

Given an induced subgraph G = (V,E) of the triangular lattice (called a hexagonal graph)24

together with a demand function p : V (G) → N, a proper n-[p]coloring of G (also called25

multicoloring) is a mapping f : V (G) → 2{1,...,n} such that |f(v)| ≥ p(v) for every vertex26

v ∈ V (G) and f(v)∩f(u) = ∅ for any two adjacent vertices u and v. The least integer n for27

which a proper n-[p]coloring exists, denoted by χp(G), is called the multichromatic number28

of G. Another invariant of interest in this context is the (weighted) clique number, denoted29

by ωp(G), defined as follows: The weight of a clique of G is the sum of the demands of30

its vertices and ωp(G) is the maximum clique weight in G. Clearly, χp(G) ≥ ωp(G). The31

bound χp(G) ≤ (4/3)ωp(G) + C [8–10, 15], for some absolute constant C, is still the best32

known for both distributed and non-distributed models of computation.33

As stated originally by McDiarmid and Reed [8], the motivation for the study of mul-34

ticoloring problems on hexagonal graphs was that hexagonal graphs arise naturally in35
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studies of cellular networks, such as in the Philadelphia instances [12]. A fundamental1

problem concerning cellular networks is to assign sets of frequencies (colors) to transmit-2

ters (vertices) in order to avoid unacceptable interferences [4]. The number of frequencies3

demanded at a transmitter may vary between transmitters. A cellular network can be4

modeled in such a way that transmitters are centers of hexagonal cells and the corre-5

sponding adjacency graph is a subgraph of the infinite triangular lattice. An integer p(v)6

is assigned to each vertex of the triangular lattice and is called the demand of vertex v. It7

should be noted that hexagonal graphs were indeed a good model for rural and for some8

early cellular networks, but on the other hand the networks in urban areas are usually9

much more complicated. As nowadays technology is constantly changing, the relation be-10

tween the design of cellular networks and multicoloring of hexagonal graphs is now merely11

historical. However, it is not hard to imagine that call privacy could be required in some12

scenarios, and therefore a multicoloring model may be still relevant in some practical ap-13

plications. Anyway, in the last decades this high technology application motivated a lot14

of mathematical work (cf. for instance [2, 5–9, 13, 15–17, 19, 20]), and some challenging15

problems remained open. We now proceed to discuss some of this work.16

A framework for studying distributed online assignment in cellular networks was devel-17

oped in [7], where 3/2-competitive 1-local, 17/12-competitive 2-local, and 4/3-competitive18

4-local algorithms are outlined. Recall that an algorithm is k-local if the computation at19

any vertex v uses only information about the demands of vertices at distance at most k20

from v. Further, we say that an approximate algorithm for multicoloring is r-competitive21

if it yields the upper bound χp(G) ≤ rωp(G) +C for the multichromatic number of an ar-22

bitrary graph G, for some absolute constant C. Later, a 4/3-competitive 2-local algorithm23

was developed [15]. The best ratio for the 1-local case was first improved to 13/9 [2], later24

to 17/12 [18], 7/5 [19], and finally to 33/24 [20].25

Better bounds can be obtained for triangle-free hexagonal graphs. The conjecture26

made by McDiarmid and Reed [8] is that χp(G) ≤ (9/8)ωp(G) + C holds for triangle-27

free hexagonal graphs. In [6] a distributed algorithm for triangle free-hexagonal graphs28

with competitive ratio 5/4 is given. In [16] the authors report the existence of a 2-local29

distributed algorithm with competitive ratio 5/4, while an inductive proof for ratio 7/630

is reported in [5]. A 2-local 7/6-competitive algorithm for a sub-class of triangle-free31

hexagonal graphs is given in [17].32

A special case of a proper multicoloring is when p is a constant function. For example,33

a 7-[3]coloring is an assignment of three colors between 1 and 7 to each vertex. In this34

paper we prove the following result.35

Theorem 1 There exists an algorithm for 7-[3]coloring triangle-free hexagonal graphs.36

The running time of the above algorithm is quadratic in the number of vertices of37

the input graph (cf. Section 4.2). Theorem 1 provides a shorter alternative proof to the38

inductive proof of Havet [5] and improves the short proof of [13] that implied the existence39

of a 14-[6]coloring. Note that in the case under study, we have that ωp(G) = 6. Using40

standard methods, one can derive from Theorem 1 the existence of an algorithm that uses41

at most (7/6)ωp(G) + C colors, as we briefly discuss in Section 5.42

The rest of the paper is organized as follows. In Section 2 we formally define some43

basic terminology. In Section 3 we present an algorithm for 7-[3]coloring an arbitrary44

triangle-free hexagonal graph G. The correctness of the algorithm is proved in Section 4.145

and its running time is discussed in Section 4.2. Finally, Section 5 concludes the article.46
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2 Preliminaries1

The vertices of the triangular lattice can be represented as integer linear combinations2

xp⃗ + yq⃗ of the two vectors p⃗ = (1, 0) and q⃗ = (12 ,
√
3
2 ) of R2. Thus, we may identify the3

vertices of the triangular grid with pairs (x, y) of integers. Two vertices are adjacent when4

the Euclidean distance between them is one. Therefore each vertex (x, y) has six neighbors5

(x± 1, y), (x, y ± 1), (x+ 1, y − 1), and (x− 1, y + 1). For simplicity, we will refer to the6

neighbors as R (right), L (left), UR (up-right), DL (down-left), DR (down-right), and UL7

(up-left), respectively, see Figure 1(a).8

There is a natural 3-coloring of the vertices of the infinite triangular lattice, which9

gives rise to the partition of the vertex set of any hexagonal graph into three independent10

sets Red, Blue, and Green. According to this partition, each vertex v ∈ V (G) has its base11

color, namely red (r), blue (b), or green (g), which is denoted by c(v). Formally, we define12

c(v) = (x+ 2y) (mod 3) + 1.

To avoid confusion, we define the constants r =−2, b=−1, g=0, and will use r, b, g when13

referring to the colors of the 7-coloring (with slight abuse of notation, our seven colors will14

range from −2 to 4), see Figure 1(b). We denote this 3-coloring by rbg-coloring.15

(0,0)

(-1,1) (0,1)

(1,0)(-1,0)

(0,-1) (1,-1)

RL

UL UR

DL DR

u-2 r

u00 gu-1 b

(a) (b)

u-1 b

u-1 b u00 g

u00 g

Figure 1: Coordinates and base colors.

Definition 2 A vertex v ∈ V (G) is a right center if it has at least two of its R, DL, and16

UL neighbors in G. Similarly, a vertex v ∈ G is a left center if it has at least two of its17

L, DR, and UR neighbors in G.18

Note that in a triangle-free hexagonal graph, two centers of the same type (left or19

right) cannot be adjacent. Note also that each cycle contains centers of both types.20

We need to introduce the following definitions.21

Definition 3 A vertex v ∈ V (G) is suitable if it has neither L, UR, nor DR neighbor.22

Note that a suitable vertex is either a right center, has just one (R, UL, or DL) neighbor,23

or is an isolated vertex.24

Definition 4 Let c stand for red, blue, or green. A vertex v is c-free if its base color and25

the base colors of its neighbors are all different from c.26

By the above definitions and because we assume that there are no triangles, a center27

of a triangle-free graph is a c-free vertex. For example, a red right center and a blue left28

center are both green-free. Note that all neighbors of a center have the same base color.29
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Definition 5 A path (x1, x2, . . . , xs) is called left (resp. up-right, down-right) if xi+1 is1

the left (resp. up-right, down-right) neighbor of xi for i = 1, 2, . . . , s − 1. A tristar is2

the union of one left (x, u1, u2, . . . , uk), one up-right (x, v1, v2, . . . , vℓ), and one down-right3

path (x, z1, z2, . . . , zm), for k, ℓ,m ≥ 0. The paths of a tristar will be called rays.4

x
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l-1

z
m-1
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v
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1
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m
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2
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1

Figure 2: A tristar.

Note that a path and an isolated vertex are special cases of a tristar, where one or two5

of indices k, ℓ, and m equal to zero, or k = ℓ = m = 0, respectively.6

Let uk, vl, and zm be the end-vertices of a tristar with common vertex x (see Figure 2).7

Note that there are only two possibilities for the parities of the lengths of the paths8

(uk, . . . , x, . . . , vℓ), (uk, . . . , x, . . . , zm), and (vℓ, . . . , x, . . . , zm). Namely, either the lengths9

of all three paths are even (i.e., all three rays have the same length parity) or the lengths10

of two paths are odd and the length of the remaining path is even (i.e., the rays have11

different length parity).12

3 The algorithm13

We describe in this section an algorithm which 7-[3]colors a triangle-free hexagonal graph14

G. The algorithm uses seven colors, more precisely, the three base colors r, b, and g15

and four additional colors 1, 2, 3, and 4. Recall that c(v) denotes the base color of vertex16

v ∈ V (G). Loosely speaking, the algorithm is composed of the following four steps:17

◦ Assignment of the base rbg-coloring to the whole graph G;18

◦ Partial coloring of suitable vertices (see Definition 3);19

◦ Creation of an auxiliary graph, which is planar and thus 4-colorable;20

◦ Extension of the obtained auxiliary graph coloring to the vertices with higher demand21

in such a way that the final 7-[3]coloring is proper.22

We are now ready to give a precise description of the algorithm.23

Input: A triangle-free hexagonal graph G = (V,E, p), with constant
demand p(v) = 3 for every v ∈ V and given coordinates of vertices.

Output: A proper 7-[3]coloring of G.
24

Step 1: (rbg-coloring):25

Assign the base rbg-coloring to the graph G. This reduces the demand p(v) by one26

for every vertex v ∈ V (G). Therefore, the new demand is equal to p1(v) = 2 for27

every vertex v ∈ V (G). Let G1 = (V,E, p1).28
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Step 2: (Suitable vertices):1

All suitable vertices are assigned the free color, i.e., a c-free suitable vertex is assigned2

color c. Hence the new demands are p2(v) = 1 for suitable vertices and p2(v) = 23

for any other vertex v ∈ V . The obtained graph is denoted by G2 = (V,E, p2).4

Remark 6 Let S be a tristar in G2 such that p2(v) = 2 for every v ∈ V (S), with5

rays (x, u1, u2, . . . , uk), (x, v1, v2, . . . , vℓ), and (x, z1, z2, . . . , zm). Note that the only6

neighbors w of vertices of S in graph G2 with p2(w) = 1 can be vertices u (an L7

neighbor of uk), v (an UR neighbor of vℓ), and z (a DR neighbor of zm); see Figure8

3. Indeed, in all other cases either vertices uk, vℓ, or zm are not the end-vertices of9

S with p2(·) = 2 or there is a contradiction with the assumption that G is triangle-10

free. Note that S can have none, one, two, or all three neighbors u, v, and z in G2,11

and these neighbors must be right centers. A tristar S together with its neighbors12

is called an extended tristar, denoted by Ŝ. Therefore, for an extended tristar Ŝ it13

holds V (Ŝ) \ V (S) ⊆ {u, v, z}.14
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Figure 3: A tristar S and an extended tristar Ŝ.

Step 3: (4-coloring of the vertices of demand 1 in G2):15

Create auxiliary graphs Ḡ3 = (V̄3, Ē3) and G̃ = (Ṽ3, Ẽ) as follows:16

Let V̄3 = {v ∈ V (G) : p2(v) = 1}. Note that there are no edges in G between any17

two vertices in V̄3.18

Define the graph Ḡ3 by adding the following edges among the vertices in V̄3. For19

every tristar S ⊆ G2 such that p2(v) = 2 for every v ∈ V (S):20

(a) If S has three neighbors u, v, z in G2 with p2(u) = p2(v) = p2(z) = 1, and the21

lengths of two paths among (u, . . . , x, . . . , v), (u, . . . , x, . . . , z), and (v, . . . , x, . . . , z)22

are odd, then connect the end-vertices of the paths of odd length (see the upper part23

of Figure 4).24

(b) If S has two neighbors w1, w2 in G2, with p2(w1) = p2(w2) = 1, then connect w125

and w2 if the length of the path between them is odd.26

27

Finally, create the graph G̃ = (Ṽ3, Ẽ) by identifying vertices of V̄3 using the following28

rule: For every tristar S such that p2(v) = 2 for every v ∈ V (S), having three29

neighbors u, v, z with p2(u) = p2(v) = p2(z) = 1, do the following. If the lengths of30

all three paths (u, . . . , x, . . . , v), (u, . . . , x, . . . , z), and (v, . . . , x, . . . , z) are even, then31

identify the L and DR neighbors (see the lower part of Figure 4).32

33

Color vertices of G̃ with four colors {1, 2, 3, 4}. Here we use the fact that G̃ is a34

planar graph without loops (see Lemma 8), hence it is 4-colorable [1, 11].35
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Figure 4: New edges and identifications.

The color assigned to vertex v ∈ V (G̃) is denoted by N(v). Note that this is at the1

same time a partial assignment to vertices of G2. Hence the new demand is equal to2

p3(v) = p2(v) − 1 = 0 for every vertex v ∈ V̄3 and p3(v) = p2(v) = 2 for any other3

vertex v. Let G3 = (V,E, p3).4

Use the 4-coloring of G̃ to assign one color from the set {1, 2, 3, 4} to the vertices of5

G3 in the natural way, that is, identified vertices receive the same color.6

Step 4: (Extension of the obtained coloring):7

Extend the assigned coloring (of Steps 1 up to 3) to the vertices of graph G that are8

not completely multicolored (that is, vertices v with p3(v) = 2), in the following way.9

The only uncolored connected subgraphs induced on vertices v of demand p3(v) = 210

are tristars (see Lemma 7). Using Lemma 9, extend the partial coloring of G3 to11

multicolor uncolored tristars, using colors {1, 2, 3, 4}.12

4 Correctness and running time13

We prove in Section 4.1 the correctness of the algorithm and we analyze its running time14

in Section 4.2.15

4.1 Correctness proof16

We show in this section that the algorithm of Section 3 gives a proper 7-[3]coloring of an17

arbitrary triangle-free hexagonal graph G. After proving some useful facts, we continue18

with an outline of the proof following the structure of the algorithm.19

Lemma 7 Let G4 be the graph induced on vertices of demand 2 in G3. The connected20

components of G4 are tristars.21

Proof. Since every right center was assigned two colors in Steps 1 and 2, there is no right22

center in G4. Therefore, the connected components of the graph G4 are tristars. Recall23

that paths and isolated vertices are special cases of tristars.24

Lemma 8 Graph G̃ obtained in Step 3 of the algorithm is a planar graph without loops.25
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Proof. The original graph G is an induced subgraph of a triangular lattice and thus1

planar. The identifications of vertices and the addition of new edges described in Step 32

cannot ruin the planarity of G̃. Indeed, each of the new edges can be drawn following some3

induced paths without crossing existing edges (see the upper part of Figure 4), and no4

other edge is added following the same paths. On the other hand, each pair of identified5

vertices is linked by an induced path (see the lower part of Figure 4), so identifying the6

end-vertices of such a path does not create an edge crossing.7

We shall now see that there are no loops in G̃. A loop would appear if there were a pair8

of adjacent vertices in a set of vertices which are to be identified. But this is not possible9

because all identifications involve the end-vertex of the left ray and the end-vertex of the10

down-right ray of a tristar. Note that when end-vertices of a tristar are identified, they11

are never connected with edges in G3. More precisely, recall that all identifications are12

done following the same rule that identifies an L and a DR neighbor of a tristar. Hence13

any set of identified vertices of G that was merged to a vertex in G̃ must be a result of14

a chain of identifications that correspond to a path which visits L and DR neighbors of15

tristars, implying that this must be a path formed from R and UL rays of the tristars.16

Furthermore, we know that any such R-UL-R-UL-. . . -R-UL path is of even length and is a17

shortest path. As the edges of G̃ can only connect vertices that are neighbors of a tristar18

at odd distance, no edge connecting two identified vertices is possible, and therefore there19

is no loop in G̃.20

Lemma 9 Let Ŝ = S ∪ {u, v, z} be an extended tristar of a tristar S in G2 composed of21

three rays: left ray (x, u1, . . . , uk, u), up-right ray (x, v1, v2, . . . , vℓ, v), and down-right ray22

(x, z1, z2, . . . , zm, z) such that p2(u) = p2(v) = p2(z) = 1 and p2(s) = 2 for every vertex23

s ∈ V (S). There exists a proper 4-[2]coloring with colors {1, 2, 3, 4} of S that coincides24

with the coloring of vertices u, v, and z in Step 3.25

Proof. We will use the fact that a tristar is bipartite. Let V1 and V2 be the sets of the26

bipartition of the extended tristar Ŝ. We distinguish two cases.27

(1) First, if all three rays of Ŝ have lengths of the same parity, then all end-vertices are28

in the same set of the bipartition of the tristar, assume w.l.o.g. that u, v, z ∈ V1. As the L29

and DR end-vertices were identified, the 4-coloring of Step 3 used at most 2 colors for the30

end-vertices. Hence the vertices of S that are in the set V1 receive the set S of two colors,31

such that N(u), N(v) ∈ S, and the vertices of the set V2 are assigned the remaining two32

colors. If the tristar has only two rays, the reasoning is similar and simpler.33

(2) In the second case, one or two rays of Ŝ are of even length, and the other lengths34

are odd. One of the end-vertices, which is at odd distance to the other two (w.l.o.g., say35

u), was connected to the other two end-vertices in Step 3. Hence, v and z are in one set36

(w.l.o.g., say V1), and u is in the other set (V2) of the bipartition of the tristar. Thus, the37

vertices of S that are in the set V1 receive the set S of two colors, such that N(v), N(z) ∈ S,38

and the vertices in the set V2 are assigned the remaining two colors. If the tristar has only39

two rays, the reasoning is even easier.40

We now proceed with the proof of the correctness of the algorithm.41

Step 1: The rbg-coloring gives a proper 1-coloring of the graph G and reduces the de-42

mands of all vertices by 1, so there is nothing to prove.43

Step 2: Assigning color c to a suitable c-free vertex is not in conflict with the previously44

assigned colors, since suitable vertices have no neighbors with base color c and two45

suitable vertices cannot be adjacent in the graph G.46
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Step 3: By Lemma 8, the graph G̃ is planar without loops, and therefore it is properly1

4-[1]colorable with colors {1, 2, 3, 4}. Since only the base colors {r, b, g} were used2

in previous steps, no conflicts can occur.3

Step 4: By Lemma 7, the only connected components that are not completely colored4

are tristars. Let S be a tristar in G4 and let V1 and V2 be the sets of the bipartition5

of S. Three cases may occur:6

(a) S has three neighbors u, v, z in G2, such that p2(u) = p2(v) = p2(z) = 1. By7

Lemma 9, the partial coloring of u, v, and z can be properly extended to S.8

(b) S has two neighbors u, v such that p2(u) = p2(v) = 1. If the length of the path9

between u and v is even, then u and v are in the same set of the bipartition of S,10

assume w.l.o.g. that they are in V1. Hence, the vertices of S that are in the set V111

receive the set S of two colors, such that N(u), N(v) ∈ S, and the vertices in the12

set V2 are assigned the remaining two colors. If the length between u and v is odd,13

then N(u) ̸= N(v) (because of Step 3(b)) and u and v are in different sets of the14

bipartition of S, assume w.l.o.g. that u ∈ V1 and v ∈ V2. In this case the vertices of15

S that are in the set V1 receive the set of colors S, which contains color N(u) and one16

of the colors in {1, 2, 3, 4}\{N(u), N(v)}. The vertices in V2 receive the remaining17

two colors.18

(c) S has at most one neighbor v ∈ V (G) such that p2(v) = 1. In this case the19

extension of the coloring is straightforward.20

Note that since we use only the bipartition of a tristar S and an extended tristar Ŝ,21

respectively, the same arguments of cases (b) and (c) hold also if the star S has at22

most two rays.23

Accordingly, every vertex v ∈ V (G) is assigned three different colors among {r,b,g, 1, 2, 3, 4},24

and adjacent vertices get disjoint sets of colors, as needed. Therefore, Theorem 1 follows.25

4.2 Running time26

Concerning the running time, one can check that all steps of our algorithm run in time27

linear in |V (G)|, except for the 4-coloring of the planar graph G̃, which takes a priori28

quadratic time [11]. It has been recently proved that triangle-free planar graphs can be29

3-colored in linear time [3]. Thus, if one could prove that G̃ is triangle-free (or modify the30

construction in such a way that the constructed graph is triangle-free), the overall running31

time of the algorithm would be linear.32

5 Concluding remarks33

In this article we provided an algorithm for 7-[3]coloring triangle-free hexagonal graphs.34

The described 7-[3]coloring can be extended to a proper [p]coloring with at most ⌈(7/6)ωp(G)⌉+35

C colors of any weighted triangle-free hexagonal graph, for some absolute constant C. The36

main idea (used for example in [6, 7, 9, 16]) is to divide the set of colors into 7 palettes37

and to use the algorithm for 7-[3]coloring to define the order of color palettes from which38

vertices will take colors from. We omit the details here.39

The odd girth og(G) of a graph G is the length of a shortest cycle of odd length. It40

is easy to see (see for instance [8]) that for a triangle-free hexagonal graph G, og(G) ≥ 9.41

The approximation ratio of our algorithm can be expressed more precisely with respect42

to og(G) for some values of p. Indeed, by assigning demand og(G)−1
2 to all the vertices43

belonging to a cycle of length og(G), one can check that og(G) colors are needed to color44
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the vertices of that cycle. Therefore, if p(v) ≤ og(G)−1
2 for all v ∈ V (G), og(G)

og(G)−1 · ωp(G) is1

a lower bound on the number of needed colors. For instance, if og(G) = 9 and p(v) ≤ 42

for all v ∈ V (G), the approximation ratio of our algorithm becomes
(7/6)ωp(G)
(9/8)ωp(G) =

28
27 , which3

improves over 7/6.4

It is worth mentioning that both the 5-[2]coloring of triangle-free hexagonal graphs [16]5

and the 4/3-competitive algorithm for multicoloring hexagonal graphs [15] are fully dis-6

tributed. The 7-[3]coloring algorithm presented in Section 3 is not distributed, since it uses7

a 4-coloring of a planar graph. Nevertheless, most steps of the algorithm can be easily8

performed locally. Therefore, it is an interesting question whether one can find a coloring9

of our auxiliary graph G̃ in a distributed way, using its structural properties.10

Finally, it is a natural question to ask whether there exists an algorithm (distributed11

or not) for multicoloring an arbitrary hexagonal graph with approximation ratio 7/6.12
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[19] R. Witkowski and J. Žerovnik, A 1-local 7/5-competitive Algorithm for Multicoloring Hexag-9

onal Graphs, Electronic Notes in Discrete Mathematics 36: 375-382, 2010.10
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