
Subexponential Parameterized Algorithms for Degree-Constrained

Subgraph Problems on Planar Graphs∗

Ignasi Sau†‡ Dimitrios M. Thilikos§¶

January 18, 2010

Abstract

We present subexponential parameterized algorithms on planar graphs for a family of problems
of the following shape: given a graph, find a connected (induced) subgraph with bounded
maximum degree and with maximum number of edges (or vertices). These problems are natural
generalisations of the Longest Path problem. Our approach uses bidimensionality theory
combined with novel dynamic programming techniques over branch decompositions of the input
graph. These techniques can be applied to a more general family of problems that deal with
finding connected subgraphs under certain degree constraints.

Keywords: Parameterized complexity, planar graphs, subexponential algorithm, branch decom-
position, graph minors, bidimensionality, Catalan structures.

1 Introduction

During the last years a considerable amount of work has been devoted to design subexponential
parameterized algorithms for NP-hard optimisation problems on planar graphs and, more generally,
on sparse classes of graphs [3–6]. In this article we apply the general approach of [3–6] to a family
of problems dealing with finding connected subgraphs under degree constraints. Along the way, we
introduce novel dynamic programming techniques over branch decompositions that can be applied
to more general classes of problems.

We define the following family of problems for d ≥ 2.
∗A conference version of this work appeared in Proceedings of DIMAP workshop on Algorithmic Graph Theory

(AGT), Electronic Notes in Discrete Mathematics, 32:59-66, University of Warwick, U.K., March 2009.
†Mascotte joint Project of INRIA/CNRS/UNSA, Sophia-Antipolis, France; and Graph Theory and Combinatorics

Group, Departament de Matemàtica Aplicada IV, UPC, Barcelona, Spain. E-mail: ignasi.sau@sophia.inria.fr
‡Supported by IST FET AEOLUS, PACA region of France, and COST 295-DYNAMO.
§Department of Mathematics, National and Kapodistrian University of Athens, Greece. E-mail:

sedthilk@math.uoa.gr
¶Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National and Kapodistrian University of

Athens.

1

Maximum d-Degree-Bounded Connected Subgraph (MDBCSd)

Input: A graph G and a non-negative integer k.
Question: Does G contain a connected subgraph H with maximum degree at most d

and at least k edges?

The maximization version of MDBCSd can be seen as a generalisation of the Longest Path or

Cycle problem, which is exactly the case d = 2. The edge-maximisation version of MDBCSd is one
of the classical NP-hard problems listed in Garey and Johnson’s monograph [13, problem GT26],
and it has been recently proved that it is not in Apx for any d ≥ 2 [1]. Without the connectivity
constraint, the problem is known to be solvable in polynomial time using matching techniques [17].
When the problem is parameterized by k we denote it by k-MDBCSd. (We refer to [9] for an
introduction to parameterized complexity.) Our target is to find 2O(

√
k) · O(n) step algorithms

to solve this problem and its variants when the input is restricted to planar graphs. Section 3
is devoted to obtain combinatorial bounds using bidimensionality theory. Section 4 presents new
dynamic programming techniques, that can be applied to general graphs. In Section 5 we see
how to speed-up these algorithms when the input is restricted to planar graphs, using Catalan
structures. This strategy can be extended to several related problems asking for a maximum
connected subgraph satisfying certain degree constraints, as discussed in Section 6. Some open
problems are listed in Section 7.

2 Preliminaries

All the graphs considered in this article are simple and undirected. Given a graph G we denote as
V (G) and E(G) the vertices and the edges of G respectively. If H is a subgraph of G, we denote it by
H ⊆ G. Given a a subset S ⊆ V (G), we define NG[S] to be the set of vertices of V (G) at distance at
most 1 from at least one vertex of S. If S = {v}, we simply use the notation NG[v]. We also define
NG(v) = NG[v] − {v} and EG(v) = {{v, u} | u ∈ NG(v)}. The degree of a vertex v ∈ V is defined
as degG(v) = |NG(v)|. The maximum degree of G is defined as ∆(G) = maxv∈V (G) degG(v). Let
e = {x, y} ∈ E(G). We denote by G\e the graph G′ where G′ = (V (G), E(G) − {e}) and we say
that G′ occurs from G after an edge removal. We also denote by G/e the graph G′ where

G′ = (V (G)− {x, y} ∪ {vx,y}, E(G)− EG(x)− EG(y) ∪ {{vxy, z} | z ∈ NG[{x, y}]}),

where vxy 6∈ V (G) is a new vertex, not in G. In this case we say that G′ occurs from G after
an edge contraction. If H occurs from a subgraph of G after a (possibly empty) sequence of edge
contractions, we say that H is a minor of G, and that G is a major of H.

Let G be a graph on n vertices. A branch decomposition (T, µ) of a graph G consists of an
unrooted ternary tree T (i.e., all internal vertices are of degree three) and a bijection µ : L→ E(G)
from the set L of leaves of T to the edge set of G. We define for every edge e of T the middle
set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected components of T \ {e}. Then
let Gi be the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle
set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) = V (G1) ∩ V (G2). Note that
for each e ∈ E(T), mid(e) is a separator of G. The width of (T, µ) is the maximum order of the

2

middle sets over all edges of T , i.e., max{|mid(e)| : e ∈ T}. An optimal branch decomposition
of G is defined by a tree T and a bijection µ which give the minimum width, the branchwidth,
denoted by bw(G). Intuitively, branchwidth is a measure of the local connectivity of a graph, i.e.,
its topological resemblance to a tree. The following fundamental theorem states that square grids
serve as obstructions for branchwidth on planar graphs.

Theorem 1 (Robertson, Seymour, and Thomas [19]) Let h ≥ 1 be an integer. Every planar
graph of branchwidth at least h contains an (bh/4c × bh/4c)-grid as a minor.

We say that a parameter p defined on simple undirected graphs is closed under taking of minors
(or simply minor closed) if G′ � G ⇒ p(G′) ≤ p(G) (here “�” denotes the minor relation). A
parameter p is minor bidimensional [3] with density δ if

• p is minor closed, and

• for the (r × r)-grid R, p(R) = (δr)2 + o((δr)2).

Theorem 1 implies the following useful property.

Lemma 1 (Demaine et al. [3]) If p is a bidimensional parameter with density δ then for any
planar graph G, bw(G) ≤ 4

δ ·
√

p(G) +O(1).

3 Bounds for Branchwidth

In this section we define the following parameter on simple undirected graphs, and we obtain
combinatorial bounds for it using bidimensionality theory.

medbcsd(G) = max{|E(H)| | H ⊆ G ∧ H is connected ∧ ∆(H) ≤ d}.

Lemma 2 For any integer d ≥ 1, the parameter medbcsd is minor closed.

Proof: If G′ occurs from G after an edge removal, then clearly medbcsd(G′) ≤ medbcsd(G).
Let us see that the same holds if G′ occurs from G after the contraction of an edge {x, y}. In-
deed, we shall see that given any connected subgraph H ′ ⊆ G′ with ∆(H ′) ≤ d, we can find
a connected subgraph H∗ ⊆ G with ∆(H∗) ≤ d and |E(H∗)| ≥ |E(H ′)|. Let H be the ma-
jor of H ′ in G. We can assume that vxy ∈ V (H ′), otherwise we set H∗ = H. We define
Nxy = NH(x) ∩ NH(y), Nx−y = NH(x) − Nxy − {y}, and Ny−x = NH(y) − Nxy − {x}. The
subgraph H is connected and |E(H)| ≥ |E(H ′)|, but the vertices x, y, and those in Nxy may have
degree d + 1. Since ∆(H ′) ≤ d, also |NH′(vxy)| = |Nx−y| + |Ny−x| + |Nxy| ≤ d. Suppose w.l.o.g.
that |Nx−y| ≥ |Ny−x|. We distinguish several cases to define the subgraph H∗: If |Nx−y| = d, let
H∗ = (V (H)−{y}, E(H)−{x, y}). Suppose henceforth that |Nx−y| < d. If |Nxy| = 0, let H∗ = H.
If Nxy = {z1}, let H∗ = (V (H), E(H)− {x, z1}). Finally, if Nxy = {z1, . . . , zk} for some k ≥ 2, let
H∗ = (V (H), E(H)− {x, z1} − ∪ki=2{y, zi}). It is easy to check that, in all cases, the subgraph H∗

is connected, ∆(H∗) ≤ d, and |E(H∗)| ≥ |E(H ′)|.

Using Lemmas 2 and 1 we can obtain a combinatorial bound of the parameter medbcsd in terms
of the branchwidth of the planar graph G.

3

Figure 1: Connected subgraphs with maximum degree 3 on (4 × 4), (5 × 5), and (6 × 6)-grids
respectively, used in the proof of Lemma 3.

Lemma 3 For any d ≥ 2 and for any planar graph G it holds that

bw(G) ≤ 4
δ
·
√

medbcsd(G) +O(1), with δ =

1 , if d = 2√

3/2 , if d = 3√
2 , if d ≥ 4

Proof: We shall prove that the parameter medbcsd(G) is bidimensional for any d ≥ 2. It is minor
closed due to Lemma 2. Let us see how the parameter behaves on the grid. Let R be an (r×r)-grid.
If d = 2, then clearly medbcs2(R) ≥ r2−1 (or r2 if r is even, because in this case the grid contains a
Hamiltonian cycle). That is, medbcs2(R) = r2+o(r2), so the density of medbcs2 is 1. If d ≥ 4 then
the optimal solution contains all the edges, i.e., medbcsd(R) = 2r(r − 1) = (

√
2r)2 + o((

√
2r)2).

Said otherwise, the density of medbcsd for d ≥ 4 is
√

2. Finally, if d = 3, we shall see that
medbcs3(R) ≥ 2r(r − 1) −

⌈
r−2
2

⌉
(r − 2). Such a solution is obtained in the following way. Take

all the horizontal edges of the grid, and the vertical edges from the leftmost and rightmost col-
umn. Then, beginning from the first row, take alternatively the remaining vertical edges (see
Figure 1 for an illustration). One can easily check that the subgraph obtained in this way is
connected, has maximum degree 3 and has 2r(r − 1) −

⌈
r−2
2

⌉
(r − 2) = 3/2r2 + o(3/2r2) edges.

The coefficient of r2 is best possible, as the degree of the vertices must be at most 3. That is,
medbcs3(R) = (

√
3/2r)2 + o((

√
3/2r)2), so the density of medbcs3 is

√
3/2. The result follows

from Lemma 1.

4 The Algorithms

In this section we present algorithms based on dynamic programming over branch decompositions.
It is worth to mention that the methods we use can be directly translated to tree decompositions (see
for instance [7]). In addition, it is well-known that the treewidth and the branchwidth of a graph
with at least 3 edges differ by a factor at most 3/2 [18]. However, there are several reasons why we
chose to work with branch decompositions. First of all, we follow the approach of [3–6, 11], which
is based on branch decompositions. Also, an optimal branch decomposition of a planar graph can
be constructed in polynomial time [20], whereas the question is still open for tree decompositions.
And last, for planar graphs there is a nice type of branch decompositions that allow to speed-up
our algorithms (see Section 5).

4

Roughly speaking, in each edge of the branch decomposition, the tables of our dynamic pro-
gramming algorithm store all the partial solutions to the problem in the graph processed so far.
The output subgraph (corresponding to the root) is required to be connected. However, partial
solutions may have several connected components, so we need to keep track of them. We also need
to control the degrees of the vertices in the partial solutions, in order to assure that the maximum
degree of the output subgraph is bounded by d. To do so, we use what we call weighted packings
of the middle sets (defined below), which encode the connected components and the degrees of the
intersection of the partial solutions with the middle set. The tables of each edge are filled from the
tables of the two previously processed edges incident to the same vertex, and when two entries are
combined, the connected components which intersect are fused and the degrees of the vertices are
updated.

Before proceeding to the description of the algorithms, we need some definitions. Let G be in
this section a (not necessarily planar) graph on n vertices. We denote the empty set by ∅ and the
empty function by ∅. Let (T, µ) be a branch decomposition of width ≤ h of G. In order to root
(T, µ), we pick an arbitrary edge e∗ ∈ E(T), we subdivide it by adding a new vertex vnew and then
add a new vertex r and make it adjacent to vnew. We extend µ by setting µ(r) = ∅ and we root T
at vertex r. For each e ∈ E(T) let Te be the tree of the forest T\e that does not contain r as a leaf
(i.e., the tree that is “below” e in the rooted tree T) and let Ee be the edges that are images, via µ,
of the leaves of T that are also leaves of Te. We denote Ge = G[Ee]. Observe that, if er = {vnew, r},
then Ger = G.

Given a set A, we define a d-weighted packing of A as any pair (A, ψ) where A is a (possible
empty) collection of mutually disjoint nonempty subsets of A and ψ : A→ {0, . . . , d} is a mapping
corresponding integers from 0 to d to the elements of A. It will be convenient to think of such a
packing A of A as a hypergraph G = (A,A). Note that, by definition, A is a matching in G. For
convenience, given such a collection A, we denote by ∪A the set

⋃
X∈AX.

Let (A, ψ) and (A′, ψ′) be two d-weighted packings of two sets A and A′. We define (A, ψ) ⊕
(A′, ψ′) as the 2d-weighted packing (A′′, ψ′′) of A′′ = A∪A′ where A′′ is the packing of A′′ defined
by the connected components of the hypergraph (A ∪ A′,A ∪ A′) (i.e., the nonempty subsets of
the packing A′′ are the vertex sets corresponding to the connected components of the hypergraph
(A ∪A′,A ∪A′)) and where for any x ∈ A ∪A′,

ψ′′(x) =

ψ(x) , if x ∈ A−A′
ψ(x) + ψ′(x) , if x ∈ A ∩ A′

ψ′(x) , if x ∈ A′ −A

If (A, ψ) is a d-weighted packing of a set A and A′ ⊆ A, we define (A, ψ) |A′ as the d-weighted
packing (A′, ψ′) of the set A′ where A′ = {X ∩ A′ | X ∈ A} and ψ′ = {(x, ψ(x)) | x ∈ A′}, where
(x, ψ(x)) ∈ ψ′ means that ψ′(x) = ψ(x).

Let Pe be the collection of all d-weighted packings (A, ψ) of mid(e), and let h = |mid(e)|.
Observe that if er = {vnew, r}, then Per = {(∅,∅)}. We use the notation C(H) for the set of

5

connected components of a graph (or hypergraph) H. Given (A, ψ) ∈Pe we define

opte(A, ψ) = max{{0} ∪ {|E(H)| : H ⊆ Ge ∧ ∆(H) ≤ d ∧
if (A 6= ∅) then

{V (H ′) ∩mid(e) | H ′ ∈ C(H)} = A ∧
{(v,degH(v)) | v ∈ ∪A∈AA} = ψ

else if (A = ∅) then

|C(H)| ≤ 1 ∧ V (H) ∩mid(e) = ∅ }}

Clearly, opter
(∅,∅) = medbcsd(G). The idea is the following:

• If A 6= ∅, we look for the best solution H in the graph Ge such that its restriction to mid(e)
induces the connected components given by A and obeys the degrees given by ψ.

• Otherwise, if A = ∅, we look for the best solution H in Ge not intersecting mid(e). Since
mid(e) is a separator of G, it is clear that in this case the solution H must be a connected
subgraph of Ge disjoint from mid(e).

Let us now see how these values of opte(A, ψ) can be explicitly computed using dynamic program-
ming over a branch decomposition of G.

Let e, e1, e2 be three edges of T that are incident to the same vertex and such that e is closer
to the root of T than the other two (see the upper part of Figure 2). To perform the join/forget
operations in the middle set mid(e), we distinguish two cases according to the packing A of mid(e):

(1) In the case A 6= ∅, the value of opte(A, ψ) is given by

opte(A, ψ) = max{{0} ∪ {l : ∃(Ai, ψi) ∈Pei , i = 1, 2, such that

∪ A1 ∩ (mid(e1) ∩mid(e2)) = ∪A2 ∩ (mid(e1) ∩mid(e2)) ∧
(A1, ψ1)⊕ (A2, ψ2) is a d-weighted

packing of mid(e1) ∪mid(e2) ∧
(A, ψ) = ((A1, ψ1)⊕ (A2, ψ2))|mid(e) ∧
if (A1 = ∅) then l = opte2(A2, ψ2)

if (A2 = ∅) then l = opte1(A1, ψ1)

else l = opte1(A1, ψ1) + opte2(A2, ψ2) }}

6

(2) In the case A = ∅, the value of opte(∅, ψ) is given by

opte(∅, ψ) = max{{0} ∪ {l : ∃(Ai, ψi) ∈Pei , i = 1, 2, such that

∪ A1 ∩ (mid(e1) ∩mid(e2)) = ∪A2 ∩ (mid(e1) ∩mid(e2)) ∧
(A1, ψ1)⊕ (A2, ψ2) is a d-weighted

packing of mid(e1) ∪mid(e2) ∧
(∅, ψ) = ((A1, ψ1)⊕ (A2, ψ2))|mid(e) ∧
if (A1 = ∅ ∧ A2 = ∅) then

l = max{opte1(A1, ψ1),opte2(A2, ψ2)}
if (A1 6= ∅ ∧ A2 = ∅) then

l = max{opte2(A2, ψ2), {opte1(A1, ψ1)|X : X ∈ A1}}
if (A1 = ∅ ∧ A2 6= ∅) then

l = max{opte1(A1, ψ1), {opte2(A2, ψ2)|X : X ∈ A2}}
if (A1 6= ∅ ∧ A2 6= ∅) then

l = max{opte1(X,ψ1)|mid(e1) + opte2(X,ψ2)|mid(e2) :

X ∈ C(mid(e1) ∪mid(e2),A1 ∪ A2)} }}

These ideas are schematically illustrated in Figure 2. So far, we have shown how to compute
opte(A, ψ) for e being an internal edge of T . Finally, suppose that eleaf = {x, y} ∈ E(T) is an edge
such that either x or y is a leaf of T . Let {v1, v2} ∈ E(G) be the image under µ of the endpoint of
e which is a leaf of T . Then

opteleaf
(A, ψ) =

{
1 , if (A = {{v1, v2}} ∧ ψ = {(v1, 1), (v2, 1)})
0 , otherwise

Running time. The size of the tables of the dynamic programming over the branch decomposition
of the input graph, namely |Pe|, determines the running time of our algorithms. The number of
ways a set of h elements can be partitioned into nonempty subsets is well-known as the h-th Bell
number [8] and is denoted by Bh. We can express |Pe| in terms of the Bell numbers:

|Pe| = (d+ 1)h ·
h∑
i=0

(
h

i

)
Bh−i ≤ (d+ 1)h · 22h·log h, (1)

where the last inequality is an easy exercise using that Bh ≤ eh−1
(log h)hh! [8]. At each edge e of the

branch decomposition, to compute all the values opte(A, ψ) we test all the possibilities of combining
d-weighted packings of the two middle sets mid(e1) and mid(e2). The operations (A1, ψ1)⊕(A2, ψ2)
and (A, ψ)|A′ take O(|mid(e)|) time. Let m = |E(G)|. Hence, by Equation (1), given a branch
decomposition of a general graph G of width at most h, the value of medbcsd(G) can be computed
in (d+ 1)2h · 24h·log h · h ·m steps.

5 Speed-up for Planar Graphs using Catalan Structures

In this section we will see that when the input is restricted to planar graphs the term 2O(h·log h) in
Equation (1) can be reduced to 2O(h). Our analysis is inspired from [6].

7

mid(e)

mid(e) mid(e)1 2

A

1A 2A
e

ee1 2

(1.2)(1.1) (2.1) (2.2) (2.3)

Figure 2: Join/forget operations in the dynamic programming over a branch decomposition. On
the upper part, the vertices around the external oval belong to mid(e), and separate Ge (inside)
from G \ Ge (outside). The vertices around the smaller left (resp. right) oval belong to mid(e1)
(resp. mid(e2)). In the rightmost figure, these vertices are grouped according to A. On the
lower part, the dark regions represent an optimal subgraph in each case, while the grey regions
represent the partial solutions discarded by the algorithm. Case (1): A 6= ∅; (1.1) A1 6= ∅,A2 6= ∅;
(1.2) A1 6= ∅,A2 = ∅. Case (2): A = ∅; (2.1) A1 = ∅,A2 = ∅; (2.2) A1 = ∅,A2 6= ∅; (2.3)
A1 6= ∅,A2 6= ∅.

Let G be a planar graph embedded on a sphere S. An O-arc is a subset of S homeomorphic
to a circle. An O-arc in S is called a noose of the embedding of G if it meets G only in vertices.
A sphere cut decomposition or sc-decomposition (T, µ, π) of G is a branch decomposition of G with
the following property: for every edge e of T , there exists a noose Oe meeting every face at most
once and bounding the two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus Oe
meets G only in mid(e) and its length is |mid(e)|. A clockwise traversal of Oe in the embedding of
G defines the cyclic ordering π of mid(e). (More details can be found in [20].) We always assume
that the vertices of every middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.

Theorem 2 (Seymour and Thomas [20]) Let G be a planar graph of branchwidth at most h
without vertices of degree one embedded on a sphere. Then there exists an sc-decomposition of G
of width at most h.

In addition, such an sc-decomposition can be constructed in time O(n3) [14]. See [15] for recent
improvements. The size of the tables of the dynamic programming algorithm is given by the
number of ways a solution of k-MDBCSd in Ge can intersect mid(e). Let (T, µ, π) be a sphere cut
decomposition of width at most h, and we can assume h ≤ bw(G) by Theorem 2. Then the vertices
of mid(e) are situated around a noose. A non-crossing partition (ncp) of a cyclically ordered set

8

Figure 3: Catalan structures in the middle set of a sphere cut decomposition.

S = {1, . . . , h} is a partition {P1, . . . , Pm} of S such that there are no numbers a < b < c < d

where a, c ∈ Pi, and b, d ∈ Pj with i 6= j.
When we restrict the input graph G to be planar, then the subgraph given by the intersection of

a partial solution of k-MDBCSd in Ge with mid(e) is also planar. We can think of each connected
component of this subgraph as a virtual hyperedge among vertices in mid(e). The reduction from
2O(h·log h) to 2O(h) is based on an estimate of the number of ways we can draw hyperedges inside a
cycle such that they touch the cycle on its vertices and they do not share common internal points
in the plain (they do not intersect), as it is illustrated in Figure 3.

The number of such configurations is closely related to the number of non-crossing partitions
over h vertices, which is equal to the h-th Catalan number CN(h) = 1

h+1

(
2h
h

)
∼ 4h
√
πh3/2 ≤ 4h [16].

Indeed, in the same spirit of Equation (1) we can write

|Pe| = (d+ 1)h ·
h∑
i=0

(
h

i

)
CN(h− i) ≤ (d+ 1)h ·

h∑
i=0

(
h

i

)
4h−i

= (d+ 1)h4h ·
h∑
i=0

(
h

i

)(
1
4

)i
= (d+ 1)h4h ·

(
1 +

1
4

)h
= (d+ 1)h · 5h.

Since G is planar, |E(G)| = O(|V (G)|), hence so is the number of middle sets in any branch
decomposition of G. Therefore,

Proposition 1 For every planar graph G and given a sphere cut decomposition (T, µ, π) of G of
width ≤ h, the value of medbcsd(G) can be computed in O

(
(d+ 1)2h · 52h · h · n

)
steps.

Let δ be the constant defined in Lemma 3. Summarizing,

Theorem 3 k-Planar Maximum d-Degree-Bounded Connected Subgraph is solvable in
time O

(
2log(5(d+1))8

√
k/δ
√
k · n+ n3

)
for any d ≥ 2.

Proof: First, using Theorem 2, we construct in time O(n3) an optimal sphere cut decomposition
of G of width bw(G). We distinguish two cases: If bw(G) > 4/δ ·

√
k, then by Lemma 3 the answer

to the parameterized problem is automatically YES. Otherwise, bw(G) ≤ 4/δ ·
√
k and the value

of medbcsd(G) can be computed by Proposition 1 in time O
(

(d+ 1)8
√
k/δ · 58

√
k/δ · 4/δ

√
k · n

)
=

9

O
(

2log(5(d+1))8
√
k/δ
√
k · n

)
.

It is worth mentioning that the algorithms of [6] for the Longest Path problem can be easily
adapted to deal with the case d = 2 of Maximum d-Degree-Bounded Connected Subgraph.
This yields an algorithm with running time O

(
213.6

√
k
√
k · n+ n3

)
, which improves over the run-

ning time of Theorem 3 for the specific case d = 2.

6 Extensions

Appropriate modifications of the dynamic programming algorithm of Section 4 allow us to obtain
also subexponential parameterized algorithms for the variant of the problem in which the aim is to
maximise the number of vertices of the subgraph H, as well as for the variant in which the output
subgraph is required to be induced (for both the edge and vertex maximisation versions). Another
variant is when the list of prescribed degrees of the vertices belongs to a subset of Zq for a fixed
integer q. Finally, we discuss how to transform these parameterized algorithms into subexponential
exact algorithms on planar graphs.

6.1 Maximising the number of vertices

In this section we focus on the following family of problem for d ≥ 2:

Vertex Maximum d-Degree-Bounded Connected Subgraph (VMDBCSd)

Input: A graph G and a non-negative integer k.
Question: Does G contain a connected subgraph H with

∆(H) ≤ d and |V (H)| ≥ k?

In order to obtain subexponential parameterized algorithms for VMDBCSd on planar graphs,
let us see how the techniques presented in the preceding sections must be modified. The corre-
sponding parameter is

mvdbcsd(G) = max{|V (H)| | H ⊆ G ∧ H is connected ∧ ∆(H) ≤ d}.

First, it is easy to check that Lemmas 2 and 3 hold for the parameter mvdbcsd(G) with δ = 1 for
any d ≥ 2. Secondly, the dynamic programming approach of Section 4 remains the same, except
for the following modifications.

When computing a partial solution opte(A, ψ) in Ge from the partial solutions in Ge1 and Ge2 ,
we have to be careful in order to avoid counting twice the vertices that belong to both mid(e1)
and mid(e2). More precisely,

• in the case A 6= ∅, A1 6= ∅, and A2 6= ∅ we have that

l = opte1(A1, ψ1) + opte2(A2, ψ2)− |V (G[A1]) ∩ V (G[A2])|,

where G[Ai], i = 1, 2, denotes the hypergraph induced by the hyperedges in Ai; and

10

• in the case A = ∅, A1 6= ∅, and A2 6= ∅ we have that

l = max{opte1(X,ψ1)|mid(e1) + opte2(X,ψ2)|mid(e2) −
|V (G[X]) ∩mid(e1) ∩mid(e2)| :

X ∈ C(mid(e1) ∪mid(e2),A1 ∪ A2)} }.

Also, if eleaf = {x, y} ∈ E(T) is an edge such that x is a leaf of T , and {v1, v2} ∈ E(G) is the image
of x under µ, then

opteleaf
(A, ψ) =

2 , if (A = {{v1, v2}} ∧ ψ = {(v1, 1), (v2, 1)})
∨ (A = {{v1}, {v2}} ∧ ψ = {(v1, 0), (v2, 0)})

1 , if (A = {{v1}} ∧ ψ = {(v1, 0), (v2, 0)})
∨ (A = {{v2}} ∧ ψ = {(v1, 0), (v2, 0)})

0 , otherwise

Finally, the speed-up described in Section 5 can be directly appliedt o VMDBCSd, since Cata-
lan structures also appear in the middle sets of a sc-decomposition of the planar input graph.
Summarizing,

Theorem 4 k-Planar Vertex Maximum d-Degree-Bounded Connected Subgraph is
solvable in time O

(
2log(5(d+1))8

√
k
√
k · n+ n3

)
for any d ≥ 2.

6.2 Looking for an induced subgraph

It is also natural to ask, instead of for a subgraph H of the input graph G, for an induced subgraph
H. In this section we focus on the edge-maximisation version of the problem, the modifications for
the node-maximisation version being analogous to those described in Section 6.1. We denote the
problem by Maximum d-Degree-Bounded Connected Induced Subgraph (MDBCISd).

In contrast to the dynamic programming presented in Section 4, now we need only to consider
those packings A of mid(e) that “respect” the fact that the solution subgraph must be induced.
Namely, if two adjacent vertices v1, v2 belong to a partial solution, then the edge {v1, v2} must
also belong to the solution. This property can be incorporated in the algorithm of Section 4 by
just imposing it in the leaves of the branch decomposition. Indeed, if in a leaf corresponding to an
edge {v1, v2} ∈ E(G) we forbid the packing A = {{v1}, {v2}}, then all the partial solutions will be
induced subgraphs. Therefore, the values in the leaves must be updated to

opteleaf
(A, ψ) =

1 , if (A = {{v1, v2}} ∧ ψ = {(v1, 1), (v2, 1)})
0 , if (A = {{v1}} ∧ ψ = {(v1, 0), (v2, 0)})

∨ (A = {{v2}} ∧ ψ = {(v1, 0), (v2, 0)})
∨ (A = ∅ ∧ ψ = {(v1, 0), (v2, 0)})

unfeasible , otherwise

When combining partial solutions from two middle sets mid(e1) and mid(e2), we must take only
into account those pairs which “agree”, that is, those which coincide in mid(e1) ∩mid(e2). The
rest of the algorithm of Section 4 remains the same. Finally, the constant δ of Theorem 3 must be

11

replaced with δ′ = δ/
√

2 when d ∈ {2, 3}, due to the fact that the optimal subgraphs of MDBCISd
on the square grid (see Lemma 2) must be induced. Summarizing,

Theorem 5 k-Planar Maximum d-Degree-Bounded Connected Induced Subgraph is
solvable in time O

(
2log(5(d+1))8

√
k/δ′ ·

√
k · n+ n3

)
for any d ≥ 2.

6.3 More general constraints on the degree

All the variants of the problem considered so far have in common that the degree of any vertex
belonging to the output subgraph must lie in the interval [0, d]. It makes sense to consider a more
general version in which the interval of allowed degrees depends on each vertex. Namely, for each
vertex v ∈ V (G) we are given an interval Iv = [hv, rv] and we look for a maximum connected
subgraph H in which the degree of each vertex v lies in Iv. (If 0 ∈ Iv then vertex v may not
belong to V (H).) When the output subgraph is not required to be connected, some variants of the
problem are in P and some others become NP-hard [17]. In general, we cannot guarantee that the
parameters associated with this general problem are minor closed, hence the approach used with
MDBCSd does not carry over. Nevertheless, we can obtain an algorithm to solve it similar to the
one of Proposition 1, replacing the term (d+ 1)2h with (maxv∈V (G) rv + 1)2h. The ideas behind the
dynamic programming are essentially the same.

Another variant is obtained when forcing the allowed degrees to belong to a subset of Zq for
some fixed integer q. In this case it is not difficult to see that the term (d + 1)2h can be replaced
with q2h. For instance, the case where all the degrees are required to be 0 (mod 2) corresponds
to the Maximum Eulerian Subgraph problem. This approach, given a planar graph with a
sphere cut decomposition of width at most h, yields an algorithm to solve Maximum Eulerian

Subgraph in time O
(
22h · 52h · h · n

)
.

6.4 Exact algorithms

The subexponential parameterized algorithms we have presented on planar graphs can be naturally
transformed to subexponential exact algorithms by using that for any planar graph G, bw(G) ≤√

4.5 · |V (G)| [10].
Indeed, given a planar graph G and a sphere cut decomposition of width at most

√
4.5 · |V (G)|,

we can compute an optimal solution of MDBCSd in G in O
(

(d+ 1)4.24
√
n · 54.24

√
n · n3/2

)
steps

(by Proposition 1). The same argument applies to all the variants of the problem discussed above.
In addition, we can derive a subexponential exact algorithm for the following problem on planar

graphs: Minimum Degree Spanning Tree (MDST). In the MDST problem, given an undi-
rected unweighted graph G, the objective is to find a spanning tree of G which minimizes the
maximum degree over all the spanning trees of G. This problem has been widely studied in the
literature (cf. for instance [12]), and we are unaware of the existence of subexponential exact al-
gorithms on planar graphs. Our algorithm works as follows: given a planar graph G, we find an
optimal solution Hd of VMDBCSd in G for d = 2, . . . , n − 1. Let d∗ be the first value of d for
which |V (Hd)| = n. Then an optimal solution of MDST in G is given by any spanning tree of Hd∗ .

12

A graph is supereulerian if it has a spanning Eulerian subgraph [2]. Combining the ideas of the
algorithm above with the ideas of Section 6.3 yields a subexponential exact algorithm to decide
whether a planar graph is supereulerian or not.

7 Conclusions

In this article we obtained a 2O(
√
k)nO(1) algorithm for k-MDBCSd and related problems on planar

graphs, following the approach of [3–6]. Several interesting problems remain open. First, it seems
natural to try to improve the worst-case running time of our algorithms. Much more challenging
is to find subexponential parameterized algorithms for the edge- or node-weighted versions of the
problem. Actually, the weighted versions of our parameters remain minor closed (by an easy
modification of Lemma 2), however the fundamental difference is that the combinatorial bound of
Lemma 3 does not hold anymore. On the other hand, the natural extension of this article would be
to conceive subexponential parameterized algorithms for k-MDBCSd on other sparse graph classes,
like graphs of bounded genus and, more generally, minor-free families of graphs.

Finally, note that the MDBCSd problem is equivalent to finding a maximum connected sub-
graph not containing the star K1,d+1 as a topological minor. Many classical NP-hard problems
can be expressed as finding a maximum subgraph excluding a fixed graph H as a minor (or in-
duced minor, or subgraph, or induced subgraph, or topological minor), hence conceiving a general
framework to design subexponential parameterized algorithms for this class of problems would be
a celebrated result.
Acknowledgement. We would like to thank the anonymous referees for helpful comments that
improved the presentation of the article.

References

[1] O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh. Degree-constrained subgraph problems:
Hardness and approximation. In Proc. of the 6th Workshop on Approximation and On-line Algorithms
(WAOA), volume 5426 of LNCS, pages 29–42, 2008.

[2] P. A. Catlin. Supereulerian graphs: a survey. Journal of Graph Theory, 16(2):177–196, 1992.
[3] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized

algorithms on graphs of bounded genus and h-minor-free graphs. Journal of the ACM, 52(6):866–893,
2005.

[4] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms. In Proc. of the
34th International Colloquium on Automata, Languages and Programming (ICALP), volume 4596 of
LNCS, pages 15–27, 2007.

[5] F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic programming in H-minor-
free graphs. In Proc. of the 19th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
631–640, 2008.

[6] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms on planar graphs:
Exploiting sphere cut branch decompositions. In Proc. of the 13th Annual European Symposium on
Algorithms (ESA), volume 3669 of LNCS, pages 95–106, 2005.

13

[7] F. Dorn and J. A. Telle. Semi-nice tree-decompositions: The best of branchwidth, treewidth and
pathwidth with one algorithm. Discrete Applied Mathematics, 157(12):2737–2746, 2009.

[8] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008.
[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.

[10] F. V. Fomin and D. M. Thilikos. New upper bounds on the decomposability of planar graphs. Journal
of Graph Theory, 51(1):53–81, 2005.

[11] F. V. Fomin and D. M. Thilikos. Dominating Sets in Planar Graphs: Branch-Width and Exponential
Speed-Up. SIAM Journal on Computing, 36(2):281–309, 2006.

[12] M. Fürer and B. Raghavachari. Approximating the minimum-degree spanning tree to within one from
the optimal degree. In Proc. of the 3rd annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 317–324, 1992.

[13] M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman, 1979.
[14] Q.-P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in O(n3) time. ACM Trans-

actions on Algorithms, 4(3), 2008.
[15] Q.-P. Gu and H. Tamaki. Constant-factor approximations of branch-decomposition and largest grid

minor of planar graphs in O(n1+ε) time. In Proc. of the 20th International Symposium Algorithms and
Computation (ISAAC), volume 5878 of LNCS, pages 984–993, 2009.

[16] G. Kreweras. Sur les partitions non croisées d’un cercle. Discrete Mathematics, 1:333–350, 1972.
[17] L. Lovász and M. Plummer. Matching Theory. Annals of Discr. Math. 29, 1986.
[18] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory,

Series B, 52(2):153–190, 1991.
[19] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. J. Comb. Theory Ser.

B, 62(2):323–348, 1994.
[20] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241, 1994.

14

