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Abstract

A graph parameter is self-dual in some class of graphs embeddable in some surface if
its value does not change in the dual graph more than a constant factor. Self-duality
has been examined for several width-parameters, such as branchwidth, pathwidth,
and treewidth. In this paper, we give a direct proof of the self-duality of branchwidth
in graphs embedded in some surface. In this direction, we prove that bw(G∗) ≤
6 · bw(G) + 2g − 4 for any graph G embedded in a surface of Euler genus g.
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1 Preliminaries

Our main reference for graphs on surfaces is the monograph by Mohar and
Thomassen [10]. A surface is a connected compact 2-manifold without bound-
aries. A surface Σ can be obtained, up to homeomorphism, by adding eg(Σ)
crosscaps to the sphere, and eg(Σ) is called the Euler genus of Σ. We denote
by (G,Σ) a graph G embedded in a surface Σ, that is, drawn in Σ without
edge crossings. A subset of Σ meeting the drawing only at vertices of G is
called G-normal. An O-arc on Σ is a subset that is homeomorphic to a cycle.
If an O-arc is G-normal, then we call it a noose. A noose N is contractible
if it is the boundary of some disk on Σ and is surface separating if Σ \ N is
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disconnected. The length of a noose is the number of the vertices it meets.
Representativity, or face-width, is a parameter that quantifies local planarity
and density of embeddings. The representativity rep(G,Σ) of a graph embed-
ding (G,Σ) is the smallest length of a non-contractible noose in Σ. We call an
embedding (G,Σ) polyhedral if G is 3-connected and rep(G,Σ) ≥ 3.

For a given embedding (G,Σ), we denote by (G∗,Σ) its dual embedding. Thus
G∗ is the geometric dual ofG. Each vertex v (resp. face r) in (G,Σ) corresponds
to some face v∗ (resp. vertex r∗) in (G∗,Σ). Also, given a set X ⊆ E(G), we
denote as X∗ the set of the duals of the edges in X.

Let G be a class of graphs embeddable in a surface Σ. We say that a graph
parameter p is (c, d)-self-dual on G if for every graph G ∈ G and for its
geometric dual G∗, p(G∗) ≤ c ·p(G) +d. Self-duality of treewidth, pathwidth,
or branchwidth (defined in Section 2) has played a fundamental role in the
proof of the celebrated Graph Minors Theorem [13], as well as being useful for
finding polynomial-time approximation algorithms for these parameters [2].

Most of the research concerning self-duality of graph parameters has been de-
voted to treewidth. Lapoire proved [7], using algebraic methods, that treewidth
is (1, 1)-self-dual in planar graphs, settling a conjecture stated by Robertson
and Seymour [11]. Bouchitté et al. [3] gave a much shorter proof of this result,
exploiting the properties of minimal separators in planar graphs.

Fomin and Thilikos [5] proved that pathwidth is (6, 6g−2)-self-dual in graphs
polyhedrically embedded in surfaces of Euler genus at most g. This result was
improved for planar graphs by Amini et al. [1], who proved that pathwidth
is (3, 2)-self-dual in 3-connected planar graphs and (2, 1)-self-dual in planar
graphs with a Hamiltonian path.

Concerning branchwidth, Seymour and Thomas [14] proved that it is (1, 0)-
self-dual in planar graphs that are not forests (for more direct proofs, see
also [9] and [6]). In this note, we give a short proof that branchwidth is (6, 2g−
4)-self-dual in graphs of Euler genus at most g. We also believe that our result
can be considerably improved. In particular, we conjecture that branchwidth
is (1, g)-self-dual.

2 Self-duality of branchwidth

Given a graphG and a setX ⊆ E(G), we define ∂X = (
⋃
e∈X e)∩(

⋃
e∈E(G)\X e),

where edges are naturally taken as pairs of vertices (notice that ∂X = ∂(E(G)\
X)). A branch decomposition (T, µ) of a graph G consists of an unrooted
ternary tree T (i.e., all internal vertices are of degree three) and a bijection
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µ : L → E(G) from the set L of leaves of T to the edge set of G. For every
edge f = {t1, t2} of T we define the middle set mid(e) ⊆ V (G) as follows: Let
L1 be the leaves of the connected component of T \ {e} that contain t1. Then
mid(e) = ∂µ(L1). The width of (T, µ) is defined as max{|mid(e)| : e ∈ T}.
An optimal branch decomposition of G is defined by a tree T and a bijection
µ which give the minimum width, called the branchwidth of G, and denoted
by bw(G).

If (G,Σ) is a polyhedral embedding, then the following proposition follows by
an easy modification of the proof of [5, Theorem 1].

Proposition 1 Let (G,Σ) and (G∗,Σ) be dual polyhedral embeddings in a
surface of Euler genus g. Then bw(G∗) ≤ 6 · bw(G) + 2g − 4.

In the sequel, we focus on generalizing Proposition 1 to arbitrary embeddings.
For this, we first need some technical lemmata, whose proofs are easy or well
known, and omitted in this short note. Note that the removal of a vertex in G
corresponds to the contraction of a face in G∗, and viceversa (the contraction
of a face is the contraction of all the edges incident to it to a single vertex).

Lemma 1 Branchwidth is closed under taking of minors, i.e., the branchwidth
of a graph is no less than the branchwidth of any of its minors.

Lemma 2 The removal of a vertex or the contraction of a face from an em-
bedded graph decreases its branchwidth by at most 1.

Lemma 3 (Fomin and Thilikos [4]) Let G1 and G2 be graphs with one
edge or one vertex in common. Then bw(G1∪G2) ≤ max{bw(G1),bw(G2), 2}.

We need a technical definition before stating our main result. Suppose that
G1 and G2 are graphs with disjoint vertex-sets and k ≥ 0 is an integer. For
i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G′i (i = 1, 2) be
obtained from Gi by deleting some (possibly none) of the edges from Gi[Wi]
with both endpoints in Wi. Consider a bijection h : W1 → W2. We define a
clique-sum G1⊕G2 of G1 and G2 to be the graph obtained from the union of
G′1 and G′2 by identifying w with h(w) for all w ∈ W1.

Theorem 1 Let (G,Σ) be an embedding with g = eg(Σ). Then bw(G∗) ≤
6 · bw(G) + 2g − 4.

Proof. The proof uses the following procedure that applies a series of cutting
operations to decompose G into polyhedral pieces plus a set of vertices whose
size is linearly bounded by eg(Σ). The input is the graph G and its dual G∗

embedded in Σ.

1. Set B = {G}, and B∗ = {G∗} (we call the members of B and B∗ blocks).
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2. If (G,Σ) has a minimal separator S with |S| ≤ 2, let C1, . . . , Cρ be the
connected components of G[V (G) \ S] and, for i = 1, . . . , ρ, let Gi be the
graph obtained by G[V (Ci) ∪ S] by adding an edge with both endpoints in
S in the case where |S| = 2 and such an edge does not already exist (we
refer to this operation as cutting G along the separator S). Notice that a
separator S of G with |S| = 1 corresponds to a separator S∗ of G∗ with
|S∗| = 1, given by the vertex of G∗ corresponding to the external face of G.
Also, to a separator S of G with |S| = 2 we can associate a separator S∗ of
G∗ with |S∗| = 2, given by the vertex of G∗ corresponding to the external
face of G and a vertex of G∗ corresponding to a face of G containing both
vertices in S. Let G∗i , i = 1, . . . , ρ be the graphs obtained by cutting G∗

along the corresponding separator S∗. We say that each Gi (resp G∗i ) is a
block of G (resp. G∗) and notice that each G and G∗ is the clique sum of its
blocks. Therefore, from Lemma 3,

bw(G∗) ≤ max{2,max{bw(G∗i ) | i = 1, . . . , ρ}}. (1)

Observe now that for each i = 1, . . . , ρ, Gi and G∗i are embedded in a surface
Σi such that Gi is the dual of G∗i and eg(Σ) =

∑
i=1,...,ρ eg(Σi). Notice also

that

bw(Gi) ≤ bw(G), i = 1, . . . , ρ, (2)

as the possible edge addition does not increase the branchwidth, since
each block of G is a minor of G and Lemma 1 applies. We set B ←
B \ {G} ∪ {G1, . . . , Gρ} and B∗ ← B∗ \ {G∗} ∪ {G∗1, . . . , G∗ρ}.

3. If (G,Σ) has a non-contractible and non-surface-separating noose meeting
a set S ⊆ V (G) with |S| ≤ 2, let G′ = G[V (G) \ S] and let F be the set of
faces in G∗ corresponding to the vertices in S. Observe that the obtained
graph G′ has an embedding to some surface Σ′ of Euler genus strictly smaller
than Σ that, in turn, has some dual G′∗ in Σ′. Therefore eg(Σ′) < eg(Σ).
Moreover, G′∗ is the result of the contraction in G∗ of the |S| faces in F .
From Lemma 2,

bw(G∗) ≤ bw(G′∗) + |S|. (3)

Set B ← B \ {G} ∪ {G′} and B∗ ← B∗ \ {G∗} ∪ {G′∗}.

4. As long as this is possible, apply (recursively) Steps 2–4 for each block
G ∈ B and its dual.

We now claim that before each recursive call of Steps 2 and 3, it holds that
bw(G∗) ≤ 6 · bw(G) + 2eg(Σ) − 4. The proof uses descending induction on
the the distance from the root of the recursion tree of the above procedure.
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Notice that all embeddings of graphs in the collections B and B∗ constructed
by the above algorithm are polyhedral (except from the trivial cases that they
have size at most 3). Then the theorem follows directly from Proposition 1.

Suppose that G (resp. G∗) is the clique sum of its blocks G1, . . . , Gρ (resp.
G∗1, . . . , G

∗
ρ) embedded in the surfaces Σ1, . . . ,Σρ (Step 2). By induction, we

have that bw(G∗i ) ≤ 6 · bw(Gi) + 2eg(Σi) − 4, i = 1, . . . , ρ and the claim
follows from Relations (1) and (2) and the fact that eg(Σ) =

∑
i=1,...,ρ eg(Σ).

Suppose now (Step 3) that G (resp. G∗) occurs from some graph G′ (resp. G′∗)
embedded in a surface Σ′ where eg(Σ′) < eg(Σ) after adding the vertices in S
(resp. S∗). From the induction hypothesis, bw(G′∗) ≤ 6 · bw(G′) + 2eg(Σ′)−
4 ≤ 6·bw(G′)+2eg(Σ)−2−4 and the claim follows directly from Relation (3)
as |S| ≤ 2 and bw(G′) ≤ bw(G).

3 Recent results and a conjecture

Recently, Mazoit [8] proved that treewidth is a (1, g + 1)-self-dual parameter
in graphs embeddable in surfaces of Euler genus g, using completely differ-
ent techniques. Since the branchwidth and the treewidth of a graph G, with
|E(G)| ≥ 3, satisfy bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G) [12], this implies that

bw(G∗) ≤ 3
2
bw(G)+g+2, improving the constants of Theorem 1. We believe

that an even tighter self-duality relation holds for branchwidth and hope that
the approach of this paper will be helpful to settle the following conjecture.

Conjecture 1 If G is a graph embedded in some surface Σ, then bw(G∗) ≤
bw(G) + eg(Σ).
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