On Self-duality of Branchwidth in Graphs of Bounded Genus^{*}

Ignasi Sau^a

^aAlGCo group, CNRS, LIRMM, Montpellier, France.

Dimitrios M. Thilikos^b

^bDepartment of Mathematics, National Kapodistrian University of Athens, Greece.

Abstract

A graph parameter is *self-dual* in some class of graphs embeddable in some surface if its value does not change in the dual graph more than a constant factor. Self-duality has been examined for several width-parameters, such as branchwidth, pathwidth, and treewidth. In this paper, we give a direct proof of the self-duality of branchwidth in graphs embedded in some surface. In this direction, we prove that $\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4$ for any graph G embedded in a surface of Euler genus g.

Key words: graphs on surfaces, branchwidth, duality, polyhedral embedding.

1 Preliminaries

Our main reference for graphs on surfaces is the monograph by Mohar and Thomassen [10]. A surface is a connected compact 2-manifold without boundaries. A surface Σ can be obtained, up to homeomorphism, by adding $\mathbf{eg}(\Sigma)$ crosscaps to the sphere, and $\mathbf{eg}(\Sigma)$ is called the *Euler genus* of Σ . We denote by (G, Σ) a graph G embedded in a surface Σ , that is, drawn in Σ without edge crossings. A subset of Σ meeting the drawing only at vertices of G is called *G*-normal. An *O*-arc on Σ is a subset that is homeomorphic to a cycle. If an *O*-arc is *G*-normal, then we call it a noose. A noose N is contractible if it is the boundary of some disk on Σ and is surface separating if $\Sigma \setminus N$ is

Preprint submitted to Discrete Applied Mathematics

^{*} This work has been supported by ANR AGAPE and ANR GRATOS projects, and by the Project "Kapodistrias" (AII 02839/28.07.2008) of the National and Kapodistrian University of Athens (project code: 70/4/8757).

disconnected. The *length* of a noose is the number of the vertices it meets. *Representativity*, or *face-width*, is a parameter that quantifies local planarity and density of embeddings. The representativity $\mathbf{rep}(G, \Sigma)$ of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ . We call an embedding (G, Σ) polyhedral if G is 3-connected and $\mathbf{rep}(G, \Sigma) \geq 3$.

For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding. Thus G^* is the geometric dual of G. Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) . Also, given a set $X \subseteq E(G)$, we denote as X^* the set of the duals of the edges in X.

Let \mathcal{G} be a class of graphs embeddable in a surface Σ . We say that a graph parameter \mathbf{p} is (c, d)-self-dual on \mathcal{G} if for every graph $G \in \mathcal{G}$ and for its geometric dual G^* , $\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d$. Self-duality of treewidth, pathwidth, or branchwidth (defined in Section 2) has played a fundamental role in the proof of the celebrated Graph Minors Theorem [13], as well as being useful for finding polynomial-time approximation algorithms for these parameters [2].

Most of the research concerning self-duality of graph parameters has been devoted to treewidth. Lapoire proved [7], using algebraic methods, that treewidth is (1, 1)-self-dual in planar graphs, settling a conjecture stated by Robertson and Seymour [11]. Bouchitté *et al.* [3] gave a much shorter proof of this result, exploiting the properties of minimal separators in planar graphs.

Fomin and Thilikos [5] proved that pathwidth is (6, 6g - 2)-self-dual in graphs polyhedrically embedded in surfaces of Euler genus at most g. This result was improved for planar graphs by Amini *et al.* [1], who proved that pathwidth is (3, 2)-self-dual in 3-connected planar graphs and (2, 1)-self-dual in planar graphs with a Hamiltonian path.

Concerning branchwidth, Seymour and Thomas [14] proved that it is (1, 0)-self-dual in planar graphs that are not forests (for more direct proofs, see also [9] and [6]). In this note, we give a short proof that branchwidth is (6, 2g - 4)-self-dual in graphs of Euler genus at most g. We also believe that our result can be considerably improved. In particular, we conjecture that branchwidth is (1, g)-self-dual.

2 Self-duality of branchwidth

Given a graph G and a set $X \subseteq E(G)$, we define $\partial X = (\bigcup_{e \in X} e) \cap (\bigcup_{e \in E(G) \setminus X} e)$, where edges are naturally taken as pairs of vertices (notice that $\partial X = \partial(E(G) \setminus X)$). A branch decomposition (T, μ) of a graph G consists of an unrooted ternary tree T (i.e., all internal vertices are of degree three) and a bijection $\mu: L \to E(G)$ from the set L of leaves of T to the edge set of G. For every edge $f = \{t_1, t_2\}$ of T we define the *middle set* $\mathbf{mid}(e) \subseteq V(G)$ as follows: Let L_1 be the leaves of the connected component of $T \setminus \{e\}$ that contain t_1 . Then $\mathbf{mid}(e) = \partial \mu(L_1)$. The *width* of (T, μ) is defined as $\max\{|\mathbf{mid}(e)|: e \in T\}$. An optimal branch decomposition of G is defined by a tree T and a bijection μ which give the minimum width, called the *branchwidth* of G, and denoted by $\mathbf{bw}(G)$.

If (G, Σ) is a polyhedral embedding, then the following proposition follows by an easy modification of the proof of [5, Theorem 1].

Proposition 1 Let (G, Σ) and (G^*, Σ) be dual polyhedral embeddings in a surface of Euler genus g. Then $\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4$.

In the sequel, we focus on generalizing Proposition 1 to arbitrary embeddings. For this, we first need some technical lemmata, whose proofs are easy or well known, and omitted in this short note. Note that the removal of a vertex in Gcorresponds to the contraction of a face in G^* , and viceversa (the contraction of a face is the contraction of all the edges incident to it to a single vertex).

Lemma 1 Branchwidth is closed under taking of minors, i.e., the branchwidth of a graph is no less than the branchwidth of any of its minors.

Lemma 2 The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1.

Lemma 3 (Fomin and Thilikos [4]) Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$.

We need a technical definition before stating our main result. Suppose that G_1 and G_2 are graphs with disjoint vertex-sets and $k \ge 0$ is an integer. For i = 1, 2, let $W_i \subseteq V(G_i)$ form a clique of size k and let G'_i (i = 1, 2) be obtained from G_i by deleting some (possibly none) of the edges from $G_i[W_i]$ with both endpoints in W_i . Consider a bijection $h : W_1 \to W_2$. We define a *clique-sum* $G_1 \oplus G_2$ of G_1 and G_2 to be the graph obtained from the union of G'_1 and G'_2 by identifying w with h(w) for all $w \in W_1$.

Theorem 1 Let (G, Σ) be an embedding with $g = \mathbf{eg}(\Sigma)$. Then $\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4$.

Proof. The proof uses the following procedure that applies a series of cutting operations to decompose G into polyhedral pieces plus a set of vertices whose size is linearly bounded by $\mathbf{eg}(\Sigma)$. The input is the graph G and its dual G^* embedded in Σ .

1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks).

2. If (G, Σ) has a minimal separator S with |S| ≤ 2, let C₁,..., C_ρ be the connected components of G[V(G) \ S] and, for i = 1,..., ρ, let G_i be the graph obtained by G[V(C_i) ∪ S] by adding an edge with both endpoints in S in the case where |S| = 2 and such an edge does not already exist (we refer to this operation as cutting G along the separator S). Notice that a separator S of G with |S| = 1 corresponds to a separator S^{*} of G^{*} with |S^{*}| = 1, given by the vertex of G^{*} corresponding to the external face of G. Also, to a separator S of G with |S| = 2 we can associate a separator S^{*} of G^{*} with |S^{*}| = 2, given by the vertex of G^{*} corresponding to the external face of G and a vertex of G^{*} corresponding to a face of G containing both vertices in S. Let G^{*}_i, i = 1,..., ρ be the graphs obtained by cutting G^{*} along the corresponding separator S^{*}. We say that each G_i (resp G^{*}_i) is a block of G (resp. G^{*}) and notice that each G and G^{*} is the clique sum of its blocks. Therefore, from Lemma 3,

$$\mathbf{bw}(G^*) \le \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, \dots, \rho\}\}.$$
(1)

Observe now that for each $i = 1, ..., \rho$, G_i and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $\mathbf{eg}(\Sigma) = \sum_{i=1,...,\rho} \mathbf{eg}(\Sigma_i)$. Notice also that

$$\mathbf{bw}(G_i) \le \mathbf{bw}(G), i = 1, \dots, \rho,\tag{2}$$

as the possible edge addition does not increase the branchwidth, since each block of G is a minor of G and Lemma 1 applies. We set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G_1, \ldots, G_{\rho}\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G_1^*, \ldots, G_{\rho}^*\}$.

3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \leq 2$, let $G' = G[V(G) \setminus S]$ and let F be the set of faces in G^* corresponding to the vertices in S. Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual G'^* in Σ' . Therefore $\mathbf{eg}(\Sigma') < \mathbf{eg}(\Sigma)$. Moreover, G'^* is the result of the contraction in G^* of the |S| faces in F. From Lemma 2,

$$\mathbf{bw}(G^*) \le \mathbf{bw}(G'^*) + |S|. \tag{3}$$

Set
$$\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$$
 and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$.

4. As long as this is possible, apply (recursively) Steps 2–4 for each block $G \in \mathcal{B}$ and its dual.

We now claim that before each recursive call of Steps 2 and 3, it holds that $\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2\mathbf{eg}(\Sigma) - 4$. The proof uses descending induction on the distance from the root of the recursion tree of the above procedure.

Notice that all embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the above algorithm are polyhedral (except from the trivial cases that they have size at most 3). Then the theorem follows directly from Proposition 1.

Suppose that G (resp. G^*) is the clique sum of its blocks G_1, \ldots, G_{ρ} (resp. $G_1^*, \ldots, G_{\rho}^*$) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_{\rho}$ (Step 2). By induction, we have that $\mathbf{bw}(G_i^*) \leq 6 \cdot \mathbf{bw}(G_i) + 2\mathbf{eg}(\Sigma_i) - 4, i = 1, \ldots, \rho$ and the claim follows from Relations (1) and (2) and the fact that $\mathbf{eg}(\Sigma) = \sum_{i=1,\ldots,\rho} \mathbf{eg}(\Sigma)$.

Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $\mathbf{eg}(\Sigma') < \mathbf{eg}(\Sigma)$ after adding the vertices in S(resp. S^*). From the induction hypothesis, $\mathbf{bw}(G'^*) \leq 6 \cdot \mathbf{bw}(G') + 2\mathbf{eg}(\Sigma') - 4 \leq 6 \cdot \mathbf{bw}(G') + 2\mathbf{eg}(\Sigma) - 2 - 4$ and the claim follows directly from Relation (3) as $|S| \leq 2$ and $\mathbf{bw}(G') \leq \mathbf{bw}(G)$.

3 Recent results and a conjecture

Recently, Mazoit [8] proved that treewidth is a (1, g + 1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g, using completely different techniques. Since the branchwidth and the treewidth of a graph G, with $|E(G)| \geq 3$, satisfy $\mathbf{bw}(G) \leq \mathbf{tw}(G) + 1 \leq \frac{3}{2}\mathbf{bw}(G)$ [12], this implies that $\mathbf{bw}(G^*) \leq \frac{3}{2}\mathbf{bw}(G) + g + 2$, improving the constants of Theorem 1. We believe that an even tighter self-duality relation holds for branchwidth and hope that the approach of this paper will be helpful to settle the following conjecture.

Conjecture 1 If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eg}(\Sigma)$.

References

- O. Amini, F. Huc, and S. Pérennes. On the Pathwidth of Planar Graphs. SIAM Journal on Discrete Mathematics, 23(3):1311–1316, 2009.
- [2] H. L. Bodlaender and F. V. Fomin. Approximation of path-width of outerplanar graphs. *Journal of Algorithms*, 43(2):190–200, 2002.
- [3] V. Bouchitté, F. Mazoit, and I. Todinca. Chordal embeddings of planar graphs. Discrete Mathematics, 273(1-3):85–102, 2003.
- [4] F. V. Fomin and D. M. Thilikos. Dominating Sets in Planar Graphs: Branch-Width and Exponential Speed-Up. SIAM Journal on Computing, 36(2):281– 309, 2006.
- [5] F. V. Fomin and D. M. Thilikos. On self duality of pathwidth in polyhedral graph embeddings. *Journal of Graph Theory*, 55(1):42–54, 2007.

- [6] I. V. Hicks and N. B. McMurray, Jr. The branchwidth of graphs and their cycle matroids. Journal of Combinatorial Theory, Series B, 97(5):681–692, 2007.
- [7] D. Lapoire. Treewidth and duality for planar hypergraphs. http://www.labri.fr/perso/lapoire/papers/dual_planar_treewidth.ps, 1996 (manuscript).
- [8] F. Mazoit. Tree-width of graphs and surface duality. Electronic Notes in Discrete Mathematics, 32:93–97, 2009. Proceedings of DIMAP workshop on Algorithmic Graph Theory (AGT), Warwick, U.K., March 2009.
- [9] F. Mazoit and S. Thomassé. Branchwidth of graphic matroids. In Surveys in combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser., pages 275–286. Cambridge Univ. Press, Cambridge, 2007.
- [10] B. Mohar and C. Thomassen. Graphs on surfaces. John Hopkins University Press, 2001.
- [11] N. Robertson and P. Seymour. Graph Minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984.
- [12] N. Robertson and P. Seymour. Graph Minors. X. Obstructions to Treedecomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.
- [13] N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner's conjecture. Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004.
- [14] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241, 1994.