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Abstract. In this work we present some results on the classical and parame-
terized complexity of finding cuts in edge-colored graphs. In general, we are
interested in problems of finding cuts {A,B} which minimize or maximize the
number of colors occurring in the edges with exactly one endpoint in A.

1. Introduction
A cut in a graph G is a partition of V (G) into two disjoint non-empty sets A and B. The
cut-set of a cut {A,B}, denoted by e(A,B), is defined as the set of edges of G with
exactly one endpoint in A. If s and t are two distinct vertices of a graph G, an (s, t)-cut
of G is a cut {A,B} of G such that s ∈ A and t ∈ B.

Motivation. MINIMUM CUT and MAXIMUM CUT are two of most popular graph prob-
lems and they have several applications. An important application of graph edge cuts
is image segmentation, in the field of computer vision. Image segmentation can be de-
fined as the task of distinguishing objects from background in images, more precisely,
image segmentation is the process of partitioning a digital image into multiple segments
(sets of pixels, also known as superpixels). Classical methods to obtain image segmen-
tations are based on finding edge cuts in uncolored-edge graphs [Shi and Malik 1997,
Felzenszwalb and Huttenlocher 2004]. However, as images can be easily seen as graphs,
where pixels’ colors can be interpreted as edge’s colors, the study of combinatorial prob-
lems related to cuts in colored-edge graphs seems to be useful to construct new techniques
for image segmentation and for other applications as well.

Let c : E(G) → N be a (not necessarily proper) coloring function defined on the
edges of a graph G and let {A,B} be a cut in G. We denote by c(A,B) the set of colors
that appear in the edges of e(A,B), that is,

c(A,B) = {i ∈ N : there exists e ∈ e(A,B) with c(e) = i}.

Let im(c) be the image of the coloring function c : E(G)→ N.

In this paper we consider the following combinatorial problems related to cuts in
edge-colored graphs:



MINIMUM COLORED CUT
Input: A connected graph G and a coloring function c : E(G)→ N.
Output: A cut {A,B} of G that minimizes |c(A,B)|.

MINIMUM COLORED (s, t)-CUT
Input: A connected graph G, two distinct vertices s, t ∈ V (G), and a
coloring function c : E(G)→ N.
Output: An (s, t)-cut {A,B} of G that minimizes |c(A,B)|.
MAXIMUM COLORED CUT
Input: A graph G and a coloring function c : E(G)→ N.
Output: A cut {A,B} of G that maximizes |c(A,B)|.
COLORFUL CUT
Input: A graph G and a coloring function c : E(G)→ N.
Output: A cut {A,B} of G such that c(A,B) = im(c), if it exists.

As we can observe, COLORFUL CUT is a special case of MAXIMUM COLORED
CUT, and MINIMUM COLORED CUT are easily Turing-reducible to MINIMUM COL-
ORED (s, t)-CUT.

In this article we focus on the computational complexity of these problems, with
special emphasis on their parameterized complexity for several choices of the parameters.
For an introduction to the field of Parameterized Complexity, see [Flum and Grohe 2006,
Niedermeier 2006, Downey and Fellows 2013, Cygan et al. 2015]. We use standard
graph-theoretic notation [Diestel 2010]. Throughout the article, we denote by n the num-
ber of vertices of the input graph of the problem under consideration.

2. Minimum colored cut and colored (s, t)-cuts
To the best of our knowledge, the MINIMUM COLORED CUT and MINIMUM COLORED
(s, t)-CUT problems were first introduced by Coudert et al. [Coudert et al. 2007], using
different terminology.

Note that if the coloring function c is injective, that is, if all edges get different col-
ors, then the MINIMUM COLORED CUT and MINIMUM COLORED (s, t)-CUT problems
correspond exactly to the MINIMUM CUT and MINIMUM (s, t)-CUT problems, respec-
tively, hence they can be both solved in polynomial time by a classical MAXIMUM FLOW
algorithm [Diestel 2010].
Theorem 1.

• MINIMUM COLORED (s, t)-CUT cannot be approximated within a factor of (1−
ε) ln(c) for any constant ε > 0 unless P = NP, even if the input graph is bipartite
planar or complete;
• MINIMUM COLORED (s, t)-CUT is W[2]-hard parameterized by the cost of the

solution, even if the input graph is bipartite planar.
Proof. Reduction from SET COVER which is known to be W[2]-hard when parameterized
by the size of the solution [Flum and Grohe 2006] and (1 − ε) ln(c) inapproximable (for
any constant ε > 0 unless P = NP) [Dinur and Steurer 2014].

Theorem 2. MINIMUM COLORED (s, t)-CUT on planar bipartite graphsG remains NP-
complete even when:



• either, each color of G occurs at most three times, and every (s, t)-path in G has
length two;
• or, each color of G occurs at most twice, and every (s, t)-path in G has length at

most three.
Proof. Reduction from VERTEX COVER on cubic graphs [Blin et al. 2014].

Theorem 3. MINIMUM COLORED (s, t)-CUT can be solved in polynomial time when
every color appears in at most two (s, t)-paths of G.
Proof. We can show this using the polynomial algorithm for MONOTONE WEIGHTED
SAT where each variable occurs at most twice [Porschen and Speckenmeyer 2007].

Corollary 4. MINIMUM COLORED (s, t)-CUT can be solved in polynomial time when
each color occurs at most twice and each (s, t)-path has length two.
Theorem 5. MINIMUM COLORED CUT and MINIMUM COLORED (s, t)-CUT are FPT
when parameterized by the number of colors.

Note that MINIMUM COLORED (s, t)-CUT can be solved in polynomial time
when c = O(log n), and can be solved in pseudo-polynomial time when G has an un-
colored (s, t)-cut of size O(log n). The following result complements Theorem 5 above.
Lemma 6. The MINIMUM COLORED (s, t)-CUT problem does not admit polynomial
kernels when parameterized by the number of colors, unless NP ⊆ coNP/poly.
Proof. The proof uses OR-composition.

Lemma 7. MINIMUM COLORED (s, t)-CUT are FPT when parameterized by the number
of (s, t)-paths and the size of the solution.
Lemma 8. The MINIMUM COLORED (s, t)-CUT problem does not admit polynomial
kernels when parameterized by the number of (s, t)-paths and the size of the solution,
unless NP ⊆ coNP/poly.
Lemma 9. MINIMUM COLORED CUT can be solved in polynomial time when G has an
uncolored (s, t)-cut of constant size, and it can be solved in O(n5) time on planar graphs.
Theorem 10. MINIMUM COLORED CUT for directed graphs is NP-hard.

We denote by span of a color ci the number of connected components in the graph
induced by the set of edges colored with ci.
Lemma 11. Given an edge-colored graph (G, c), let c2 denote the number of colors with
span at least two. The MINIMUM COLORED CUT problem can be solved in time 3c2 ·nO(1).
Lemma 12. Given an edge-colored graph (G, c) and a positive integer p, let cp denote
the number of colors with span at least p. The MINIMUM COLORED CUT problem can be
solved by a randomized algorithm in time 3cp · nO(1), where the degree of the polynomial
depends on p.

3. Maximum colored cut and colorful cut
In this section we list our results on COLORFUL CUT and MAXIMUM COLORED CUT.
Theorem 13. MAX COLORED CUT remains NP-hard even when restricted to complete
graphs.
Theorem 14. MAX COLORED CUT admits a polynomial 2-approximation algorithm.
Theorem 15. MAX COLORED CUT can be solved in polynomial time on graphs G col-
ored with a constant number of colors.
Theorem 16. COLORFUL CUT is NP-complete even when each color class induces a
clique.



Theorem 17. COLORFUL CUT is NP-complete even on planar graphs where each color
occurs at most twice and each vertex has degree at most 4.
Corollary 18. The COLORFUL CUT problem is NP-complete, even when restricted to
planar graphs with odd cycle transversal number at most 1.
Theorem 19. COLORFUL CUT can be solved in polynomial time on planar graphs if any
color class induces a clique.
Lemma 20. The COLORFUL CUT problem is NP-complete, even when restricted to
graphs with vertex cover number at most 4.
Lemma 21. The COLORFUL CUT problem is NP-complete, even when restricted to pla-
nar graphs with feedback vertex set number at most 2.
Lemma 22. The MAXIMUM COLORED CUT problem admits a cubic kernel when pa-
rameterized by the number of colors.
Lemma 23. The MAXIMUM COLORED CUT problem admits a cubic kernel when pa-
rameterized by the cost of the solution.
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