
On approximating the d-girth of a graph⋆

David Peleg1, Ignasi Sau2, and Mordechai Shalom3

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
david.peleg@weizmann.ac.il

2 AlGCo project-team, CNRS, Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier (LIRMM), Montpellier, France.

ignasi.sau@lirmm.fr
3 TelHai Academic College, Upper Galilee, 12210, Israel.

cmshalom@telhai.ac.il

Abstract. For a finite, simple, undirected graph G and an integer d ≥ 1, a
mindeg-d subgraph is a subgraph of G of minimum degree at least d. The d-
girth of G, denoted gd(G), is the minimum size of a mindeg-d subgraph of G. It
is a natural generalization of the usual girth, which coincides with the 2-girth.
The notion of d-girth was proposed by Erdős et al. [13, 14] and Bollobás and
Brightwell [7] over 20 years ago, and studied from a purely combinatorial point of
view. Since then, no new insights have appeared in the literature. Recently, first
algorithmic studies of the problem have been carried out [2,4]. The current article
further explores the complexity of finding a small mindeg-d subgraph of a given
graph (that is, approximating its d-girth), by providing new hardness results and
the first approximation algorithms in general graphs, as well as analyzing the case
where G is planar.

Keywords: generalized girth, minimum degree, approximation algorithm, hard-
ness of approximation, randomized algorithm, planar graph.

1 Introduction

Degree-constrained subgraph problems have attracted considerable attention in the last
decades, resulting in a large body of literature (see e.g. [1,2,4,8,13–15,17,21,24]). Beyond
the theoretical importance of these problems, the reasons for such intensive study are
mainly rooted in their wide applicability in the areas of interconnection networks and
routing algorithms, among others. This article studies the computational complexity of
one such problem, presented next.

For a finite, simple, undirected graph G and an integer d ≥ 1, a mindeg-d subgraph
is a subgraph of G of minimum degree at least d. The d-girth of G, denoted gd(G), is
the minimum size of a mindeg-d subgraph of G. The notion of d-girth was proposed and
studied by Erdős et al. [13,14] and Bollobás and Brightwell [7] (using different terminol-
ogy). Combinatorial bounds on the d-girth of a graph can also be found in [6, 18]. For
d = 2, g2(G) coincides with the girth of G, hence the d-girth can be seen as a natural
generalization of the usual girth. Our interest is in the corresponding optimization prob-
lem of finding a minimum-size mindeg-d subgraph of a given graph (namely, one of size
gd(G)). For d = 1, this problem is trivial, as any edge constitutes an optimal solution.
For d = 2, the problem corresponds exactly to finding the shortest cycle in G (as every
subgraph of minimum degree at least 2 contains a cycle), and thus can be solved in
polynomial time. For a fixed integer d ≥ 1, our optimization problem is formally defined
as follows.

⋆ A preliminary extended abstract of this work appeared in [22].

2 D. Peleg, I. Sau, and M. Shalom

The d-girth Problem
Input: A simple undirected graph G = (V,E).
Output: A minimum-size subset S ⊆ V such that G[S] has minimum degree at least d.

Note that OPTd-girth(G) = gd(G). Until very recently, the computational complex-
ity of the d-girth problem had not been studied in the literature. It has been proved
in [2] that for any fixed d ≥ 3, the d-girth of a graph cannot be approximated within
any constant factor, unless P = NP. Concerning approximation algorithms, the only
positive result is an O(n/ log n)-approximation algorithm for minor-free graphs [2]; ap-
proximation algorithms for the d-girth problem in general graphs were missing in the
literature. On the other hand, the problem has been recently studied in [4] from the
parameterized complexity point of view [12], taking as the parameter the number of
vertices in a solution. It was shown that the problem is W [1]-hard in general graphs,
and admits FPT algorithms in minor-free families of graphs [4].

It is worth mentioning that the d-girth problem is closely related to the traffic
grooming problem, which is fundamental in modern optical networks. Loosely speaking,
an important particular case of the traffic grooming problem can be stated, in graph-
theoretical terms, as partitioning the edges of a given graph into subgraphs with bounded
number of edges, while minimizing the total number of vertices in the partition. Traf-
fic grooming has been proved to be a computationally hard problem [3, 9], and good
approximation algorithms for the d-girth problem would directly translate into effi-
cient approximation algorithms for traffic grooming. See [4] for more details about this
relation.

Our results. Section 2 focuses on hardness results. The hardness results of [2] are
substantially improved by proving that for any d ≥ 3 and any ε > 0, there is no
polynomial-time algorithm for the d-girth problem with approximation ratio 2O(log1−ε n)

unless NP ⊆ DTIME
(
2O(log1/ε n)

)
. These hardness results hold even in graphs with

degrees d or d+1. Section 3 provides the first approximation algorithms for the d-girth
problem in general graphs. We first present a randomized algorithm with approximation
ratio n/ log n in Section 3.1. We then present another randomized algorithm with better
performance in high-degree graphs (Section 3.2), and a deterministic algorithm for low-
degree graphs (Section 3.3). In Section 4 we turn to the case where the input graph
is planar. We prove that the d-girth problem is NP-hard in planar graphs for d ∈
{3, 4, 5} (Section 4.1), present a deterministic approximation algorithm (Section 4.2),
and show that the problem can be solved exactly in subexponential time (Section 4.3).
A concluding discussion appears in Section 5.

We would like to point out that in view of our results, the d-girth problem appears to
be rather difficult. Although the approximation ratios obtained are in some sense weak,
the performance of our algorithms is not far from the best approximation algorithms
for other very hard graph optimization problems like Maximum Clique, Chromatic
Number, or Longest Path. Our work will hopefully trigger further research on the
d-girth problem.

Notation. All the graphs considered in this paper are finite, simple, and undirected. We
use standard graph terminology, see for instance [10]. Unless stated otherwise, we denote
the number of vertices of the input graph G by n. We use degG(v), δ(G), and ∆(G) to
denote the degree of a vertex v in G, the minimum degree of G, and the maximum degree
of G, respectively. We use H ⊆ G to denote the fact that H is a subgraph of G. Given
a subset S ⊆ V (G), G[S] denotes the subgraph of G induced by the vertices in S. For
convenience, we use ‘log’ to denote the natural logarithm.

On approximating the d-girth of a graph 3

2 Hardness results for general graphs

It is proved in [2] that for any d ≥ 3, the d-girth problem is not in Apx unless P = NP.
Theorem 2 given in this section improves the hardness results of [2], relying on a slightly
stronger complexity assumption. The ideas are inspired mainly by [17], and the proof
builds upon the reductions and the constructions presented in [2]. Before proceeding
to the improved hardness in Section 2.2, we first describe in Section 2.1 the families of
graphs constructed in [2].

2.1 Preliminaries: some families of graphs

For the sake of intuition, it is helpful throughout this section to think about the case
d = 3. Given a fixed integer d ≥ 3, we proceed to construct a class of graphs Gd starting
from the class of d-regular graphs whose number of edges is d · (d− 1)ℓ for some positive
integer ℓ. Given such a d-regular graph H, with |V (H)| = n, we construct a graph G =
f(H) ∈ Gd as follows. By assumption, we have that |E(H)| = nd/2 = d ·(d−1)ℓ for some
integer ℓ. Let T be the complete d-ary rooted tree (that is, internal vertices have degree d)
with root r and height ℓ+1, which has d·(d−1)ℓ leaves and 1+d·

(
(d− 1)ℓ+1 − 1

)
/(d−2)

vertices overall. We identify the leaves of T with the elements in E(H), and denote this
set – slightly abusing notation – by E (that is, E ⊆ V (T)). We add another copy of E,
called F , and d− 1 edge-disjoint perfect matchings on E ∪F , inducing a bipartite graph
with partition classes E and F . We also identify the vertices of F with the elements in
E(H). Now we add a set A of |V (H)| new vertices identified with the elements in V (H),
and join them to the vertices in F according to the incidence relations in H: we add an
edge between a vertex in F corresponding to e ∈ E(H) and a vertex in A corresponding
to u ∈ V (H) if and only if e contains u. This completes the construction of G. Note that
the vertices in E have degree d, and those in F have degree d+1. An illustration of such
a graph G for d = 3 can be found in Fig. 1.

T

E(H)

E(H)

V(H)

E

A

F

Fig. 1. Example of a graph G ∈ G3 built in Section 2.1.

The important property of these graphs is that any solution to the d-girth problem
contains all vertices of G, except possibly some vertices in set A (see [2] for more details).

4 D. Peleg, I. Sau, and M. Shalom

We now define a graph squaring operation for graphs in the family Gd. Given a graph
G ∈ Gd, we describe the construction of G2, and repeating inductively k times the same

construction defines the graph G2k , a typical element of the class G2k

d = {G2k | G ∈ Gd},
for any k ≥ 0. For every vertex v in G, construct a graph Gv as follows: first, take a
copy of G, and choose dv = degG(v) other arbitrary vertices x1, . . . , xdv of degree d in
T ⊆ G. Then, replace each of these vertices xi by the following:

• if d ≥ 3 is odd: a graph obtained from Kd+1 by removing a perfect matching (e.g.,
a C4 for d = 3).

• if d ≥ 4 is even: a graph obtained from Kd+2 by removing a cycle going through
d+ 1 vertices. Let v∗ be the vertex of degree d+ 1 in this graph.

Next, join d of the vertices of this new graph (different from v∗) to the d neighbors of
xi, i = 1, . . . , dv. Let Gv be the graph obtained in this way. Note that Gv has exactly dv
vertices of degree d− 1. Now, take a copy of G, and replace each vertex v by Gv. Then,
join each of the dv neighbors of v in G to one of the dv vertices of degree d − 1 in Gv.
This completes the construction of the graph G2. We have that |V (G2)| = |V (G)|2 +
o(|V (G)|2), because each vertex of G gets replaced by a copy of G where some of the
vertices were replaced by a graph of size d+ 1 or d+ 2. An illustration of G2 for d = 3
can be found in Fig. 2.

v

x
1x

2

x
dv

Gv

Fig. 2. Example of a graph G2 ∈ G23 built in Section 2.1.

Theorem 1 ([2]). For any fixed d ≥ 3, finding a constant-factor polynomial-time ap-

proximation algorithm for the d-girth problem in the class of graphs
∪

k≥0 G2k

d is NP-
hard.

2.2 Improved hardness results

The following technical lemma is a consequence of the constructions of Section 2.1.

Lemma 1. For any d ≥ 3, let G be a graph of the class Gd constructed in Section 2.1,
and let G2 be the graph constructed from G by the graph squaring operation.

(i) If gd(G) = ℓ, then gd(G
2) ≤ 2ℓ2; and

On approximating the d-girth of a graph 5

(ii) given a solution in G2 containing m vertices, we can obtain in polynomial time a
solution in G containing at most

√
m vertices.

Proof: The first claim follows from the fact that, given a solution S ⊆ V (G) to the d-
girth problem in G, a feasible solution S2 to the d-girth problem in the square graph
G2 can be obtained by choosing the copies of G corresponding to vertices in S, and by
choosing again in each such copy the vertices defined by S. From the construction of G2

it follows that |S2| ≤ |S| · (|S|+ (d+ 1)2) ≤ 2|S|2, as the degree of any vertex v ∈ V (G)
is at most d+ 1, and in the copy of G in G2 corresponding to vertex v, deg(v) vertices
are replaced by graphs on at most d+ 2 vertices.

In order to prove the second claim, let S2 ⊆ V (G2) be a solution to the d-girth
problem in G2, with |S2| = m. We distinguish two cases. First, if S2 contains vertices
from fewer than

√
m copies of G, then the solution in G defined by the vertices cor-

responding to these copies has size at most
√
m. Otherwise, there exists a copy Gv of

G intersecting S2 in which at most
√
m vertices belong to S2. Then, the solution in G

defined by the vertices in Gv belonging to S2 contains at most
√
m vertices. �

Theorem 2. For any d ≥ 3 and any ε > 0, there is no polynomial-time algorithm for the

d-girth problem with approximation ratio 2O(log1−ε n) unless NP ⊆ DTIME
(
2O(log1/ε n)

)
.

The theorem holds even for the class of graphs with minimum degree d and maximum
degree d+ 1.

Proof: Let d ≥ 3 and ε > 0 be fixed, and suppose that there exists a polynomial-
time approximation algorithm A that approximates the d-girth problem within a ratio
2O(log1−ε n). Let G = (V,E) be an instance of the d-girth problem belonging to the class
of graphs Gd defined in Section 2.1, with |V | = n and gd(G) = ℓ. For a positive integer k,

let G2k be the graph obtained from G by applying k times the graph squaring operation

defined in Section 2.1. Note that for any k ≥ 0, the vertices of G2k have degree d or

d + 1, and that |V (G2k)| = n2k + o(n2k) = Θ(n2k). Let p be the smallest integer such

that N = |V (G2p)| ≥ 2log
1/ε n . Note that N = Θ(n2p), so 2p = Θ(logN/ log n) =

Θ(log1−ε N). Consequently, 2
O
(

log1−ε N
2p

)
= O(1). By repeatedly applying Lemma 1(i),

it follows that gd(G
2p) ≤ 22

p−1 · ℓ2p . Then, algorithm A finds in time polynomial in N

a solution to the d-girth problem in G2p of size at most 22
p−1 · ℓ2p · 2O(log1−ε N). Then,

by repeatedly applying Lemma 1(ii), we can find a solution to the d-girth problem in
G of size at most(

22
p−1 · ℓ2

p

· 2O(log1−ε N)
)1/2p

≤ ℓ · 2O
(

log1−ε N
2p

)
= O(ℓ).

This implies that the d-girth problem can be approximated in the class
∪

k≥0 G2k

d within

a constant factor in time polynomial in N , that is, in time 2O(log1/ε n). But since finding

a constant-factor approximation algorithm for the d-girth problem in
∪

k≥0 G2k

d is NP-

hard by Theorem 1, it follows that NP ⊆ DTIME
(
2O(log1/ε n)

)
. �

3 Approximation algorithms for general graphs

Section 3.1 presents a randomized approximation algorithm in general graphs and a
detailed analysis of its approximation ratio. Section 3.2 proposes another randomized
algorithm for graphs with high minimum degree, and discusses the relation of this al-
gorithm with a combinatorial result of Erdős et al. [14]. Finally, Section 3.3 presents a
deterministic approximation algorithm for graphs with low maximum degree.

6 D. Peleg, I. Sau, and M. Shalom

3.1 A randomized (n/ logn)-approximation

A graph G is said to be valid if δ(G) ≥ d and V (G) ̸= ∅. Consider Algorithm 1 that
given a valid graph G and v ∈ V (G), finds the maximum (not necessarily proper) induced
subgraph of G \ {v} with δ(G′) ≥ d. Clearly the graph returned by it is either empty or
valid.

Algorithm 1 Reduce(G, v)

G′ ← G.
remove v and all its incident edges from G′.
while δ(G′) < d and V (G′) ̸= ∅ do

choose an arbitrary vertex v′ ∈ V (G′) with degree less than d.
remove v′ and all its incident edges from G′.

end while
return G′.

We now consider the following randomized algorithm, which clearly returns a valid
subgraph RR.

Algorithm 2 RandomReduce(G)

while G ̸= ∅ do
RR← G.
pick a vertex v of G uniformly at random.
G← Reduce(G, v).

end while
return RR.

In the sequel we analyze the performance of Algorithm 2. The following lemma will
prove useful in the analysis.

Lemma 2. For every three positive integers n, k, ℓ such that k + ℓ ≤ n

ℓ∏
i=0

n− k − i

n− i
≥

(
n− k − ℓ

n

)k

.

Proof: If ℓ ≤ k − 1, then

ℓ∏
i=0

n− k − i

n− i
≥

(
n− k − ℓ

n− ℓ

)ℓ+1

≥
(
n− k − ℓ

n− ℓ

)k

≥
(
n− k − ℓ

n

)k

.

We can now assume that ℓ ≥ k. In this case the greatest ℓ−k+1 factors of the nominator
cancel out with the lowest ℓ− k + 1 factors of the denominator, and we get

k−1∏
i=0

n− ℓ+ 1− i

n− i
≥

(
n− k − ℓ

n− k + 1

)k

≥
(
n− k − ℓ

n

)k

.

�

On approximating the d-girth of a graph 7

Theorem 3. For any d ≥ 3, RandomReduce is a polynomial-time randomized ap-
proximation algorithm with ratio n/ log n for the d-girth problem. This ratio is attained
when an optimal solution has size Θ(log n).

Proof: Assume that given an instance to the problem, RandomReduce performs k
iterations. Let Gi be the graph after iteration i, and let ni = |V (Gi)|. Clearly, nRR =
|V (RR)| = nk < nk−1 < . . . < n1 < n0 = n. Let OPT be some minimum size valid
subgraph of G, i.e., an optimal solution to the d-girth problem in G, and let ρ(n) be the
approximation ratio of the algorithm (to be fixed later). Let nOPT = |V (OPT)| = gd(G).
Consider the event that the algorithm is successful in finding a valid subgraph of the
desired size, and the sub-event that the subgraph found by the algorithm happens to
contain the optimal solution OPT, namely,

Succ = (nRR ≤ ρ(n) · nOPT),

Succ+ = Succ ∧ (V (OPT) ⊆ V (RR)).

Then

Pr[Succ] ≥ Pr[Succ+] = Pr[nRR ≤ ρ(n) · nOPT ∧ V (OPT) ⊆ V (RR)]

=
k∏

i=0

(
ni − nOPT

ni

)
.

The last equality holds because V (OPT) ⊆ V (Gi) for every i ≤ k. If V (OPT) ⊆ V (Gi),
then V (OPT) ⊆ V (Gi+1) if and only if the vertex v chosen in iteration i is not in
V (OPT), which happens with probability (ni − nOPT)/ni.

Note that at each step at least one vertex is removed, thus k ≤ n − nRR. For fixed
RR, the minimum of the last expression is attained when k = n − nRR, which implies
ni = n− i. Therefore

Pr[Succ] ≥
n−nRR∏
i=0

(
n− i− nOPT

n− i

)
≥

(
nRR − nOPT

n

)nOPT

,

where the last inequality holds by Lemma 2. Therefore

Pr[Succ] ≥ Ω
((nRR

n

)nOPT
)

= Ω

((
ρ(n) · nOPT

n

)nOPT
)
. (1)

Let f(n) = log n/nOPT. Then log n/n ≤ f(n) ≤ log n. By taking ρ(n) = (n/ logn) ·
(f(n)/ec·f(n)) for some constant c, and substituting nOPT and ρ(n) in 1, we get

Pr[Succ] ≥
(
1/ec·f(n)

) log n
f(n)

= e−c·logn = n−c .

For any ε > 0, if we run Algorithm 2 log(1/ε) · nc times and choose the best solution,
the probability of success is amplified to at least

1−
(
1− 1

nc

)log(1/ε)·nc

= 1− (1/e)log 1/ε = 1− ε ,

and the approximation ratio is at least ρ(n) = (n/ log n) · (f(n)/ec·f(n)). Note that
ρ(n) ≤ n/ log n. Indeed, this is achieved with equality (up to a constant factor) when
f(n) = 1, i.e., nOPT = log n. Otherwise, when f(n) > 1 we have f(n)/ec·f(n) < 1, and
when f(n) < 1 we have f(n)/ec·f(n) ≤ f(n) < 1. �

8 D. Peleg, I. Sau, and M. Shalom

3.2 A better algorithm for high-degree graphs

In this section we provide another randomized algorithm for graphs with high minimum
degree, and make a connection with known combinatorial results concerning subgraphs
with given minimum degree.

Proposition 1. For any d ≥ 3 and any function f(n) such that 8 log n ≤ f(n) ≤
n, there exists a polynomial-time randomized approximation algorithm for the d-girth
problem in the class of graphs with minimum degree at least d · f(n), with approximation
ratio 16n·logn

d·f(n) .

Proof: Let G be a graph with minimum degree at least d · f(n). The algorithm is very
simple: it chooses each vertex independently with probability 8 log n/f(n). Let H be the
graph induced in G by the vertices chosen by the algorithm, and let n0 = |V (H)|. The
variable n0 is the sum of n independent Boolean random variables B1, . . . , Bn, and its
expected value is 8n · log n/f(n). Therefore, applying the Chernoff-Hoeffding bound we
get

Pr

[
n0 > 2 · 8n · log n

f(n)

]
≤ e−

8n·log n
3f(n) = n− 8n

3f(n) ≤ 1

n2
,

so |V (H)| ≤ 16n · log n/f(n) with high probability. Let us now argue about the degree
of a vertex v ∈ V (H). Since degG(v) ≥ d ·f(n), the expected value of degH(v) is at least
d · f(n) · 8 log n/f(n) = 8d · log n. Applying the Chernoff-Hoeffding bound again we get

Pr [degH(v) < d] ≤ Pr

[
degH(v) <

8d · log n
2

]
≤ e

−8d·log n
8 =

1

nd
<

1

n2
,

relying on the fact that d ≥ 3. Therefore, using the union bound we get

Pr [δ(H) < d] ≤ |V (H)| · 1

n2
≤ n

n2
=

1

n
.

Hence H is a valid solution to the d-girth problem with probability at least 1 − 1/n.
Finally, the approximation ratio follows from the fact that any solution has at least d+1
vertices. �

The proof of Proposition 1 implies that for a graph G with δ(G) ≥ d · k, one can find
w.h.p. a subgraph H with δ(H) ≥ d and |V (H)| ≤ 16n·logn

k . This can be thought of as a
weaker but constructive version of the following result about subgraphs with minimum
degree at least d.

Theorem 4 (Erdős et al. [14]). Let d ≥ 2 and k > 1 be given. Every n-vertex graph
G with at least ⌈d · k · n⌉ edges has a subgraph H with δ(H) ≥ d and |V (H)| ≤ ⌈n/k⌉.

Note that the combinatorial result of Theorem 4 is stronger than the one that follows
from the proof of Proposition 1 in two ways. First, the required premise concerns only the
number of edges of G, instead of its minimum degree. Second, the size of the subgraph
obtained in the proof of Proposition 1 is greater by a factor 16 logn than the one given by
Theorem 4. However, the proof of Theorem 4 is non-constructive (at least, in polynomial
time).

3.3 A deterministic algorithm for low-degree graphs

Note that the hardness results of Section 2 hold even if the degrees of the input graph are
either d or d+ 1. In the following proposition we provide a deterministic approximation
algorithm in the more general case where the input graph has degree bounded by an
appropriate function of the size of the input graph.

On approximating the d-girth of a graph 9

Proposition 2. For any integer d ≥ 3, there exists a deterministic polynomial-time

O
(

n·log logn
logn

)
-approximation algorithm for the d-girth problem in the class of n-vertex

graphs with maximum degree O
(

logn
log logn

)
.

Proof: The algorithm consists in an exhaustive search in order to try building a solution
to the d-girth problem of appropriate size, by trying all possibilities of obtaining such
a solution starting from each vertex of G. The algorithm stops at some point in order to
keep the running time polynomial, and if no solution has been found so far, it outputs
the whole graph.

Let the maximum degree of G be at most b, and let k be the maximum size of a
solution that the algorithm can find (both b and k will be specified later). The algorithm
proceeds as follows. Starting from a given vertex, it tries to build a feasible solution
S ⊆ V (G) by adding vertices one by one to S. At a given moment, if some vertex v ∈ S
has strictly less than d neighbors in S, it chooses a neighbor of v in V (G)\S, and adds it
to S. This process continues until either all vertices of G have degree at least d in G[S],
or |S| = k.

For an integer ℓ, with 0 ≤ ℓ ≤ k, we define f(ℓ) to be the remaining running time
of the algorithm assuming that all possible solutions of size at most ℓ have been already
considered. Therefore, by definition f(0) is the overall running time of the algorithm.
Once ℓ vertices have been already chosen into S, with ℓ ≥ 1, the number of choices for
a neighbor of each vertex of S in V (G) \ S is at most b, so it holds

f(ℓ) ≤ ℓ · b · f(ℓ+ 1). (2)

On the other hand, at the beginning the algorithm chooses an arbitrary vertex of G, so

f(0) ≤ n · f(1). (3)

Starting from Equation (3), using Equation (2) recursively, and assuming that the algo-
rithm stops when |S| = k, we get

f(0) ≤ n · bk · k! · f(k + 1). (4)

As the running time must be polynomial in n, from Equation (4) it follows that n·bk ·k! =
nO(1), that is, bk · k! ≤ nc for some positive integer c. In other words,

k · log b+ k · log k ≤ c · log n. (5)

If we further impose that b ≤ k, a sufficient condition for Equation (5) to be satisfied is

that k = O
(

logn
log logn

)
. That is, for graphs with maximum degree O

(
logn

log logn

)
, the above

procedure constitutes a polynomial-time O
(

n·log logn
logn

)
-approximation algorithm. �

4 Planar graphs

In this section we focus on the case where the input graph is restricted to be a planar
graph. The first important observation is that as any planar graph has a vertex of degree
at most 5 [10], in a planar graph there exist feasible solutions to the d-girth problem only
for d ≤ 5. Note that the hardness results of [2], and therefore also those of Section 2, do
not apply to planar graphs, as the constructed graphs are highly nonplanar. In Section 4.1
we prove that the d-girth problem is NP-hard in planar graphs for d ∈ {3, 4, 5}. We
then discuss approximation algorithms in Section 4.2, and present a subexponential exact
algorithm in Section 4.3.

10 D. Peleg, I. Sau, and M. Shalom

u v

S
u
e S

v
e

xe

ye ze

xe

ye ze'

(a) (b) (c)

H G

'

'

Fig. 3. Reduction in the proof of Theorem 5 for d = 3: (a) Instance H of Minimum Vertex
Cover. (b) Gadget corresponding to an edge e = {u, v} ∈ E(H). (c) Instance G of the 3-girth
problem built from H.

4.1 Hardness results

Theorem 5. For d ∈ {3, 4, 5}, the d-girth problem is NP-hard in planar graphs with
maximum degree at most 3d.

Proof: The reduction is from Minimum Vertex Cover (VC for short) in planar
graphs with maximum degree at most 3, which is known to be NP-hard [16]. Note
that Minimum Vertex Cover admits a PTAS in planar graphs [5]. For the sake of
presentation, we first state the reduction for d = 3, and then we show how to modify
the gadgets for d ∈ {4, 5}.

Let H be a planar graph with ∆(H) ≤ 3, an instance of the Minimum Vertex
Cover problem, which we can assume to be connected (see Fig. 3(a) for an example).
To build G from H, we first replace each edge e = {u, v} ∈ E(H) by the gadget depicted
in Fig. 3(b), containing u, v, and 12 new vertices. Among these vertices, let Su

e (resp.
Sv
e) be the three vertices adjacent to u (resp. v). Vertices xe, ye, ze, x

′
e, y

′
e, z

′
e are colored

white and vertices in Su
e and Sv

e are colored black (see Fig. 3(b)). Now, for each face
f of H (including the external one) consisting of edges e0, e2, . . . , ek−1 such that ei is
incident to ei+1 for i = 0, . . . , k−1 (indices taken modulo k), we add the following edges.
Assume without loss of generality that all the white vertices corresponding to f are of
the form xe, ye, ze. For i = 0, . . . , k−1, add an edge between vertex zei and vertex yei+1 ,
the indices being taken modulo k. These edges between white vertices corresponding
to different edges are called face edges. This completes the construction of G, which is
illustrated in Fig. 3(c). Note that G is a planar graph with maximum degree at most 9.

Consider a solution S ⊆ V (G) to the 3-girth problem in G. By construction, S
cannot contain just black vertices or vertices corresponding to vertices in H, so at least
one white vertex belongs to S, say xe for an edge e = {u, v} ∈ E(H). Due to the degree
constraints and since xe is adjacent to only 2 white vertices, vertex xe forces either all
the vertices in Su

e or all the vertices in Sv
e to belong to S, which in turn also forces

vertex x′
e to be in S. Due to the face edges, once a vertex xe is in S, so are all the white

vertices corresponding to edges in the same face as edge e ∈ E(H). Thus, white vertices
inductively force all 6 · |E(H)| white vertices to be in S. Now recall that for a pair of
white vertices xe, x

′
e to have degree at least 3 in G[S], either all the vertices in Su

e or
in Sv

e must belong to S, so any optimal solution to the 3-girth in G contains exactly
3 · |E(H)| black vertices. Finally, note that if the vertices in Su

e (resp. Sv
e) belong to S,

they force vertex u (resp. v) to belong to S. As for each edge e = {u, v} ∈ E(H), either

On approximating the d-girth of a graph 11

u v

S
u
e S

v
e

xe

ye ze

xe

ye ze

(a)

u v

e

xe

x

ye ze

ye ze

(b)

S
u
e S

v
e

d = 4 d = 5

''

'

'

'

'

Fig. 4. Gadgets in the proof of Theorem 5: (a) for d = 4, and (b) for d = 5.

u or v must belong to S, we conclude that there is a bijection between vertex covers of
H and feasible solutions to the 3-girth in G.

The above discussion implies that g3(G) = 9 · |E(H)| +OPTVC(H). (For instance,
in the example of Fig. 3, any optimal vertex cover of H of size 3 defines an optimal
subgraph of G on 57 vertices with minimum degree at least 3.) As Minimum Vertex
Cover is NP-hard, so is the 3-girth problem.

For d ∈ {4, 5}, the proof is essentially the same as in the case d = 3, just by replacing
the gadget of Fig. 3(b) by the gadgets depicted in Fig. 4 (smaller gadgets may exist).
Note that since ∆(H) ≤ 3, it holds ∆(G) ≤ 3d.

Again, for d = 4 (resp. d = 5), the face edges connect the white vertices that
have degree 3 (resp. 4) in Fig. 4(a) (resp. Fig. 4(b)). Therefore, any solution S in
G contains all the white vertices, and any optimal solution contains, for each edge
e = {u, v} ∈ E(H), either all the vertices in Su

e or in Sv
e . One can check that for

d = 4 it holds that g4(G) = 21 · |E(H)|+OPTVC(H), and that for d = 5 it holds that
g5(G) = 65 · |E(H)|+OPTVC(H). The proof is now completed. �

4.2 Approximation algorithms

In this section we derive the existence of a deterministic approximation algorithm with
ratio n/f(n) and running time 2O(f(n)) · n when the input graph G is restricted to
be planar. In particular, this provides an alternative to the polynomial-time n/ log n-
approximation algorithm provided in [2] for minor-free graphs.

12 D. Peleg, I. Sau, and M. Shalom

Proposition 3. For any function f(n) ≤ n, there exists a deterministic approximation
algorithm for the d-girth problem in n-vertex planar graphs with approximation ratio
n/f(n) and running time 2O(f(n)) · n.

Proof: It is well-known that the number of non-isomorphic planar graphs on k vertices
is 2O(k) [25]. In addition, this set of graphs can be generated in time proportional to its
size using the algorithm in [19]. Given a planar graph G on n vertices and an arbitrary
function f(n) ≤ n, we generate all non-isomorphic planar graphs on f(n) vertices in
time 2O(f(n)). We remove from the list the graphs with minimum degree less than d.
Then, for each graph H in this list, we test whether G contains a subgraph isomorphic
to H using the recent results for planar subgraph isomorphism [11], in time 2O(f(n)) ·n. If
none of these subgraphs is found, we output the whole graph G. This procedure clearly
yields a (n/f(n))-approximation algorithm running in time 2O(f(n)) · n. �

4.3 Exact algorithms

In this section we show that the problem can be solved in subexponential time when
the input is restricted to planar graphs. Recall that there exist valid solutions only for
d ≤ 5.

Theorem 6. For any d ≥ 3, the d-girth problem can be solved exactly in planar graphs
in time 2O(

√
n·logn).

Proof: We use the classical divide-and-conquer approach. By the planar separator The-
orem [20], every n-vertex planar graph has a vertex separator W of size at most c

√
n, for

some small constant c ≤ 2
√
2, such that after the removal of W the graph is partitioned

into two disconnected subgraphs on vertex sets Z1 and Z2, each of cardinality at most
2n/3. In addition, such separator W can be found in time O(n).

Our algorithm proceeds recursively as follows. The separator given by [20] divides
the problem into two or more smaller problems. In order to build a feasible solution to
the d-girth problem, exhaustively check every subset of vertices in the separator, and
then for each subset check every possible set of up to d neighbors in Z1 and Z2. As usual,
the subproblems are solved by applying the method recursively, and the solutions to the
subproblems are combined to give a solution to the original problem in the input graph
G.

To analyze the running time, define the function f(ℓ) to be the time required by the
algorithm to process a graph on ℓ vertices. Hence f(n) is the overall running time of our
algorithm, and we can assume that f(1) = 1. As the number of choices for a subset of
the separator W is 2|W | ≤ 2c

√
n, and the number of choices in Z1 or Z2 for a set of at

most d neighbors of each vertex in the separator is at most
(|Zi|

d

)
, i = 1, 2,

f(n) ≤ 2|W | ·
((

|Z1|
d

)
·
(
|Z2|
d

))|W |

· 2 · f(2n/3) ≤ 2c
√
n · (2n/3)2dc

√
n · 2 · f(2n/3)

= 2c1
√
n·logn · f(2n/3) ≤ 2

c1
(√

n·logn+
√

2n/3·log(2n/3)+...
)
· f(1)

≤ 2
c1 logn·

(√
n+

√
2n/3+

√
4n/9+...

)
≤ 2c1

√
n·logn·(

∑∞
i=0(2/3)

i) = 2c2
√
n·logn ,

where c1, c2 are suitable constants defined by the above equations, depending on c and
d. �

On approximating the d-girth of a graph 13

5 Concluding remarks

This article studies the problem of approximating the d-girth of a graph, the order of a
smallest subgraph with minimum degree at least d, for a fixed integer d ≥ 3, and makes
first steps towards understanding the computational complexity of this apparently hard
problem. We now summarize our results and present several possible lines for further
research.

We proved that for any d ≥ 3 and ε > 0, there is no polynomial-time algorithm for
the d-girth problem with approximation ratio 2O(log1−ε n) in graphs with degrees d or

d + 1 unless NP ⊆ DTIME
(
2O(log1/ε n)

)
. We suspect that the problem is even harder

than this. In the spirit of [17] for the Longest Path problem, we present the following
conjecture.

Conjecture 1. For every fixed d ≥ 3, there is no polynomial-time approximation algo-
rithm for the d-girth problem with ratio n1−δ, for some constant δ > 0 unless P = NP.

We provided the first approximation algorithms for the d-girth problem in gen-
eral graphs. Specifically, we presented a randomized algorithm with approximation ratio
n/ log n in any graph, another randomized algorithm with better performance in high-
degree graphs, and a deterministic algorithm for low-degree graphs. These approximation
ratios could hopefully be improved, although it looks like a challenging task. Our latter
two approaches for high- and low-degree graphs complement each other in some sense,
so it would be interesting to try to combine them into a better algorithm.

We also studied the case where the input graph is planar. We proved that the d-
girth problem is NP-hard in planar graphs for d ∈ {3, 4, 5}, presented a deterministic
approximation algorithm (with the same ratio as the algorithm for general graphs) based
on a recent result for subgraph isomorphism [11], and showed that the problem can be
solved exactly in subexponential time (namely in time 2O(

√
n·logn)). It may be possible

to drop the factor ‘log n’ from the exponent by using the approach of [23], and even to
extend the algorithm to more general graph classes. This latter result may provide some
clue to the possible existence of a PTAS in planar graphs, which remains wide open.
So far, none of the many approaches to obtaining a PTAS in planar graphs seems to fit
the d-girth problem.

We point out that some of our results do not strongly use specific properties of the
d-girth problem, and can be applied to the class of problems of the form “minimum
subgraph with property P”, in particular to the problem of finding a d-regular subgraph
of minimum size. It would be interesting also to study other variants of the problem,
like minimizing the number of edges of a subgraph with minimum degree at least d (in
planar graphs, this version is equivalent to the original one, modulo a constant factor),
or considering the vertex-weighted version.

Finally, the reader is also referred to several nice combinatorial conjectures of Erdős
et al. [13,14] about the existence of small subgraphs with given minimum degree.

References

1. L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Discrete
Applied Mathematics, 156(7):1168–1174, 2008.

2. O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh. On the ap-
proximability of some degree-constrained subgraph problems. Discrete Applied
Mathematics, doi: 10.1016/j.dam.2012.03.025, to appear. Temporarily available at
www.lirmm.fr/∼sau/Pubs/DA8948R2.pdf, 2012.

14 D. Peleg, I. Sau, and M. Shalom

3. O. Amini, S. Pérennes, and I. Sau. Hardness and Approximation of Traffic Grooming.
Theoretical Computer Science, 410(38-40):3751–3760, 2009.

4. O. Amini, I. Sau, and S. Saurabh. Parameterized complexity of finding small degree-
constrained subgraphs. Journal of Discrete Algorithms, 10:70–83, 2012.

5. B. S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs.
Journal of the ACM, 41(1):153–180, 1994.

6. J.-C. Bermond and C. Peyrat. Induced Subgraphs of the Power of a Cycle. SIAM Journal
on Discrete Mathematics, 2(4):452–455, 1989.

7. B. Bollobás and G. Brightwell. Long Cycles in Graphs with no Subgraphs of Minimal
Degree 3. Discrete Mathematics, 75:47–53, 1989.

8. J. Cheriyan and R. Thurimella. Approximating Minimum-Size k-Connected Spanning Sub-
graphs via Matching (extended abstract). In Proc. of the 37th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 292–301, 1996.

9. T. Chow and P. Lin. The ring grooming problem. Networks, 44:194–202, 2004.
10. R. Diestel. Graph Theory, volume 173. Springer-Verlag, 2005.
11. F. Dorn. Planar Subgraph Isomorphism Revisited. In Proc. of the 27th International

Symposium on Theoretical Aspects of Computer Science (STACS), volume 5 of LIPIcs,
pages 263–274, 2010.

12. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
13. P. Erdős, R. J. Faudree, A. Gyárfás, and R. H. Schelp. Cycles in Graphs Without Proper

Subgraphs of Minimum Degree 3. Ars Combinatorica, 25(B):195–201, 1988.
14. P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp. Subgraphs of Minimal Degree

k. Discrete Mathematics, 85(1):53–58, 1990.
15. H. N. Gabow. An Efficient Reduction Technique for Degree-Constrained Subgraph and

Bidirected Network Flow Problems. In Proc. of the 15th Annual ACM Symposium on
Theory of Computing (STOC), pages 448–456, 1983.

16. M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem is NP-Complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

17. D. Karger, R. Motwani, and G. Ramkumar. On Approximating the Longest Path in a
Graph. Algorithmica, 18(1):82–98, 1997.

18. A. Kézdy. Studies in Connectivity. PhD thesis, Univ. of Illinois, Urbana-Champaign, 1991.
19. Z. Li and S.-I. Nakano. Efficient generation of plane triangulations without repetitions.

In Proc. of the 28th International Colloquium on Automata, Languages and Programming
(ICALP), volume 2076 of LNCS, pages 433–443, 2001.

20. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on
Applied Mathematics, 36:177189, 1979.

21. Z. Nutov. Approximating Directed Weighted-Degree Constrained Networks. In Proc. of the
11th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX-RANDOM), volume 5171 of LNCS, pages 219–232, 2008.

22. D. Peleg, I. Sau, and M. Shalom. On approximating the d-girth of a graph. In Proc.
of the 37th Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), volume 6543 of LNCS, pages 467–481, 2011.

23. J. Rué, I. Sau, and D. M. Thilikos. Dynamic programming for graphs on surfaces. In Proc.
of the 37th International Colloquium on Automata, Languages and Programming (ICALP),
volume 6198 of LNCS, pages 372–383, 2010. Full version to appear in ACM Transactions
on Algorithms, temporarily available at www.lirmm.fr/∼sau/Pubs/RST12TALG.pdf.

24. M. Safari and M. R. Salavatipour. A Constant Factor Approximation for Minimum λ-
Edge-Connected k-Subgraph with Metric Costs. In Proc. of the 11th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX-
RANDOM), volume 5171 of LNCS, pages 233–246, 2008.

25. W. T. Tutte. A census of planar triangulations. Canadian Journal of Mathematics, 14:21–
38, 1962.

