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Abstract

Let θr (the r-pumpkin) be the multi-graph containing two vertices and r
parallel edges between them. We say that a graph is a a θr-model if it can
be transformed into θr after a (possibly empty) sequence of contractions.
We prove that there is a function g : N → N such that, for every two
positive integers k and q, if G is a Kq-minor-free graph, then either G
contains a set of k vertex-disjoint subgraphs (a θr-model-vertex-packing)
each isomorphic to a θr-model or a set of g(r)·log q ·k vertices (a θr-model-
vertex-cover) meeting all subgraphs of G that are isomorphic to a θr-
model. Our results imply a O(logOPT )-approximation for the maximum
(minimum) size of a θr-model packing (θr-model covering) of a graph G.

1 Introduction

The Erdős–Pósa theorem, proved in 1965 [6], revealed the following min-max
relation between coverings and packings of cycles in graphs: every graph that
does not contain k disjoint cycles, contains a set of O(k log k) vertices meeting
all its cycles. They also proved that this result is tight by giving graph contrac-
tions where the O(k log k) bound is realized. Various extensions of this result,
referring to different notions of packing and covering, attracted the attention of
many researchers in modern Graph Theory (see [1, 10]).

A model of a graph H is any graph that can be contracted to H. Given
two graphs H and G, we denote by packH(G) the maximum number of vertex-
disjoint models of H in G. We also denote by coverH(G) the minimum number
of vertices that intersect all minor models of H in G. We are interested in
graphs H for which the following relation holds:

for every G, if packH(G) ≤ k then coverH(G) = O(k · log k) (1)

Clearly if θ2 is the graph with two vertices and two edges between them, then
Relation (1) holds because of the Erdős–Pósa theorem. In the most general
case, Robertson and Seymour proved [13] that if H is planar, then for every
graph G, coverH(G) is bounded by some function of packH(G). Moreover,
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it also follows that this bound does not hold any more if H is non-planar (see
also Diestel’s monograph [5, Corollary 12.4.10 and Exercise 40 of Chapter 12]).
In [8] Fiorini, Joret, and Wood argued that the O(k · log k) bound is the best
we may expect when H is a planar graph containing a cycle and they proved
that if H is acyclic, then O(k · log k) can be reduced to O(k). This implies that
O(k·log k) bound in Relation (1) is the best we may expect for non-acyclic planar
graphs and the question remains whether the same bound can be achieved for
every planar graph H. The most general result in this direction concerns the
(parameterized) case where H is the multi-graph containing two vertices and r
parallel edges between them. This graph is also known as the r-pumpkin and is
denoted by θr. In [7], Fiorini, Joret, and Sau proved that Relation (1) holds for
every H = θr, r ≥ 2.

Another approach towards improving the bound in Relation (1) was to re-
strict the class of graphs where it applies. In this direction, it was proven by
Fomin, Saurabh, and Thilikos in [9] that the log k factor can be dropped in
Relation (1), for all planar H’s, in the case when we restrict G to to a graph
class that excludes some fixed graph as a minor.

In this paper we provide a common extension of both the results of [7] and [9]
that indicates how the effect of excluding a graph as a minor is reflected in the
transition from O(k · log k) to O(k). Our result is the following:

Theorem 1. There exists a function f : N → N such that for every two pos-
itive integers r, q, and every graph G excluding Kq as a minor, it holds that
coverθr (G) ≤ f(r) · packθr (G) · log q.

Notice that if packθr (G) ≤ k then G does not contain a clique of (k+1)(r+1)
vertices as a minor. Therefore, if we set q = (k + 1)(r + 1), we conclude that
Relation (1) holds when H = θr. This implies the main result of [7].

A consequence of the proof of Theorem 1 is the existence of a polynomial
O(logOPT )-approximation algorithm for both coverθr and packθr (G). This
improves the O(log n)-approximation algorithm that was given by Joret, Paul,
Sau, Saurabh, and Thomassé in [11] for the same parameters.

2 The proof

The proof of Theorem 1 is based on three results that we describe in this section.
Given a graph G, a separation of G is a pair (X1, X2) such that no edge of

G has an endpoint in X1 \X2 and the other endpoint in X2 \X1. The order of
(X1, X2) is the cardinality of the set X1 ∩X2.

We start with an observation in the case where there is no separation (X1, X2)
of G for which both G[X1 \X2] and G[X2 \X1] contain some model of H as a
minor.

Observation 1. Let H and G be graphs and let (X1, X2) be a separation of G
such that both G1 = G[X1 \X2] and G2 = G[X2 \X1] contain H as a minor.
Then
• coverH(G) ≤ coverH(G1) + coverH(G2) + |X1∩X2|
• packH(G1) + packH(G2) ≤ packH(G)
• coverH(Gi) < coverH(G), i = 1, 2.
• packH(Gi) < packH(G), i = 1, 2.

2



The following lemma reduces the problem to the case where for each sepa-
ration (X1, X2) of G of order at most 2r− 2, if G[X1] does not contain a model
of H, then |X1| is bounded by some function depending only on H.

Lemma 1. For every q ∈ N and graph H there exists a function fH : N → N
such that for every Kq-minor free graph G there is a Kq-minor free graph G′

such that
• packH(G) = packH(G′)
• coverH(G) = coverH(G′)
• for every separation (X1, X2) of G′, if G′[X1 \X2] is a H-minor-free graph in
G′, then |X1| ≤ fH(|X1∩X2|).

The proof of Lemma 1 is too long to fit in this extended abstract. It uses
protrusion replacement techniques that have been developed in [2] (see also [3]
and [4]) that permit the replacement of the part of graph induced by X1 by
another graph so that none of the parameters packH and coverH change in
the new graph.

We say that a graph G is (α, β)-loosely connected if for every separation
(X1, X2) of G, |X1∩X2| ≤ α⇒ min{|X1|, |X2|} ≤ β.

Observation 1 and Lemma 1, applied for separators of order at most 2r − 2
reduce the proof of Theorem 1 to the case where G is (2r−2, fθr (2r−2))-loosely
connected. The second lemma derives from this assumption and is able to detect
in such a graph a model of θr that contains O(log q) vertices.

Lemma 2. There is a function g : N→ N such that every (2r− 2, fθr (2r− 2))-
loosely connected Kq-minor free graph G contains a model of θr with at most
g(r) · log q vertices.

The proof of Lemma 2 is the core of our results and is technical. We enu-
merate below its main steps.

1. Take into account that every Kq-minor free graph has some vertex of degree
< c · q ·

√
log q (see e.g., [12,14]). Let d = fθr (2r − 2) · log((r − 1) · c · q ·

√
log q)

and our target is to find a model of θr in G with at most 4 · r · d+ 2 vertices.
2. Let S = {s1, . . . , sl} be a maximal 2d-scattered set (all its elements are in
distance ≥ 2d from each other) and consider a partition V1, . . . , Vl of V (G) such
that
• ∀i,j∀u∈Vi distG(u, si) ≤ distG(u, sj)
• ∀i,j Vi ∩ Vj = ∅.

3. Let Gin
i = G[Bd

G(si)] and Gi = G[Vi]. (Bi
G(x) are the vertices that are in

distance at most i from x.)
4. Let Di = ({Xt}t∈V (Ui), Ui) be an si-rooted tree-distance decomposition of
Gi (for the definition of a rooted tree-distance decomposition, see [15]).
5. Observe that ∀i∀u,v∈Vi distG(u, v) ≤ 2d and that all edges between Gi and
Gj have endpoints from their d-th layer and then.
6. Prove that, unless we are done, all bags of Di have ≤ r − 1 vertices.
7. Prove that, unless we are done, in each Gi,j = G[V (Gi) ∪ V (Gj)] there are
at most r − 1 paths from the d-th level of Gi to the d-th level of Gj .
8. Deduce from the previous step and the (2r−2, fθr (2r−2))-loose connectivity
of G that there are at least 2d/fθr (2r−2) pairwise vertex-disjoint paths between
vertices in the d-th level of Gi and the union of the vertices of the d-th levels of
all other Gj ’s.
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9. Deduce from the previous two steps that there is a collection of pairwise
vertex-disjoint paths P in G, such that
• if for some i 6= j there is a path Pi,j ∈ P joining a vertex from Gin

i with a
vertex of Gin

j then this is unique path in P with this property and

• Gi contains the endpoints of at least 2
d/fθr

(2r−2)

r−1 paths from P.
10. Contract all edges of every Gi, contract all but one edge of the paths in P
and remove all other edges and isolated vertices. Let H be the resulting minor

of G. Prove that, from Step 8, δ(H) ≥ 2
d/fθr

(2r−2)

r−1 = c ·q ·
√

log q, a contradiction
to what we took into account in the 1st step.

We now require the following observation.

Observation 2. If k = packθr (G) and W is the set of vertices of a model as
in Lemma 2, then
• packθr (G \W ) ≤ packθr (G)− 1 ≤ k − 1
• coverθr (G) ≤ coverθr (G \W ) + |V (W )| ≤ coverθr (G \W ) + g(r) · log q.

It is now easy to verify that, taking into account Observation 2, Theorem 1
follows by successively applying Observation 1, and Lemmata 1 and 2.
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[11] Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé.
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