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Abstract. For some years it was believed that for �connectivity� problems such
as Hamiltonian Cycle, algorithms running in time 2O(tw) ·nO(1) �called single-
exponential� existed only on planar and other sparse graph classes, where tw
stands for the treewidth of the n-vertex input graph. This was recently disproved
by Cygan et al. [FOCS 2011] and Bodlaender et al. [ICALP 2013], who provided
single-exponential algorithms on general graphs for essentially all connectivity
problems that were known to be solvable in single-exponential time on sparse
graphs. In this article we further investigate the role of planarity in connectivity
problems parameterized by treewidth, and convey that several problems can in-
deed be distinguished according to their behavior on planar graphs. In particular,
we show that there exist problems that cannot be solved in time 2o(tw log tw) ·nO(1)

on general graphs but that can be solved in time 2O(tw) · nO(1) when restricted
to planar graphs, and problems that can be solved in time 2O(tw log tw) · nO(1) on
general graphs but that cannot be solved in time 2o(tw log tw) · nO(1) even when
restricted to planar graphs, the negative results holding unless the ETH fails. We
feel that our results constitute a �rst step in a subject that can be much exploited.

Keywords: parameterized complexity, treewidth, connectivity problems, single-
exponential algorithms, planar graphs, dynamic programming.

1 Introduction

Motivation and previous work. Treewidth is a fundamental graph parameter that,
loosely speaking, measures the resemblance of a graph to a tree. It was introduced
by Robertson and Seymour in the early stages of their monumental Graph Minors
project [17], but its algorithmic importance originated mainly in Courcelle's theorem [3],
stating that any graph problem that can be expressed in CMSO logic can be solved in
time f(tw) · n on graphs with n vertices and treewidth tw. Nevertheless, the function
f(tw) given by Courcelle's theorem is unavoidably huge [10], so from an algorithmic
point of view it is crucial to identify problems for which f(tw) grows moderately fast.

Many problems can be solved in time 2O(tw log tw) · nO(1) when the n-vertex input
(general) graph comes equipped with a tree-decomposition of width tw. Intuitively,
this is the case of problems that can be solved via dynamic programming on a tree-
decomposition by enumerating all partitions or packings of the vertices in the bags of
the tree-decomposition, which are twO(tw) = 2O(tw log tw) many. In this article we only
consider this type of problems and, more precisely, we are interested in which of these
problems can be solved in time 2O(tw) · nO(1); such a running time is called single-

exponential. This topic has been object of extensive study during the last decade. Let us
brie�y overview the main results on this line of research.

It is well known that problems that have locally checkable certi�cates1, like Ver-
tex Cover or Dominating Set, can be solved in single-exponential time on general

1 That is, certi�cates consisting of a constant number of bits per vertex that can be checked
by a cardinality check and by iteratively looking at the neighborhoods of the input graph.
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graphs. Intuitively, for this problems it is enough to enumerate subsets of the bags of
a tree-decomposition (rather than partitions or packings), which are 2O(tw) many. A
natural class of problems that do not have locally checkable certi�cates is the class of so-
called connectivity problems, which contains for exampleHamiltonian Cycle, Steiner
Tree, or Connected Vertex Cover. These problems have the property that the so-
lutions should satisfy a connectivity requirement (see [1,4,19] for more details), and using
classical dynamic programming techniques it seems that for solving such a problem it is
necessary to enumerate partitions or packings of the bags of a tree-decomposition.

A series of articles provided single-exponential algorithms for connectivity prob-
lems when the input graphs are restricted to be sparse, namely planar [9], of bounded
genus [7, 19], or excluding a �xed graph as a minor [8, 20]. The common key idea of
these works is to use special types of branch-decompositions (which are objects similar
to tree-decompositions) with nice combinatorial properties, which strongly rely on the
fact that the input graph is sparse.

Until very recently, it was a common belief that all problems solvable in single-
exponential time of general graphs should have locally checkable certi�cates, specially
after Lokshtanov et al. [16] proved that one connectivity problem, namely Disjoint

Paths, cannot be solved in time 2o(tw log tw) · nO(1) on general graphs unless the Expo-
nential Time Hypothesis (ETH) fails2. This credence was disproved by Cygan et al. [4],
who provided single-exponential randomized algorithms on general graphs for several
connectivity problems, like Longest Path, Feedback Vertex Set, or Connected
Vertex Cover. More recently, Bodlaender et al. [1] presented single-exponential de-
terministic algorithms for basically the same connectivity problems. These two results
have been considered a breakthrough, and in particular they imply that essentially all
connectivity problems that were known to be solvable in single-exponential time on
sparse graph classes [7�9, 19, 20] are also solvable in single-exponential time on general
graphs [1, 4].

Our main results. In view of the above discussion, a natural conclusion is that sparsity
may not be particularly helpful or relevant for obtaining single-exponential algorithms.
However, in this article we convey that sparsity (in particular, planarity) does play a role
in connectivity problems parameterized by treewidth. To this end, among the problems
that can be solved in time 2O(tw log tw) · nO(1) on general graphs, we distinguish the
following disjoint types:

• Type 1: Problems that can be solved in time 2O(tw) · nO(1) on general graphs.
• Type 2: Problems that cannot be solved in time 2o(tw log tw) ·nO(1) on general graphs
unless the ETH fails, but that can be solved in time 2O(tw) · nO(1) when restricted
to planar graphs.
• Type 3: Problems that cannot be solved in time 2o(tw log tw) · nO(1) even when
restricted to planar graphs, unless the ETH fails.

Our main contribution is to show that there exist problems of Type 2 and Type 3, thus
demonstrating that some connectivity problems can indeed be distinguished according
to their behavior on planar graphs. More precisely, we prove the following results:

• It is known that for some problems a single-exponential running time is best possible
unless the ETH fails [13]. Nevertheless, such a result requires an ad-hoc proof for
each problem. We prove in Section 2 that 3-Colorability, which is a problem of
Type 1, cannot be solved in time 2o(tw) · nO(1) unless the ETH fails, even when the
input is a planar graph of maximum degree at most 5.

2 The ETH states that 3-SAT cannot be solved in subexponential time.
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• In Section 3 we show that Cycle Packing and some other problems are of Type
2 (the lower bound had already been proved in [4]). Furthermore, we prove that
Planar Cycle Packing cannot be solved in time 2o(tw) · nO(1) unless the ETH
fails.

• In Section 4 we provide an example of problem of Type 3: Monochromatic Dis-

joint Paths, which is a variant of the Disjoint Paths problem on a vertex-colored
graph with additional restrictions on the allowed colors for each path. To the best
of our knowledge, problems of this type had not been identi�ed before.

In order to obtain our results, for the upper bounds we strongly follow the algorithmic
techniques based on Catalan structures used in [7�9, 19, 20], and for some of the lower
bounds we use the framework introduced in [16] and that has been also used in [4]. Due
to space limitations, the proofs of the results marked with `[?]' have been moved to the
appendix.

Additional results and further research. We feel that our results about the role
of planarity in connectivity problems parameterized by treewidth are just a �rst step
in a subject that can be much exploited, and we think that the following avenues are
particularly interesting:

• It is known that Disjoint Paths can be solved in time 2O(tw log tw) ·nO(1) on general
graphs [21], and that this bound is asymptotically tight under the ETH [16]. The fact
whether Disjoint Paths belongs to Type 2 or Type 3 (or maybe even to some other
type in between) remains an important open problem. Towards a possible answer
to this question, we prove in Appendix I that Planar Disjoint Paths cannot be
solved in time 2o(tw) · nO(1) unless the ETH fails.

• Another fundamental problem is Subgraph Isomorphism, which is known to be
solvable in time 2O(h) · nO(1) on planar graphs [6] and graphs on surfaces [2], where
h is the number of vertices of a pattern graph H to be found in a host graph G on
n vertices. We prove in Appendix J that Planar Subgraph Isomorphism cannot
be solved in time 2o(tw log tw) · nO(1) unless the ETH fails, but an algorithm running
in time 2O(tw log tw) ·nO(1) (that is, with no dependency on H) is not known to exist.

• Lokshtanov et al. [15] have proved that for a number of problems such as Domi-
nating Set or q-Coloring, the best known constant c in algorithms of the form
ctw ·nO(1) on general graphs is best possible unless the Strong ETH fails. Is it possi-
ble to provide better constants for these problems on planar graphs? The existence
of such algorithms would permit to further re�ne the problems belonging to Type 1.

• Are there NP-hard problems solvable in time 2o(tw) · nO(1)?

• Finally, it would be interesting to obtain similar results for problems parameterized
by pathwidth, and to extend our algorithms to more general classes of sparse graphs.

Notation. We use standard graph-theoretic notation, and the reader is referred to [5]
for any unde�ned term. All the graphs we considered are undirected and contain neither
loops nor multiple edges. Throughout the paper, when the problem under consideration
is clear, we let n denote the number of vertices of the input graph, tw its treewidth,
and pw its pathwidth. We use the notation [k] for the set of integers {1, . . . , k}. In the
set [k] × [k], a row is a set {i} × [k] and a column is a set [k] × {i} for some i ∈ [k].
If P is a problem de�ned on graphs, we denote by Planar P the restriction of P to
planar input graphs. The de�nition of tree-, path-, and branch-decomposition, as well
as of non-crossing partition and matching, can be found in Appendix A.
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2 Tight Problems of Type 1

It is usually believed that NP-hard problems parameterized by tw cannot be solved in
time 2o(tw) · nO(1) under some reasonable complexity assumption. This has been proved
in [13] for problems on general graphs such as q-Colorability, Independent Set, or
Vertex Cover, assuming the ETH. To the best of our knowledge, such lower bounds are
not known for 3-Colorability or Cycle Packing when the input graph is restricted
to be planar. In this section we show that Planar 3-Colorability cannot be solved
in time 2o(tw) · nO(1) even when the input graph has maximum degree at most 5, and
this result will be used to deal with Planar Cycle Packing in Section 3.

3-Colorability

Input: An n-vertex graph G = (V,E).
Question: Is there a coloring c : V → {1, 2, 3} s.t. for all {x, y} ∈ E, c(x) 6= c(y)?

Theorem 1. [?] Planar 3-Colorability cannot be solved in time 2o(
√
n) ·nO(1) unless

the ETH fails, even when the input graph has maximum degree at most 5.

Corollary 1. Planar 3-Colorability cannot be solved in time 2o(tw) · nO(1) unless

the ETH fails, even if the input graph has maximum degree at most 5.

Proof: As a planar graph G on n vertices satis�es tw(G) = O(
√
n) [11], an algorithm

in time 2o(tw) · nO(1) for Planar 3-Colorability implies that there is an algorithm
in time 2o(

√
n) · nO(1), which is impossible by Theorem 1 unless the ETH fails. �

3 Problems of Type 2

In this section we prove that the Cycle Packing problem is of Type 2. Other problems
of Type 2 are discussed in Appendix E.

Cycle Packing

Input: An n-vertex graph G = (V,E) and an integer `0.
Parameter: The treewidth tw of G.
Question: Does G contain `0 pairwise vertex-disjoint cycles?

The proof of the following lemma is a direct application of the techniques introduced
in [9], which are based on Catalan structures.

Lemma 1. [?] Planar Cycle Packing can be solved in time 2O(tw) · nO(1).

Theorem 2. Planar Cycle Packing cannot be solved in time 2o(
√
n) ·nO(1) unless the

ETH fails. Therefore, Planar Cycle Packing cannot be solved in time 2o(tw) · nO(1)

unless the ETH fails.

Proof: To prove this theorem, we reduce from Planar 3-Colorability where the
input graph has maximum degree at most 5. Let G = (V,E) be a planar graph with
maximum degree at most 5 with V = {v1, . . . , vn}. We proceed to construct a planar
graph H together with a planar embedding of it, where we will ask for an appropriate
number `0 of vertex-disjoint cycles.

In this proof, we abuse notation and say that we ask for x cycles in a gadget to say
that the number of cycles we are looking for in the Planar Cycle Packing problem
is increased by x. We will ask for a certain number of cycles in each of the introduced
gadgets, which by construction will lead to a set of cycles of maximum cardinality in H.
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Fig. 1. The SCi-gadget.
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(c) The double-expel gadget.

Fig. 2. The expel gadget and the double-expel gadget.

We start by introducing some gadgets. For each i ∈ [n], corresponding to the vertices
v1, . . . , vn of G, we add to H the SCi-gadget depicted in Fig. 1. More precisely, SCi =
({ai, bi, ci, ui,0, ui,1, ui,2, ui,3}, {(ui,0, ui,1), (ui,0, ui,2), (ui,0, ui,3), (ai, ui,1), (ai, ui,2),
(bi, ui,2), (bi, ui,3), (ci, ui,1), (ci, ui,3)}). We ask for a cycle inside this gadget. This cycle
imposes that at least one of the vertices {ai, bi, ci}, named a selected vertex of the
SCi-gadget, is used by the inner cycle and leaves the possibility that the two others are
free. The intended meaning of each SCi-gadget is as follows. The three vertices ai, bi,
and ci correspond to the three colors in the 3-coloring of G, namely a, b, and c. If for
instance ai is a selected vertex for i, it will imply that vertex vi can be colored with
color a. Therefore, each SCi-gadget de�nes the available colors for vertex vi, which we
call the color output of vertex vi.

In order to construct a graph H that de�nes a valid 3-coloring of G, we need to
propagate the color output of vi as many times as the degree of vi in G. For this, we
introduce a gadget called bifurcate gadget. Before proceeding to the description of the
gadget, let us describe its intended functionality. The objective is, starting with the
vertices ai, bi, and ci of the SCi-gadget, to construct a set of triples {ai,k, bi,k, ci,k} for
1 6 k 6 degG(vi) such that in each triple there will be again at least one selected vertex,
de�ned by the cycles that we will construct in the bifurcate gadgets. Note that in the
SCi-gadget the choice of a selected vertex in each triple {ai,k, bi,k, ci,k} naturally de�nes
a color output for vertex vi. The crucial property of the gadget is that the intersection
of the color outputs given by all the triples is non-empty if and only if the graph H
contains enough vertex-disjoint cycles. In other words, the existence of the appropriate
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Fig. 3. Path-crossing gadget.
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Fig. 4. Bifurcate gadget: To keep planarity, there is a path-crossing gadget in each edge inter-
section.
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Fig. 5. Edge gadget: To keep planarity, there is a path-crossing gadget in each edge intersection.

number of vertex-disjoint cycles in H will de�ne an available color for each vertex vi of
G.

We now proceed to the construction of the bifurcate gadget. First we need to in-
troduce three other auxiliary gadgets. The �rst two ones, called expel and double-

expel gadgets, are depicted in Fig. 2. Formally, for two vertices u and u′, the ex-
pel gadget is de�ned as EGu,u′ = ({u, u′, v, v′}, {(u, v), (u, v′), (u′, v), (u′, v′), (v, v′)}),
and we ask for a cycle inside each such expel gadget. This gadget ensures that if
u is in another cycle, then u′ is necessarily used by the internal cycle and vice-
versa. Similarly, the double-expel gadget for three vertices u, u′, and u′′ is de�ned as
DEGu,u′,u′′ = ({u, u′, u′′, v, v′}, {(u, v), (u, v′), (u′, v), (u′′, v′), (u′, u′′), (v, v′)}), and we
also ask for a cycle inside each such gadget. This gadget ensures that if u is in another
cycle, then u′ and u′′ are necessarily used by the internal cycle and that if u′ or u′′ are
in an external cycle, then u is necessarily used by the internal cycle.

As in our construction the edges of the expel gadgets will cross, we need a gadget
that replaces each edge-crossing with a planar subgraph while preserving the existence
of the original edges, in the sense that each of the crossing edges gets replaced by a
path joining the endvertices of the original edge. This gadget is called path-crossing gad-
get and is depicted in Fig. 3. Formally the path-crossing gadget PCG is such that
{pc1, pc2, pc3, pc4, w0, w1,1, w1,2, w2,1, w2,2, w3,1, w3,2, w4,1, w4,2} ⊆ V (PCG), E(PCG)
contains two paths pc1, w1,1, w1,2, w0, w3,2, w3,1, pc3 and pc2, w2,1, w2,2, w0, w4,2, w4,1, pc4,
and we add 4 expel gadgets EGw1,1,w2,2

, EGw2,1,w3,2
, EGw3,1,w4,2

, EGw4,1,w1,2
to PCG.

We ask in this gadget only the 4 cycles asked in the expel gadgets. This gadget ensures
that, in order to have enough vertex-disjoint cycles, an external cycle that contains an
edge from a path-crossing gadget should go straight, i.e., for all α ∈ [4], if the cycle
arrives at a vertex pcα it should leave by pc(α+1 (mod 4))+1. If a cycle does not respect
this property, we say that the cycle turns inside the path-crossing gadget. That is, the
gadget preserves the existence of the original crossing edges whenever there are no cycles
that turn inside it. Note that the two paths corresponding to the two original crossing
edges cannot be used simultaneously by a set of cycles in the planar graph H. We can
now de�ne the bifurcate gadget, which is depicted in Fig. 4(a), and where each of the 12
edge-crossings should be replaced by a path-crossing gadget. Note that each bifurcate
gadgets contains 6 expel and 3 double-expel gadgets. We ask in this gadget the 48 cycles
of the path-crossing gadgets, the 3 cycles of the double expel gadgets, and the 6 cycles of
the expel gadgets. Note that, indeed, given a triple {ai, bi, ci} de�ning a color output for
a vertex vi, the cycles asked in the bifurcate gadget de�ne two triples {ai,1, bi,1, ci,1} and
{ai,2, bi,2, ci,2}, which in turn de�ne two color outputs compatible with the one de�ned
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by {ai, bi, ci}, in the sense that there is a common available color for vi. For example, in
Fig. 4(b) vertex ai is the only selected vertex of {ai, bi, ci} (given by the corresponding
SCi-gadget which is not shown in the �gure for the sake of visibility), and the bold cycles
de�ne the selected vertices for the triples {ai,1, bi,1, ci,1} and {ai,2, bi,2, ci,2}. Note that
color a is simultaneously available for the three triples. We would like to stress that there
are other choices of a maximum-cardinality set of cycles in the bifurcate gadget of Fig.
4(b), but all of them yield color a available. For each vertex vi, we need as many triples
{ai,k, bi,k, ci,k} as degG(vi). For that, we concatenate the bifurcate gadgets degG(vi)− 1
times in the following way. Inductively, we consider the triple {ai,2, bi,2, ci,2} of Fig. 4(a)
as the original triple {ai, bi, ci}, and plug another bifurcate gadget starting from this
triple.

With the gadgets de�ned so far, we have a representation of the colored vertices of
G in H. We now proceed to capture the edges of G in H. For this, we introduce for each
{vi, vj} ∈ E, i, j ∈ [n], an edge gadget depicted in Fig. 5, where all the 12 edge-crossings
should be replaced by a path-crossing gadget. We ask in this gadget 51 new cycles (3
for the expel gadgets and 48 for the path-crossing gadgets). We plug one side of this
gadget to a triple {ai,k, bi,k, ci,k} de�ning a color output of vi and the other side to a
triple {aj,k′ , bj,k′ , cj,k′} de�ning a color output of vj . The edge gadget ensures that the
intersection of the two color outputs is empty. This completes the construction of H,
which is clearly a planar graph, and we set `0 to be the sum of the number of cycles
asked in each of the introduced gadgets.

Claim 1 [?] In any solution of Cycle Packing in H, each expel gadget, double-expel

gadget, and SCi-gadget contains a cycle, and each cycle is contained inside such a gadget.

If we are given a solution of Planar Cycle Packing in H, then for each i ∈ [n],
by Claim 1 the selection of a cycle in the SCi-gadget selects a color for vi, that can be
any color that belongs simultaneously to all color outputs of vi, and the edge gadgets
ensure that two adjacent vertices are in two di�erent color classes. So in this way we
obtain a solution of Planar 3-Colorability in G.

Conversely, given a solution of Planar 3-Colorability in G, we construct a so-
lution of Planar Cycle Packing in H as follows. For each i ∈ [n] we choose in the
SCi-gadget the cycle of length 4 that contains ui,0 and the vertex in {ai, bi, ci} that
corresponds to the color of vi. We also choose in the bifurcates gadgets the cycles se-
lecting vertices in {ai,1, bi,1, ci,1, ai,2, bi,2, ci,2} that lead to two identical color outputs
coinciding with the color output of {ai, bi, ci}. This choice has the property that the
color output of {ai, bi, vi} is a subset of the color output of {ai,1, bi,1, ci,1} and the color
output of {ai,2, bi,2, ci,2}, and leaves as many free vertices as possible for other cycles
in other gadgets. Inside the edge gadget representing {vi, vj} ∈ E, we select the three
cycles that are allowed by the free vertices. We complete our cycle selection by selecting
a cycle in each expel gadget contained in a path-crossing gadget. By Claim 1, this choice
leads to a solution of Planar Cycle Packing in H.

As the degree of each vertex in G is bounded by 5, the number of gadgets we introduce
for each vi ∈ V (G) to construct H is also bounded by a constant, so the total number of
vertices of H is linear in the number of vertices of G. Therefore if we could solve Planar
Cycle Packing in time 2o(

√
n) · nO(1) then we could also solve Planar 3-coloring

in time 2o(
√
n) · nO(1), which is impossible by Theorem 1 unless the ETH fails. �

4 Problems of Type 3

In this section we prove that the Monochromatic Disjoint Paths problem is of
Type 3. We �rst need to introduce some de�nitions. Let G = (V,E) be a graph, let k
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be an integer, and let c : V → {0, . . . , k} be a color function. Two colors c1 and c2 in
{0, . . . , k} are compatible, and we denote it by c1 ≡ c2, if c1 = 0, c2 = 0, or c1 = c2. A
path P = x1 . . . xm in G is monochromatic if for all i, j ∈ [m], i 6= j, c(xi) and c(xj)
are two compatible colors. We let c(P ) = maxi∈[m](c(xi)). We say that P is colored x if
x = c(P ). Two monochromatic paths P and P ′ are color-compatible if c(P ) ≡ c(P ′).

Monochromatic Disjoint Paths

Input: A graph G = (V,E) of treewidth tw, a color function γ : V → {0, . . . , tw},
an integer m, and a set N = {Ni = {si, ti}|i ∈ [m], si, ti ∈ V }.
Parameter: The treewidth tw of G.
Question: Does G contain m pairwise vertex-disjoint monochromatic paths from si
to ti, for i ∈ [m]?

The proof of the following lemma is inspired from the algorithm given in [21] for the
Disjoint Paths problem on general graphs.

Lemma 2. [?] Monochromatic Disjoint Paths can be solved in time 2O(tw log tw) ·
nO(1).

We need to de�ne the k × k-Hitting Set problem, �rst introduced in [16].

k × k-Hitting Set

Input: A family of sets S1, S2, . . . , Sm ⊆ [k]× [k], such that each set contains at most
one element from each row of [k]× [k].
Parameter: k.
Question: Is there a set S containing exactly one element from each row such that
S ∩ Si 6= ∅ for any 1 6 i 6 m?

Theorem 3 (Lokshtanov et al. [16]). k × k-Hitting Set cannot be solved in time

2o(k log k) ·mO(1) unless the ETH fails.

We state the following theorem in terms of the pathwidth of the input graph, and as
any graph G satis�es tw(G) 6 pw(G), it implies the same lower bound in the treewidth.

Theorem 4. Planar Monochromatic Disjoint Paths cannot be solved in time

2o(pw logpw) · nO(1) unless the ETH fails.

Proof: We reduce from k × k-Hitting Set. Let k be an integer and S1, S2, . . . , Sm ⊆
[k]× [k] such that each set contains at most one element from each row of [k]× [k]. We
will �rst present an overview of the reduction with all the involved gadgets, and then we
will provide a formal de�nition of the constructed planar graph G.

We construct a gadget for each row {r}× [k], r ∈ [k], which selects the unique pair p
of S in this row. First, for each r ∈ [k], we introduce two new vertices sr and tr, a request
{sr, tr}, m+ 1 vertices vr,i, i ∈ {0, . . . ,m}, and m+ 2 edges {er,0 = (sr, vr,0)} ∪ {er,i =
(vr,i−1, vr,i)|i ∈ [m]} ∪ {er,m+1 = (vr,m, tr)}. That is, we have a path with m + 2 edges
between sr and tr.

Each edge of these paths, except the last one, will be replaced with an appropriate
gadget. Namely, for each r ∈ [k], we replace the edge er,0 with the gadget depicted in
Fig. 7, which we call color-selection gadget. In this �gure, vertex ur,i is colored i. The
color used by the path from sr to tr in the color-selection gadget will de�ne the pair of
the solution of S in the row {r} × [k].
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Fig. 6. Expel gadget.
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Fig. 7. Color-selection gadget, where ur,i is colored ci for each i ∈ [k].

Now that we have described the gadgets that allow to de�ne S, we need to ensure
that S∩Si 6= ∅ for any i ∈ [m]. For this, we need the gadget depicted in Fig. 6, which we
call expel gadget. Each time we introduce this gadget, we add to N the request {s, t}.
This new requested path uses either vertex u or vertex v, so only one of these vertices
can be used by other paths. For each i ∈ [m], we replace all the edges {er,i|r ∈ [k]} with
the gadget depicted in Fig. 8, which we call set gadget. In this �gure, ar,i is such that
if ({r} × [k]) ∩ Si = {{r, cr,i}} then ar,i is colored cr,i, and if ({r} × [k]) ∩ Si = ∅ then
vertex ar,i is removed from the gadget.

This completes the construction of the graph G, which is illustrated in Fig. 13 in
Appendix G. The formal description of G can be found in Appendix H. Note that G
is indeed planar. The color function γ of G is de�ned such that for each r ∈ [k] and
c ∈ [k], γ(ur,c) = c, and for each i ∈ [m] and (r, c) ∈ Si, γ(ar,i) = c. For any other vertex
v ∈ V (G), we set γ(v) = 0. Finally, the input of Planar Monochromatic Disjoint

Paths is the planar graph G, the color function γ, and the k + (k − 1) · m requests
N = {{sr, tr}|r ∈ [k]} ∪ {{sr,i, tr,i}|r ∈ [k − 1], i ∈ [m]}, the second set of requests
corresponding to the ones introduced by the expel gadgets.

Note that because of the expel gadgets, the request {sr, tr} imposes a path between
vr,i−1 and vr,i for each r ∈ [k]. Note also that because of the expel gadgets, at least one
of the paths between vr,i−1 and vr,i should use an ar,i vertex, as otherwise at least two
paths would intersect. Conversely, if one path uses a vertex ar,i, then we can �nd all the
desired paths in the corresponding set gadgets by using the vertices wr,i,b.

Given a solution of Planar Monochromatic Disjoint Paths in G, we can con-
struct a solution of k× k-Hitting Set by letting S = {(r, c)|r ∈ [k] such that the path
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SETi
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Fig. 8. Set gadgets.

from sr to tr is colored with color c}. We have that S contains exactly one element of
each row, so we just have to check if S ∩Si 6= ∅ for each i ∈ [m]. Because of the property
of the set gadgets mentioned above, for each i ∈ [m], the set gadget labeled i ensures
that S ∩ Si 6= ∅.

Conversely, given a solution S of k × k-Hitting Set, for each {r, c} ∈ S we color
the path from sr to tr with color c. We assign an arbitrary coloring to the other paths.
For each i ∈ [m], we take {r, c} ∈ S ∩ Si and in the set gadget labeled i, we impose that
the path from vr,i−1 to vr,i uses vertex ar,i. By using the vertices wr,i,b for the other
paths, we �nd the desired k + (k − 1) ·m monochromatic paths.

Let us now argue about the pathwidth of G. We de�ne for each r, c ∈ [k] the bag
B0,r,c = {sr′ |r′ ∈ [k]}∪{vr′,0|r′ ∈ [k]}∪{ur,c}, for each i ∈ [m], the bag Bi = {vr,i−1|r ∈
[k]} ∪ {vr,i|r ∈ [k]} ∪ {ar,i ∈ V (G)|r ∈ [k]} ∪ {wr,i,b ∈ V (G)|r ∈ [k], b ∈ [2]} ∪ {sr,i|r ∈
[m− 1]} ∪ {tr,i|r ∈ [m− 1]}, and the bag Bm+1 = {vr,m|r ∈ [k]} ∪ {tr|r ∈ [k]}. We note
that the size of each bag is at most 2 · (k − 1) + 5 · k − 2 = O(k). A path decomposition
of G consists of all bags B0,r,c, r, c ∈ [k] and Bi, i ∈ [m + 1] and edges {Bi, Bi+1} for
each i ∈ [m], {B0,r,c, B0,r,c+1} for r ∈ [k], c ∈ [k − 1], {B0,r,k, B0,r+1,1} for r ∈ [k],
and {B0,k,k, B1}. Therefore, as we have that pw(G) = O(k), if one could solve Planar
Monochromatic Disjoint Paths in time 2o(pw logpw) ·nO(1), then one could also solve
k × k-Hitting Set in time 2o(k log k) ·mO(1), which is impossible by Theorem 3 unless
the ETH fails. �
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A Preliminaries

Graphs. We denote by V (G) the set of vertices of a graph G and by E(G) its set of
edges. A subgraph H = (VH , EH) of a graph G = (V,E) is a graph such that VH ⊆ V
and EH ⊆ E ∩ (VH × VH). The degree of a vertex v in a graph G, denoted by degG(v),
is the number of edges of G containing v. A grid m ∗ k is a graph Grm,k = ({ai,j |i ∈
[m], j ∈ [k]}, {(ai,j , ai+1,j)|i ∈ [m − 1], j ∈ [k]} ∪ {(ai,j , ai,j+1)|i ∈ [m], j ∈ [k − 1]}).
When m = k we just speak about a grid of size k. We say that there is a path s . . . t in
a graph G if there exist m ∈ N and x0, . . . , xm in V (G) such that x0 = s, xm = t, and
for all i ∈ [m], (xi−1, xi) ∈ E(G).

Treewidth and pathwidth. A tree-decomposition of width w of a graph G = (V,E)
is a pair (T, σ), where T is a tree and σ = {Bt|Bt ⊆ V, t ∈ V (T )} such that:

•
⋃
t∈V (T )Bt = V ;

• For every edge {u, v} ∈ E there is a t ∈ V (T ) such that {u, v} ⊆ Bt;
• Bi ∩Bk ⊆ Bj for all {i, j, k} ⊆ V (T ) such that j lies on the path i . . . k in T ;
• maxi∈V (T ) |Bt| = w + 1.

The sets Bt are called bags. The treewidth of G, denoted by tw(G), is the smallest
integer w such that there is a tree-decomposition of G of width w. An optimal tree-

decomposition is a tree-decomposition of width tw(G). A path-decomposition of a graph
G = (V,E) is a tree-decomposition (T, σ) such that T is a path. The pathwidth of G,
denoted by pw(G), is the smallest integer w such that there is a path-decomposition of
G of width w. Clearly, for any graph G, we have tw(G) 6 pw(G).

Branchwidth. A branch-decomposition (T, σ) of a graph G = (V,E) consists of an
unrooted ternary tree T and a bijection σ : L→ E from the set L of leaves of T to the
edge set of G. We de�ne for every edge e of T the middle set mid(e) ⊆ V (G) as follows:
Let T1 and T2 be the two connected components of T\{e}. Then let Gi be the graph
induced by the edge set {σ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set of e is the
intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1) ∩ V (G2). When we
consider T as rooted, we let Ge be the graph Gi such that Ti does not contain the root
of T . The width of (T, σ) is the maximum order of the middle sets over all edges of T ,
i.e., w(T, σ) := max{|mid(e)||e ∈ T}. The branchwidth of G, denoted by bw(G), is the
minimum width over all branch decompositions ofG. An optimal branch decomposition of
G is a branch decomposition (T, σ) of width bw(G). By [18], the branchwidth of a graph
G with at least 3 edges is related to its treewidth by bw(G)−1 6 tw(G) 6 b 32bw(G)c−1.

Planar graphs. Let Σ be the sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. By a Σ-plane

graph G we mean a planar graph G with its vertex set V (G), edge set E(G), and face
set F (G) drawn without edge crossings in Σ. An O-arc is a subset of Σ homeomorphic
to a circle. An O-arc in Σ is called a noose of a Σ-plane graph G if it meets G only
in vertices and intersects with every face at most once. Each noose O bounds two open
discs ∆1, ∆2 in Σ, i.e., ∆1 ∩∆2 = ∅ and ∆1 ∪∆2 ∪O = Σ.

For a Σ-plane graph G, we de�ne a sphere cut decomposition (T, σ, π) of G, or sc-

decomposition for short, as a branch-decomposition such that for every edge e of T there
exists a noose Oe bounding the two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe,
1 6 i 6 2. Thus Oe meets G only in mid(e) and its length is |mid(e)|. It is known that
any planar graph G has a sc-decomposition of width bw(G) that can be computed in
polynomial time [9, 22].
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u′u

The gadget.

u C u′

The representation.

Fig. 9. Color gadget.

u

u′

v′v

The gadget.

u

u′

v CC v′

The representation.

Fig. 10. Cross-color gadget.

Non-crossing partitions and matchings. A partition P of a set S is a set of subsets
of S such that

⋃
s∈P s = S and for all distinct s1, s2 ∈ P , s1 ∩ s2 = ∅. A partition P

is called non-crossing partition if for each s1, s2 ∈ P , for each a, b ∈ s1 and c, d ∈ s2
with a < b and c < d then one of the following situations occurs: a < b < c < d,
a < c < d < b, c < d < a < b, or c < a < b < d. Kreweras showed in [14] that the
number of non-crossing partitions on [k] for k ∈ N is at most 4k.

A matching M is a set of pairs of elements of a set, which we also call edges, such that
for each e, e′ ∈M , e 6= e′, e∩e′ = ∅. For a matchingM in a graph G, we denote by V [M ]
the set of all vertices that belong to an edge ofM . We say that two matchingsM andM ′

are disjoint if V [M ]∩ V [M ′] = ∅. A matching M on V = {v1, . . . , vn}, for some n ∈ N∗,
is called non-crossing matching if for each {va, vb}, {vc, vd} ∈M , with a < b and c < d,
then one of the following situations occurs: a < b < c < d, a < c < d < b, c < d < a < b,
or c < a < b < d. Kreweras showed in [14] that the number of non-crossing matchings
on [k] for k ∈ N is at most 2k.

B Proof of Theorem 1

We start with de�ning some planar gadgets. The �rst one is depicted in Fig. 9 and called
color gadget, C-gadget for short. This gadget ensures that two vertices u and u′ are in the
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Fig. 11. An example of graph H for n = 4.

same color class. Note that we can extend the C-gadget for three vertices u, u′, and u′′

and ensure the three vertices to be in the same color class by �xing a C-gadget between
u and u′ and another C-gadget between u′ and u′′. The second gadget is depicted in
Fig. 10 and called cross-color gadget, CC-gadget for short. In this gadget, originally
introduced in [12], one can check that if u, v, u′, and v′ are in the same face and oriented
in this order around the face, that u and u′ are in the same color class and v and v′ are
in the same color class.

We reduce from 3-Colorability. Let G = (V,E) be an input general graph with
n = |V | and V = {v1, . . . , vn}, and we de�ne the planar graph H, illustrated in Fig. 11
for n = 4, as follows:

• For each i ∈ [n], uH,i, vH,i, wH,i ∈ V (H);
• For each i, j ∈ [n], i < j, αH,i,j ∈ V (H) and βH,i,j ∈ V (H);
• For each i ∈ {1, . . . , n− 1}, there is a C-gadget between uH,i and αH,i−1,i;
• For each i ∈ {2, . . . , n}, there is a C-gadget between uH,i and βH,i−1,i;
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The original vertex. Simulation of the same vertex with maximum degree 5.

Fig. 12. Reducing the maximum degree from 7 to 5.

• There is a C-gadget between uH,n and wH,n;
• There is a C-gadget between uH,1 and vH,1;
• For each i, j ∈ {2, . . . , n − 1}, i < j there is a CC-gadget between αH,i,j , βH,i,j ,
αH,i,j+1, and βH,i−1,j ;

• For each i ∈ {2, . . . , n− 1}, i < j there is a CC-gadget between αH,i,n, βH,i,n, wH,i,
and βH,i−1,n;

• For each j ∈ {2, . . . , n − 1}, i < j there is a CC-gadget between αH,1,j , βH,1,j ,
αH,1,j+1, and vH,j ;

• There is a CC-gadget between αH,1,n, βH,1,n, wH,1, and vH,n;
• For each i, j ∈ [n], i < j, if (vi, vj) ∈ E, then (αH,i,j , βH,i,j) ∈ E(H).

As the C-gadget and the CC-gadget are planar, H is indeed planar (see Fig. 11).
Because of the properties on the C-gadget and the CC-gadget, for each i in [n], uH,i,

vH,i, and wH,i are in the same color class. Because of the edges (αH,i,j , βH,i,j), if there
is an edge between vi and vj in G, then uH,i and uH,j should receive di�erent colors. If
we have a 3-coloring of G, then by coloring uH,i with the color of vi for each i ∈ [n], we
�nd a 3-coloring of H. Conversely, if we have a coloring of H, for each i ∈ [n] we color
each vertex vi of V with the color of uH,i.

Let us now argue about the maximum degree of the graph H. With the previous
construction described so far, H has maximum degree 7. In order to restrict it to 5, we
replace each vertex of degree 6 or 7 with the two color gadgets shown in Fig. 12.

Let us �nally argue about the number of vertices of H. Note that H can be seen
as a spanning subgraph of a grid of size n, where each vertex either has been replaced
by a C-gadget or a CC-gadget, or it has been removed. As these two gadgets have at
most 13 vertices, and in the worst case, all these new vertices have degree 7 and we
need to replace them with two color gadgets, that have 7 vertices each, we have that
|V (H)| 6 65 · n2. As 3-Colorability cannot be solved in time 2o(n) · nO(1) unless the
ETH fails [13], the theorem follows.

C Proof of Lemma 1

We prove the lemma for bw, but as tw 6 b 32bwc− 1, it will imply the same asymptotic
upper bound for tw. Let G be a graph, X ⊆ V (G), and M a matching on V (G)\X.
Intuitively, M represents the endpoints of the paths we are building and X is the set
of vertices that are already inside a path but they are not an endpoint of any path. We
de�ne G[(X,M, `)] = (V [M ],M). We say that G[(X1,M1, `1), (X2,M2, `2)] is de�ned if
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X1∩(X2∪V [M2]) = X2∩(X1∪V [M1]) = ∅ and we de�ne G[(X1,M1, `1), (X2,M2, `2)] =
G[(X1,M1, `1)]∪G[(X2,M2, `2)]. Otherwise, we say that G[(X1,M1, `1), (X2,M2, `2)] is
unde�ned. We say that cp(G,X,M) > ` if G contains paths joining each pair of vertices
given by M and ` cycles, all pairwise vertex-disjoint.

We now consider G = (V,E) to be our Σ-plane input graph and `0 our integer. Let
(T, µ, π) be a sc-decomposition of G of width bw. As in [9], we root T by arbitrarily
choosing an edge e and we subdivide it by inserting a new node s. Let e′ and e′′ be
the new edges and set mid(e′) = mid(e′′) = mid(e). We create a new node root r, we
connect it to s by an edge er, and set mid(er) = ∅. The root er is not considered as a
leaf.

Let e ∈ E(T ) and Re = {(X,M, `)|X ⊆ mid(e), M is a matching of a subset
of mid(e)\X, and cp(Ge, X,M) > `}. We observe that there exist `0 pairwise vertex-
disjoint cycles in G if and only if (∅, ∅, `0) ∈ Rer . We should now compute Rer . If e
is a leaf then Ge = ({x, y}, {(x, y)}) and Re = {(∅, ∅, 0), (∅, {(x, y)}, 0)}. Otherwise,
let e1 and e2 be the two children of e in E(T ). Re is the set of all triples (X,M, `)
such that there exist (S1, S2) = ((X1,M1, `1), (X2,M2, `2)) ∈ Re1 × Re2 such that
M ⊆ ((V [M1] ∪ V [M2]) ∩ (mid(e)\X))2, G[S1, S2] is de�ned, all vertices in mid(e) of
degree at least two in G[S1, S2] are in X, and we can �nd in G[S1, S2] `3 cycles and a
path x . . . y for each (x, y) ∈M such that min(`1 + `2 + `3, `0) > `.

Note that G[S1, S2] is a minor of G so G[S1, S2] is also planar. As we have considered
a sc-decomposition and all the paths we consider in G[S1, S2] are pairwise vertex-disjoint,
since each vertex has degree at most two, the maximum number of distinct matchings
M is bounded by the number of non-crossing matchings on |mid(e)| elements, which
is at most 2|mid(e)|. As we have at most 3|mid(e)| choices for X and V [M ], it follows
that for each e ∈ E(T ), |Re| 6 6|mid(e)| · `0. As for each e ∈ E(T ) such that e is not a
leaf, we have to merge the tables of the two children e1 and e2 of e, this algorithm can
check in time O(36bw · `20 · |V (G)|) whether G contains at least `0 vertex-disjoint cycles.
We note that the constant can probably be optimized, for example by using fast matrix
multiplication, but this is outside of the scope of this paper.

D Proof of Claim 1

In this proof, we say that a cycle C kills an another cycle C ′ if, for any set S of vertex-
disjoint cycles containing C, (S\{C})∪{C ′} is also a set of vertex-disjoint cycles. When
dealing with a gadget F , we say that a cycle intersecting F is internal if it contains only
vertices in F , and external otherwise.

First note that any internal cycle in an expel or a double-expel gadget should use
both vertices v and v′. Also note that if some external cycle in an expel or a double-expel
gadget uses the vertex v or v′ of an expel or a double-expel gadget, then it also uses
the vertex u (or u and u′′), and then we are not able to �nd an internal cycle anymore.
Therefore, any external cycle containing v or v′ kills the cycle on the set of vertices
{u, v, v′} or {u′, u′′, v′, v′′}.

Note that if an external cycle of a path-crossing gadget turns inside it, then without
loss of generality it uses a path of the form pc1, w1,1, w1,2, w0, w2,2, w2,1, pc2 inside the
path-crossing gadget. This external cycle kills the cycle inside the expel gadget between
w1,1 and w2,2. Moreover, note that another disjoint external cycle turning in the same
path-crossing gadget kills another internal cycle in the path-crossing gadget, namely the
one inside the expel gadget between w3,1 and w4,2.

Let C be a cycle in H that is not entirely contained in only one expel, double-expel,
or SCi-gadget. Because of the previous remarks, we have that C cannot turn in two
di�erent path-crossing gadgets, and that if it does not turn in any path-crossing gadget,
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then by construction it uses at least two expel or double-expel gadgets and kills their
internal cycles. In both con�gurations, adding C to the solution decreases the number
of vertex-disjoint cycles that we can �nd in H.

The only remaining choice for C is to turn exactly once in one path-crossing gadget.
If it happens inside a bifurcate gadget, then C uses vertices of two expel gadgets, namely
expel1 and expel2, corresponding to two di�erent colors. The only way to connect vertices
corresponding to di�erent colors outside the path-crossing gadget is by using an SCi-
gadget. So either C kills the cycles of expel1 and expel2, or it may also use a path leading
to an edge gadget. If C turns in a path-crossing gadget inside an edge gadget, then the
analysis is similar, but there is an extra case where the edge gadget representing the
edge between vi and vj is directly plugged into the SCj-gadget. In this case, note that
none of the vertices ai, bi, ci can be a selected vertex with the set of cycles we currently
ask for, and therefore in order to allow it we need to decrease the number of cycles in
the solution.

E Other Problems of Type 2

We can provide other examples of problems of Type 2. This is the case, for instance, of
Cycle Cover, for which the lower bound has been proved in [4], and the upper bound
can be proved similarly to Lemma 1.

Other problems of Type 2 are those where one wants to maximize the number of
connected components induced by the vertices in a solution. It has been proved in [4] that
Maximally Disconnected Dominating Set cannot be solved in time 2o(tw log tw) ·
nO(1) unless the ETH fails. Again, the upper bound can be proved similarly to Lemma 1.
We can de�ne more problems of this �avor, such as the following one.

Maximally Disconnected Feedback Vertex Set

Input: A graph G = (V,E) and two integers ` and r.
Parameter: The treewidth tw of G.
Question: Does G contain a feedback vertex set of size at most ` that induces at
least r connected components?

The following lemma can be proved by using the reduction given in [4] forMaximally

Disconnected Dominating Set, just by appropriately rede�ning the so-called force

and one-in-many gadgets.

Lemma 3. Maximally Disconnected Feedback Vertex Set cannot be solved in

time 2o(tw log tw) · nO(1) unless the ETH fails.

And again, the following lemma can be proved using standard dynamic programming
techniques.

Lemma 4. Maximally Disconnected Feedback Vertex Set can be solved in time

2O(tw log tw) ·nO(1), and Planar Maximally Disconnected Feedback Vertex Set

can be solved in time 2O(tw) · nO(1).

F Proof of Lemma 2

Again, we prove the lemma using branch-decomposition, which will lead the same
asymptotic upper bounds in terms of the treewidth. Let G be a colored graph and
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let γ : V (G) → {0, . . . , tw} be a coloring of V (G). Let {Ni = {si, ti}}i∈[m] be the
endvertices of the m paths we are looking for, and let (T, µ) a branch-decomposition
of G of width bw = bw(G). As in [9], we root T by arbitrarily choosing an edge e
and subdivide it by inserting a new node s. Let e′ and e′′ be the new edges and set
mid(e′) = mid(e′′) = mid(e). We create a new root node r, connect it to s by an edge
er, and set mid(er) = ∅. The root er is not considered as a leaf.

Let now e be an edge of T , let X,P ⊆mid(e) with X ∩ P = ∅, and let M,L be two
disjoint matchings of mid(e)\(X ∪ P ). Let γ0 : P ∪ V [M ] ∪ V [L] → {0, . . . , tw} be a
color function, and let ϕ : P → [m] be an injective function. Intuitively, we want to keep
track of the (partial) paths inside Ge, and to this end P will correspond to the virtual
sources of terminals, M to the pairs of virtual sources to be linked by a path, L to pairs
of vertices {x, y} such that there is a path in Ge linking x and y, and X to vertices
that are already inside a path or that are both an endpoint and a terminal. We say that
mdp(Ge,mid(e), X, P,M,L, γ0, ϕ) = true if the following conditions are ful�lled:

◦ For all {si, ti} in N ∩ V (Ge)
2,

• There exists a monochromatic path si . . . ti in Ge, or
• There exist {s′i, t′i} ∈ M and two monochromatic paths in Ge si . . . s

′
i colored

γ0(s
′
i) and ti . . . t

′
i colored γ0(t

′
i) with γ0(s

′
i) ≡ γ0(t′i).

◦ For all {si, ti} in N , such that si ∈ V (Ge) and ti 6∈ V (Ge) or vice-versa,
• There exist s′i ∈ P such that ϕ(s′i) = i and a monochromatic path si = v0 . . . vk =
s′i colored γ0(s

′
i).

◦ For all {xi, yi} in L,
• There exists in Ge a monochromatic path xi . . . yi colored max(γ0(xi), γ0(yi)).

◦ All these paths are vertex-disjoint and all vertices in mid(e) with degree at least 2
are in X.

Let S1 = (X1, P1,M1, L1, γ1, ϕ1) and S2 = (X2, P2,M2, L2, γ2, ϕ2) with
X1, X2, P1, P2, . . . de�ned as above. We de�ne G[S1] = (P1 ∪ V [M1] ∪ V [L1], {{x, y} ∈
L1}) and colored by γ1, and we de�ne G[S2] analogously. We say that G[S1, S2] is de�ned
if for all x ∈ V (G[S1]) ∩ V (G[S2]), γ1(x) ≡ γ2(x), X1 ∩ V (G[S2]) = X2 ∩ V (G[S1]) =
X1 ∩ X2 = ∅, and we de�ne G[S1, S2] = G[S1] ∪ G[S2] and colored by γ12 such that
for all x ∈ V (G[S1, S2]), γ12 = max(γ1(x), γ2(x)). Otherwise, we say that G[S1, S2] is
unde�ned.

For each e ∈ E(T ), we de�ne Re = {(X,P,M,L, γ, ϕ)|X ⊆ mid(e), P ⊆ mid(e),
X ∩P = ∅, M and L are disjoint matchings on mid(e)\(X ∪P ), V [M ]∩ V [L] = ∅ and
mdp(Ge,mid(e), X, P,M,L, γ, ϕ) = true. We want to know whether (∅, ∅, ∅, ∅, ∅, ∅) ∈
Rer . For each e ∈ E(T ), we can compute Re as follows:

◦ if e is a leaf, then Ge = ({x, y}, {(x, y)}, and
• if {x, y} ∈ N , then
Re = {({x, y}, ∅, ∅, ∅, ∅, ∅)}.

• if x ∈ Ni, y ∈ Nj , i 6= j, then
Re = {(∅, {x, y}, ∅, ∅, {(x, γ(x)), (y, γ(y))}, {(x, i), (y, j)})}.

• if x ∈ Ni and ∀j ∈ [m], y 6∈ Nj and γ(x) 6≡ γ(y), then
Re = {(∅, {x}, ∅, ∅, {(x, γ(x)}, {(x, i)})}.

• if x ∈ Ni and ∀j ∈ [m], y 6∈ Nj and γ(x) ≡ γ(y), then Re =
{(∅, {x}, ∅, ∅, {(x, γ(x)}, {(x, i)}), ({x}, {y}, ∅, ∅, {(y,max(γ(x), γ(y)))}, {(y, i)})}.

◦ if e is not a leaf, let e1 and e2 be the two children of e in E(T ). We con-
struct Re as the set of all 6-tuples (X,P,M,L, γ0, ϕ) such that there exist S1 =
(X1, P1,M1, L1, γ1, ϕ1) ∈ Re1 and S2 = (X2, P2,M2, L2, γ2, ϕ2) ∈ Re2 ful�lling the
following properties:
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• H = G[S1, S2] is de�ned;
• For all {xi, yi} ∈ L, there exists a monochromatic path xi . . . yi in H and we
have γ0(xi) = γ0(yi) = γ12(xi . . . yi);

• All vertices in mid(e) of degree at least 2 in G[S1, S2] are in X;
• For all {v, w} ∈ Mi, i ∈ {1, 2}, there is a monochromatic color-compatible path
from v to w in G[S1, S2] or two vertices {v′, w′} ∈ M , and two monochro-
matic color-compatible paths v . . . v′ and w . . . w′ with γ0(v

′) = γ0(w
′) =

max(γ12(v . . . v
′), γ12(w . . . w

′));
• For all i ∈ {1, 2} an for all v in Pi, there exist w ∈ P and a monochromatic
color-compatible path v . . . w, or there exist w ∈ P3−i such that ϕi(v) = ϕ3−i(w)
and a monochromatic path v . . . w such that γ0(w) = γ12(v . . . w);

• All these paths are pairwise vertex-disjoint.

As in the graph G[S1, S2] by construction all vertices have degree at most two, we can
easily check all the previous properties in polynomial time, as we just have to compare
two sets or traverse a path inG[S1, S2] to verify each property. Therefore, we can compute
each element of Re in time poly(mid(e)). As (X,P, V [M ], V [L]) forms a partition of a
subset ofmid(e), there are at most 5mid(e) such 4-tuples. There are at most tw+1 colors
and at most (tw+1)mid(e) choices for γ0. As |{ϕ(x)|x ∈ P}| 6 |P | 6mid(e), there are at
most mid(e)mid(e) possible di�erent color functions ϕ. As bw−1 6 tw we have that for
all e in E(T ), |mid(e)| 6 tw+1, hence for all e in E(T ), |Re| 6 5tw+1·(tw+1)2(tw+1). As
for each e ∈ E(T ) such that e is not a leaf, we have to merge the tables of the two children
e1 and e2 of e, the above dynamic programming algorithm can solve Monochromatic

Disjoint Paths in time O(25tw+1 · (tw + 1)4(tw+1) · |V (G)|). Again, we note that the
constant can probably be optimized by using fast matrix multiplication.

G Fig. 13 in the Proof of Theorem 4

s1
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s2
CS
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Fig. 13. Final graph G in the reduction of Theorem 4.
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Fig. 14. The double-expel gadget.

ai

bi

ci

si,0

ti,0

Fig. 15. The SCi-gadget: To keep planarity, there is a path-crossing gadget in each edge inter-
section.

H Description of the Graph G in the Proof of Theorem 4

Formally, the graph we obtain is G = (V,E), where V = {sr|r ∈ [k]} ∪ {tr|r ∈
[k]} ∪ {vr,i|r ∈ [k], i ∈ {0,m}} ∪ {ur,c|r ∈ [k], c ∈ [k]} ∪ ({wr,i,b|r ∈ [k], i ∈ [m], i ∈
{1, 2}}\{wr,i,b|i ∈ [m], (r, b) ∈ {(1, 1), (k, 2)}}) ∪ {sr,i|r ∈ [k − 1], i ∈ [m]} ∪ {tr,i|r ∈
[k − 1], i ∈ [m]} ∪ {ar,i|∃c ∈ [k], (r, c) ∈ Si and E = {{sr, ur,c} ∈ V 2|r ∈ [k], c ∈
[k]} ∪ {{ur,c, vr,0} ∈ V 2|r ∈ [k], c ∈ [k]} ∪ {{vr,i−1, wr,i,b} ∈ V 2|r ∈ [k], i ∈ [m], b ∈
{1, 2}} ∪ {{wr,i,b, vr,i} ∈ V 2|r ∈ [k], i ∈ [m], b ∈ {1, 2}} ∪ {{vr,i−1, ar,i} ∈ V 2|r ∈ [k], i ∈
[m]} ∪ {{ar,i, vr,i} ∈ V 2|r ∈ [k], i ∈ [m]} ∪ {{vr,m, tr} ∈ V 2|r ∈ [k]} ∪ {{sr,i, wr,i,2} ∈
V 2|r ∈ [k − 1], i ∈ [m]} ∪ {{sr,i, wr+1,i,1} ∈ V 2|r ∈ [k − 1], i ∈ [m]} ∪ {{tr,i, wr,i,2} ∈
V 2|r ∈ [k − 1], i ∈ [m]} ∪ {{tr,i, wr+1,i,1} ∈ V 2|r ∈ [k − 1], i ∈ [m]}.

I Lower Bound for Planar Disjoint Paths

In this section we prove that, assuming the ETH, the Planar Disjoint Paths problem
cannot be solved in time 2o(tw) · nO(1).

Disjoint Paths

Input: A graph G = (V,E), an integer m, and a set N = {Ni = {si, ti}|i ∈
[m], si, ti ∈ V }.
Parameter: The treewidth tw of G.
Question: Does G contain m pairwise vertex-disjoint paths from si to ti, for i ∈ [m]?

Theorem 5. Planar Disjoint paths cannot be solved in time 2o(
√
n) · nO(1) unless

the ETH fails.

Proof: We strongly follow the proof of Theorem 2. Again, we reduce from Planar 3-

Colorability where the input graph has maximum degree at most 5. Let G = (V,E)
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Fig. 16. Bifurcate gadget: To keep planarity, there is a path-crossing gadget in each edge in-
tersection.

si,j,1

ai,k

ti,j,1

aj,k

si,j,2

bi,k
ti,j,2

bj,k′

si,j,3
ci,k

ti,j,3

cj,k′

Fig. 17. Edge gadget: To keep planarity, there is a path-crossing gadget in each edge intersec-
tion.

be a planar graph with maximum degree at most 5 with V = {v1, . . . , vn}. We proceed
to construct a planar graph H together with a planar embedding. We construct the same
graph as in the proof of Theorem 2 but where the gadgets are appropriately modi�ed.
We reuse the expel gadget depicted in Fig. 6 and for each expel gadget, we ask for a
path between s and t. We rede�ne the double-expel gadget as depicted in Fig. 14 and for
each double-expel gadget, we ask for a path between s and t. We reuse the path-crossing

gadget depicted in Fig. 3 and only ask for the paths contained in the expel gadgets.
We can now rede�ne the SCi-gadget depicted in Fig. 15, where each edge intersection



The role of planarity in connectivity problems parameterized by treewidth 23

is replaced with a path-crossing gadget. For each SCi-gadget we ask for a path between
si,0 and ti,0. We also rede�ne the bifurcate gadget as depicted in Fig. 16, and for each
bifurcate gadget, we ask for a path between si,k and ti,k for k ∈ [9]. Finally, we rede�ne
the edge gadget as depicted in Fig. 17, and for each edge gadget we ask for a path between
si,j,k and ti,j,k for k ∈ [3]. This completes the construction of the planar graph H. It can
be easily checked that these gadgets preserve the same properties as the corresponding
ones in the proof of Theorem 2. Moreover, it is also easy to see that a path in a solution
in H cannot turn in a path-crossing gadget.

Given a solution of Planar Disjoint Paths in H, for each i ∈ [n] the selection of a
cycle in the SCi-gadget selects a color for vi, that can be any common color in all color
outputs of vi, and the edge gadgets ensure that two adjacent vertices are in two di�erent
color classes. So in this way we obtain a solution of Planar 3-Colorability in G.

Conversely, given a solution of Planar 3-Colorability in G, it de�nes a color
output for {ai, bi, ci} for i ∈ [n]. Therefore, we select in the SCi-gadget the path that
uses the vertex in {ai, bi, ci} corresponding to the color of vi. In each bifurcate gadget,
we choose the paths that use the vertices in {ai,1, bi,1, ci,1, ai,2, bi,2, ci,2} leading to two
identical color outputs that coincide with the color output of {ai, bi, ci}. This choice
satis�es the property that the color output of {ai, bi, vi} is contained in the color outputs
of {ai,1, bi,1, ci,1} and {ai,2, bi,2, ci,2}, and leaves as many free vertices as possible for other
cycles in other gadgets. Inside each edge gadget representing {vi, vj} ∈ E, we select the
paths that are allowed by the free vertices. We complete our path selection by selecting
a free path in each expel gadget contained in the path-crossing gadget.

As the degree of each vertex in G is bounded by 5, the number of gadgets we
introduce for each vi ∈ V (G) in order to construct H is also bounded by a constant, so
the total number of vertices of H is linear in the number of vertices of G. Therefore,
if we could solve Planar Disjoint Paths in time 2o(

√
n) · nO(1), then we could also

solve Planar 3-Colorability in time 2o(
√
n) · nO(1), which is impossible by Theorem

1 unless the ETH fails. The theorem follows. �

From Theorem 5 we obtain the following corollary.

Corollary 2. Planar Disjoint Paths cannot be solved in time 2o(tw) · nO(1) unless

the ETH fails.

J Lower Bound for Planar Subgraph Isomorphism

Using ideas similar to those in the reduction for Monochromatic Disjoint Paths in
Theorem 4, we can prove that other planar problems cannot be solved in time 2o(tw log tw)

unless the ETH fails. Intuitively, we can prove lower bounds along the same ideas for
problems where some information can be carried by paths that belong to the solution.
For example, this is the case of Planar Subgraph Isomorphism.

Planar Subgraph Isomorphism

Input: Two planar graphs G and H.
Parameter: The treewidth tw of (G).
Question: Does G contain a subgraph isomorphic to H?

Theorem 6. Planar Subgraph Isomorphism cannot be solved in time 2o(tw log tw) ·
nO(1) unless the ETH fails.
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Fig. 18. Reqr with m+ 1 elements Grr.
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Fig. 19. Expel gadget.
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Fig. 20. The color-selection gadget.

Proof: We reduce again from k × k-Hitting Set. Let k > 3 be an integer and
S1, S2, . . . , Sm ⊆ [k]× [k] such that each set contains at most one element from each row
of [k]× [k]. We proceed to construct a graph G similar to the one for Monochromatic

Disjoint Paths, and we simultaneously construct the graph H. In this section, each
connected component of H is called a request, so H will consist of the union of all the
constructed requests. We now explain how we modify the expel, the color-selection, and
the set gadgets.

As in Monochromatic Disjoint Paths, we create a gadget for each row {r}× [k]
and make for each of these gadgets a requestReqr, depicted in Fig. 18, that chooses a path
and simulates a color for each row. We will again add an appropriate set gadget ensuring
that S ∩ Si 6= ∅ for each i ∈ [m]. For each r ∈ [k], the request Reqr simulates the path
from sr to tr that appears inMonochromatic Disjoint Paths. The way it is inserted
in the color-selection gadget simulates the color of the path sr . . . tr and determines the
paths it can use in the set gadgets, similarly to the reduction for Monochromatic

Disjoint Paths.

More precisely, we de�ne k+1 graphs that do not appear anywhere else in the graph
as a subgraph. For instance, we can take a grid of size k + 2 in which we remove a
di�erent vertex every time. Let Gr1, Gr2, . . . , Grk and Grg be these grids. Each such
modi�ed grid Gri, i ∈ [k], identi�es the subgraph corresponding to the row i, while Grg
identi�es the expel gadget requests. We rede�ne the expel gadget as depicted in Fig. 19
and the color-selection gadget as depicted in Fig. 20. We also rede�ne the set gadget as
depicted in Fig. 21, similarly to Monochromatic Disjoint Paths but with the new
expel gadget and a way to simulate in Planar Subgraph Isomorphism the color we
had in Monochromatic Disjoint Paths.
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Fig. 21. Set gadget with (1, 3) ∈ S1, (2, 2) ∈ S2, . . . , (k, 1) ∈ Sk.

The �nal graph we construct has the same shape depicted in Fig. 13 but with the
new gadgets instead. We de�ne the planar graph H to be the union of the m · (k − 1)
expel gadget requests shown in Fig. 19 and the request Reqr for each r ∈ [k].

All we have to specify is that we can use the path in the set gadget that simulates the
colored path in the reduction of Planar Monochromatic Disjoint Paths only if we
choose the corresponding color in the color-selection gadget. This property is given by the
fact that we look for a path where the constructed grids are spaced by the same number
of vertices each time, and therefore the color selected in the color-selection gadget is
preserved in each set gadget.

If S is a solution of k × k-Hitting Set, by �nding the request Reqi that simulates
the corresponding color we can construct solution to Planar Subgraph Isomorphism,
similarly to the way we found a solution of Monochromatic Disjoint Paths. Con-
versely, for the same reason in the proof for Monochromatic Disjoint Paths, a so-
lution of Planar Subgraph Isomorphism also de�nes a solution S of k× k-Hitting
Set. �


