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Abstract

This paper contains the cornerstone theorem of the series. We study the structure of graphs

with no minor isomorphic to a fixed graph L; when L is non-planar. (The case when L is

planar was studied in an earlier paper.) We find that every graph with no minor isomorphic to

L may be constructed by piecing together in a tree-structure graphs each of which ‘‘almost’’

embeds in some surface in which L cannot be embedded.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Graphs in this paper are finite, undirected graphs which may have loops or
multiple edges. A graph L is a minor of a graph G if L can be obtained from a
subgraph of G by contracting edges.

In this paper we are concerned with the structure of the graphs which have no
minor isomorphic to a given graph, and we begin in this section with a discussion of
what kind of structure we might expect. It turns out that there are (at least) four
ingredients to ‘‘structure’’, which we now review.

Ingredient 1: Tree-structure. It is a triviality that the graphs with no minor
isomorphic to a loop are the forests; this is the simplest instance of the exclusion of a
minor forcing some variety of tree-structure. If we exclude K3 instead we get almost
the same answer—forests augmented by loops and multiple edges. Excluding K4
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yields the ‘‘series-parallel’’ graphs, by a theorem of Dirac [1] or Duffin [2], and they
too have a certain tree-structure. To unify these and some other instances, we make
the following definitions. Let G be a graph with a separation ðH1;H2Þ (that is, H1

and H2 are subgraphs of G with no common edges and H1,H2 ¼ G). Let K be a
complete graph with VðKÞ ¼ VðH1Þ-VðH2Þ and with no edges in common with H1

and H2: Let Gi ¼ Hi,K ði ¼ 1; 2Þ: Then we say that G is the clique-sum of G1 and
G2: If G can be constructed from members of a class C of graphs by (repeated)
clique-sums we say that G is a tree-structure over C: Thus, the graphs with no K3-
minor are the tree-structures over the class of all graphs with p2 vertices; and the
graphs with no K4-minor are the tree-structures over the class of all graphs with p3
vertices. Let us say that G has tree-width pN if G is a tree-structure over the class of
all graphs with pN þ 1 vertices (and the smallest such N is of course the tree-width

of G). The following is the main theorem of [4]. (An L-minor is a minor isomorphic
to L:)

1.1. For any planar graph L there is a number N such that every graph with no L-minor

has tree-width pN:

In a way this generalizes the above-mentioned result about the exclusion of K3 and
K4: It is not a complete generalization, because 1.1 does not yield a structure which is
necessary and sufficient for the exclusion of L; but merely one which is necessary.
Nevertheless 1.1 has proved to be very useful. In another sense, 1.1 is best possible,
because the structure given by 1.1 is necessary for the exclusion of L; and sufficient
for the exclusion of some other (larger) planar graph. (A related fact; if L is non-
planar there is no number N as in 1.1.) The object of this paper is to find an analogue
of 1.1 for non-planar graphs L; best possible in the same sense; that is, the structure
is necessary for the exclusion of L and sufficient for the exclusion of some other,
larger graph L0: (In fact it can be shown that for any surface S in which L can be
drawn, we can choose L0 so that it too can be drawn in S:)

Ingredient 2: Genus. As central to the subject as the genus of L; however, is the
genus of graphs with no L-minor. If S is a surface and L cannot be drawn in S; then
no graph which can be drawn in S has an L-minor. This provides a second type of
structure associated with the exclusion of L as a minor. There are some important
theorems about excluded minors which involve combinations of these two structures;
for instance, Wagner [12] proved the following. (V8 is obtained from an eight-vertex
circuit by adding edges joining the four opposite pairs of vertices.)

1.2. A graph G has no K5 minor if and only if G is a tree-structure over the class of all

graphs which are either planar or isomorphic to V8:

Ingredient 3: Bounded extension. Let us consider the result of excluding K6: The
structure of the graphs with no K6-minor has not yet been determined, but one class
of such graphs consists of those with a vertex the deletion of which yields a planar
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graph. It can be shown that there is no class of graphs of bounded genus such that all
these graphs are tree-structures over it, and that shows the necessity for our third
ingredient. Let S be a surface, let NX0 be an integer, and let L be a graph such that
no graph obtained from L by deleting pN vertices can be drawn in S: Then there
will be no L minor in any graph which can be constructed by adding pN vertices
(joined arbitrarily) to a graph drawn in S: This then yields a third type of structure
which we should anticipate. If a subgraph G0 of G can be obtained from G by
deleting pn vertices of G; let us call G a ðpnÞ-vertex extension of G0:

We conjectured for some time that these three were sufficient. But that was false.

Ingredient 4: Vortices. Take a graph drawn in the plane, and let the vertices on the
infinite region be v1; v2;y; vn in order. Add new edges joining v1 to v3; v2 to v4; v3 to
v5 and so on, and let the resulting graph be G: Then it can be shown that such a
graph has no large clique minor; indeed, Seese and Wessel [11] found the exact
bound, that G can have a K7; but cannot have a K8; minor. Yet such graphs G

cannot be constructed from our first three ingredients, and so a fourth ingredient is
needed, so-called ‘‘vortices’’. Roughly, a vortex is a graph with some of its vertices
arranged in a circular order, so that however these special vertices are partitioned
into two intervals, there are only a bounded number of disjoint paths from one
interval to the other. For instance, the graph G above consists of a planar graph
together with a vortex (formed by the new edges) inserted into the infinite region.

Our main result implies that these four ingredients suffice. Let us turn to the
statement of the theorem. We need first to define what we mean by an ‘‘r-ring with
perimeter t1;y; tn’’. Roughly speaking, it consists a graph G and a sequence t1;y; tn

of distinct vertices of G; such that G can be constructed as follows. Let G1;y;Gn be
mutually disjoint graphs, each with pr vertices, and for 1pipn let tiAVðGiÞ: Let us
choose some i with 1pipn; choose uAVðGiÞ and vAVðGiþ1Þ and identify u with v;
provided that t1;y; tn remain all distinct; and repeat this process as often as we
wish.

More precisely, we say G is an r-ring with perimeter t1;y; tn if t1;y; tnAVðGÞ are
distinct and there is a sequence X1;y;Xn of subsets of VðGÞ; such that

* X1,?,Xn ¼ VðGÞ; and every edge of G has both ends in some Xi;
* tiAX1 for 1pipn;
* Xi-XkDXj for 1pipjpkpn;
* jXijpr for 1pipn:

It is easy to check that this is equivalent with the previous definition.
Now let G0 be a graph drawn in a surface S; and let D1;y;DdDS be pairwise

disjoint closed discs, each meeting the drawing only in vertices of G0; and each
containing no vertices of G0 in its interior. For 1pipd let the vertices of G0 in bdðDiÞ
be t1;y; tn say, in order, and choose an r-ring Gi with perimeter t1;y; tn;meeting G0

just in t1;y; tn and disjoint from every other Gj; and let G be the union of G0;

G1;y;Gd : Such a graph G (and any graph isomorphic to it) is called an outgrowth by

d r-rings of a graph in S: Now we can state our theorem.
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1.3. Let L be a nonplanar graph, and let S1;y;Ss be all the connected surfaces (up to

homeomorphism) in which L cannot be drawn. Then there are numbers r; d; w such that

every graph with no L-minor may be constructed by clique-sums, starting from graphs

G0 with the following property: G0 is a ðpwÞ-vertex extension of an outgrowth by pd

r-rings of a graph that can be drawn in one of S1;y;Ss:

One can think of an r-ring as a graph with a given path-decomposition of bounded
width, and in particular, its pieces come in a linear order. Since these pieces are being
sewn onto a circular hole in a surface, it would perhaps be more natural if the pieces
came in a circular order. One can indeed replace the third condition in the definition
of an r-ring by the condition

* Xi-XkDXh,Xj and Xh-XjDXi,Xk for 1phpipjpkpn

and 1.3 remains true (because the new statement is obviously weaker than
the original); and in fact the new version is equivalent to the original (we leave
the equivalence to the reader). This is why we call it a ‘‘ring’’ rather than some
more linear name. It is a question of convenience which definition of ‘‘r-ring’’ is
used.

While 1.3 has been one of the main goals of this series of papers, it turns out to
have been a red herring. There is another result (theorem 3.1) which is proved in this
paper, and from which 1.3 is then derived; and in all the future applications in this
series of papers, it is not 1.3 but 3.1 that will be needed. Let us explain how theorem
3.1 is used to prove 1.3.

Evidently we would like to eliminate the ‘‘tree-structure’’ part of 1.3 and
concentrate on the internal structure of one of the ‘‘nodes’’ of the tree. How can we
do so? An inductive argument looks plausible at first sight; if there is no low order
cutset of G dividing it into two substantial pieces then G itself must be almost a
‘‘node’’ if the theorem is to be true, while if there is such a cutset we may express G as
a clique-sum of two smaller graphs, and hope to apply our inductive hypothesis to
these graphs. But there is a difficulty here; it is possible that these smaller graphs
have an L-minor while G does not. Fortunately there is a way to focus in on a
‘‘node’’ which does not involve any decomposing, as follows. We can assume that the
tree is as refined as possible in the sense that no node can be split into two smaller
nodes, and so for every low order cutset of G;most of any node will lie on one side or
the other of the cutset (except for nodes of bounded cardinality, which we can
ignore.) Therefore if we fix some node, every small cutset has a ‘‘big’’ side
(containing most of the node) and a ‘‘small’’ side—and it turns out that no three
small sides have union G: Thus a node defines a ‘‘tangle’’, which is such an
assignment of big and small sides to the low order cutsets; and conversely, it can be
shown that any tangle in G of sufficiently high ‘‘order’’ will be associated with some
node of the tree-structure. Hence a convenient way to analyze the internal structure
of the nodes is to analyze the local structure of G with respect to some high order
tangle, and this is the content of theorem 3.1.
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We have organized the paper backwards, to try to motivate the various steps
better. Thus we first prove 1.3 assuming 3.1, then prove 3.1 assuming another
statement 4.1, and so on.

2. Structure relative to a tangle

A separation of a graph G is a pair ðA;BÞ of subgraphs with A,B ¼ G and

EðA-BÞ ¼ |; and its order is jVðA-BÞj: A tangle of order y in G; where yX1 is an
integer, is a set T of separations of G; all of order oy; such that

1. For every separation ðA;BÞ of order oy; one of ðA;BÞ; ðB;AÞ belongs to T
2. If ðA1;B1Þ; ðA2;B2Þ; ðA3;B3ÞAT then A1,A2,A3aG; and
3. If ðA;BÞAT then VðAÞaVðGÞ:

We define ordðTÞ ¼ y:
A design is a pair ðH;MÞ where H in a graph and M is a set of subsets of VðHÞ: A

location in G is a set fðA1;B1Þ;y; ðAk;BkÞg of separations of G such that AiDBj for

all distinct i; j with 1pi; jpk: If fðA1;B1Þ;y; ðAk;BkÞg is a location then

ðG-B1-?-Bk; fVðAi-BiÞ: 1pipkgÞ
is a design, which we call the design of the location.

Let yX1 be an integer, and let D be a class of designs. We say that D is y-pervasive

in a graph G if for every subgraph G0 of G and every tangle T in G0 of order Xy
there is a location LDT with its design in D:

A tree-decomposition of a graph G is a pair ðT ; tÞ; where T is a tree and for each
tAVðTÞ; tðtÞ is a subgraph of G; such that

* ,ðtðtÞ : tAVðTÞÞ ¼ G; and EðtðtÞ-tðt0ÞÞ ¼ | for all distinct t; t0AVðTÞ;
* if t; t0; t00AVðTÞ and t0 lies on the path of T between t and t00 then

tðtÞ-tðt00ÞDtðt0Þ:

If ðT ; tÞ is a tree-decomposition of G and t0AVðTÞ; and t0 has neighbours
t1;y; tkAVðTÞ; then

ðtðt0Þ; fVðtðt0Þ-tðtiÞÞ: 1pipkgÞ
is a design, called the design of t0 in ðT ; tÞ:

Let ðH;MÞ; ðH 0;M 0Þ be designs. We say that ðH 0;M 0Þ is an n-enlargement of
ðH;MÞ if there exists ZDVðH 0Þ such that

* H is a subgraph of H 0 and VðH 0Þ\VðHÞDZ;
* every edge of H 0 is an edge of H;
* for every XAM 0 with XaZ; X-VðHÞAM;
* n is an integer and jZjpn:

If D is a class of designs and nX0 is an integer, the class of all n-enlargements of
members of D is denoted by Dn: The class of all designs ðH;MÞ with jVðHÞjpn is
denoted by Rn: The following is implied by theorem 11.1 of [6].
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2.1. For any yX1; let D be a class of designs which is y-pervasive in a graph G: Then G

has a tree-decomposition ðT ; tÞ such that for each tAVðTÞ; the design of t in ðT ; tÞ
belongs to D3y	2,R4y	3:

Let ðH;MÞ be a design. A graph H 0 is a torso of ðH;MÞ if VðHÞ ¼ VðH 0Þ; H is a
subgraph of H 0; and for every eAEðH 0Þ\EðHÞ there exists XAM including the ends
of e: It is easy to see the following.

2.2. Let D be a class of designs, and let D0 be the class of torsos of members of D: If G

is a graph with a tree-decomposition ðT ; tÞ such that D contains the design of t in ðT ; tÞ
for each tAVðTÞ; then G is a tree-structure over D0:

Now for nX0; if D is a class of designs then every torso of a member of Dn is a
ðpnÞ-vertex extension of a torso of a member of D: From 2.1 and 2.2 we deduce the
following.

2.3. For any yX1; let D be a class of designs which is y-pervasive in a graph G: Then G

may be constructed by clique-sums starting from graphs G0 such that either

* jVðG0Þjp4y	 3; or
* G0 is a ðp3y	 2Þ-vertex extension of a torso of a member of D:

We shall use 2.3 to derive 1.3 from a theorem that a certain class of designs is
y-pervasive.

3. Surfaces, societies and segregations

In this paper, by a surface we mean a non-null compact connected 2-manifold
without boundary. An O-arc in a surface S is a subset FDS homeomorphic to a
circle. Open and closed discs in S are defined in the natural way. For XDS; its
closure is denoted by %X; and %X-S\X is denoted by bdðX Þ: If FDS is an O-arc and
XDF is finite then F induces two cyclic permutations on X ; called the natural orders

of X from F :
A society is a pair ðA;OÞ; where A is a graph and O is a cyclic permutation

of a subset (denoted by %O) of VðAÞ: A segregation of G is a set S of societies
such that

* ADG for every ðA;OÞAS; and ,ðA : ðA;OÞASÞ ¼ G;
* VðA-A0ÞD %O- %O0 and EðA-A0Þ ¼ | for all distinct ðA;OÞ; ðA0;O0ÞAS:

We write VðSÞ ¼ ,ð %O: ðA;OÞASÞ:
Let S be a surface, and S ¼ fðA1;O1Þ;y; ðAk;OkÞg a segregation of G:

It is convenient always to assume (as we may) that S-VðSÞ ¼ |: An arrangement
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of S in S is a function a with domain S,VðSÞ; such that (writing aðA;OÞ for
aððA;OÞÞÞ:

* for 1pipk; aðAi;OiÞ is a closed disc DiDS; and aðxÞAbdðDiÞ for each xA %Oi;
* for 1piojpk; if xADi-Dj then x ¼ aðvÞ for some vA %Oi- %Oj;
* for all distinct x; yAVðSÞ; aðxÞaaðyÞ;
* for 1pipk;Oi is mapped by a to a natural order of að %OiÞ from bdðDiÞ:

An arrangement is proper if Di-Dj ¼ | for all 1piojpk such that j %Oij; j %Oj j43: A

society ðG;OÞ is a r-vortex, where rX0 is an integer, if for all distinct u; vA %O there do
not exist rþ 1 mutually vertex-disjoint paths of G between I,fug and J,fvg;
where I denotes the set of vertices in %O after u and before v and J is the set after v and

before u; in the natural sense (so ðI,fug; J,fvgÞ is a partition of %OÞ: A segregation

S is of type ðr; kÞ; where r; kX0 are integers, if j %Oj43 for at most k members ðA;OÞ
of S; and each such member is a r-vortex.

Let L be a graph, and let T
 be a tangle in a graph G: We say that T


controls an L-minor of G if there is a function a; with domain VðLÞ,EðLÞ; such
that

* for each vAVðLÞ; aðvÞ is a non-null connected subgraph of G; and for all distinct
u; vAVðLÞ; aðuÞ and aðvÞ are vertex-disjoint,

* for each eAEðLÞ with distinct ends u; v; aðeÞAEðGÞ with one end in VðaðuÞÞ and
the other in VðaðvÞÞ;

* for every loop eAEðLÞ with end v; aðeÞAEðGÞ\EðaðvÞÞ with both ends in VðaðvÞÞ;
* for all distinct e; fAEðLÞ; aðeÞaað f Þ;
* there is no ðA;BÞAT
 of order ojVðLÞj and vAVðLÞ such that VðaðvÞÞDVðAÞ:

If ZDVðGÞ; we denote the graph obtained by deleting Z by G\Z: If T is a tangle in
G of order y and ZDVðGÞ with jZjoy; we denote by T\Z the set of all separations
ðA0;B0Þ of G\Z of order oy	 jZj such that there exists ðA;BÞAT with
ZDVðA-BÞ; A\Z ¼ A0 and B\Z ¼ B0: It is shown in Theorem 8.5 of [6] that
T\Z is a tangle in G\Z of order y	 jZj:

If T is a tangle in G; a segregation S of G is said to be T-central if for
all ðA;OÞAS there is no ðA0;B0ÞAT with B0DA: Now we can state our main
result.

3.1. For any graph L; there are integers k; r; zX0 and yX1 with the following

property. Let T be a tangle of order Xy in a graph G; controlling no L-minor

of G: Then there exists ZDVðGÞ with jZjpz; and a T\Z-central segregation of G\Z

of type ðr; kÞ which has a proper arrangement in some surface in which L cannot be

drawn.

In the remainder of this section we shall show that 3.1 implies 1.3, by means of 2.3;
and then the rest of the paper is devoted to proving 3.1. To deduce 1.3 from 3.1 we
need the following lemma.

ARTICLE IN PRESS
N. Robertson, P.D. Seymour / Journal of Combinatorial Theory, Series B 89 (2003) 43–76 49



3.2. Let ðG;OÞ be a r-vortex, and let the vertices in %O be t1;y; tn in order, where nX1:
Then there are separations ðA1;B1Þ;y; ðAn;BnÞ of G; such that:

1. t1;y; tnAVðBiÞ for 1pipn;
2. tiAVðAiÞ for 1pipn;
3. L ¼ fðA1;B1Þ;y; ðAn;BnÞg is a location in G;
4. ðAi;BiÞ has order p2rþ 1 for 1pipn; and

5. every torso of the design of L is a ð2rþ 1Þ-ring with perimeter t1;y; tn:

Proof. By theorem 8.1 of [5], there is a sequence A1;y;An of subgraphs of G; such
that:

(a) A1,?,An ¼ G:
(b) EðAi-AjÞ ¼ | for 1piojpn:

(c) tiAVðAiÞ for 1pipn:
(d) Ai-AkDAj for 1pipjpkpn:

(e) jVðAi-AjÞjpr for 1piojpn:

Let A0 and Anþ1 be the null graph. For 1pipn; let Bi be the unique subgraph of G

such that ðAi;BiÞ is a separation of G and

VðAi-BiÞ ¼ VðAi	1-AiÞ,VðAi-Aiþ1Þ,ftig:

(This exists, because it is easy to see that for iaj and 1pi; jpn;

VðAi-AjÞDVðAi	1-AiÞ,VðAi-Aiþ1Þ:Þ

We claim that ðA1;B1Þ;y; ðAn;BnÞ satisfies the theorem.

(1) AiDBj for 1pi; jpn with iaj:

Subproof. To show this it suffices to show that Ai-AjDBj; since ðAj;BjÞ is a

separation. But EðAi-AjÞ ¼ | by (b), and

VðAi-AjÞDVðAi	1-AiÞ,VðAi-Aiþ1ÞDVðBjÞ;

and so Ai-AjDBj: This proves (1).

(2) tiAVðBjÞ for 1pi; jpn:

Subproof. If i ¼ j this is immediate. If iaj then again the claim holds, since
tiAVðAiÞDVðBjÞ by (1). This proves (2).

From (1) and (2) we see that statements 1–4 of 3.2 hold. It remains to show
statement 5. For 1pipn let Xi ¼ VðAi-BiÞ: Let H be the subgraph of G with vertex
set X1,?,Xn and with no edges; then it is easy to see that H ¼ B1-?-Bn: Let
M ¼ fXi: 1pipng: Then L has design ðH;MÞ:

(3) Xi-XkDXj for 1pipjpkpn:
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Subproof. Let vAXi-Xk: Then vAVðAi-AkÞ; and hence vAVðAjÞ by (d). But we

may assume that jai; and so VðAiÞDVðBjÞ by (1); and hence vAVðBjÞ; and

consequently vAXj: This proves (3).

Since jXijp2rþ 1 for 1pipn; it follows from (3) that every torso of ðH;MÞ is a
ð2rþ 1Þ-ring with perimeter t1;y; tn: This proves statement 5 of 3.2, and hence
completes the proof of 3.2. &

Proof of 1.3 (assuming 3.1). Let y; k; r; z be as in 3.1. We may assume (by replacing
y by a larger number if necessary) that yX2rþ 4þ z: Let r ¼ 2rþ 1; d ¼ k and
w ¼ zþ 4y	 3: We claim that r; d;w satisfy 1.3. For let D be the class of all designs
ðG0;MÞ such that every torso of ðG0;MÞ is isomorphic to an outgrowth by pd r-
rings of a graph in one of S1;y;Ss; where S1;y;Ss are the surfaces in which L

cannot be drawn (up to homeomorphism).

(1) For any graph G0 with no L-minor, Dz is y-pervasive in G0:

Subproof. Let G be a subgraph of G0; and let T be a tangle in G of order Xy:
Certainly T controls no L-minor of G; and so, by 3.1, there exists ZDVðGÞ with
jZjpz; and a segregation S of G\Z of type ðr; kÞ; such that

* there is a proper arrangement a of S in one of S1;y;Ss; and
* for each ðA;OÞAS there is no ðA0;B0ÞAT with ZDVðA0-B0Þ and B0

\ZDA:

Let ðA1;O1Þ;y; ðAk;OkÞ be the members ðA;OÞ of S with j %Oj43: For 1pjpk;

let the vertices of %Oj be t j
n1
;y; t j

nj
; in order. Since ðAj ;OjÞ is a r-vortex, by 3.2 there

are separations ðA j
1 ;B

j
1 Þ;y; ðA j

nj
;B j

nj
Þ of Aj as in 3.2. For each ðA;OÞAS; let

CðA;OÞ be the unique subgraph B of G\Z such that ðA;BÞ is a separation of G\Z and

VðA-BÞ ¼ %O: For 1pjpk and 1pipnj; let C
j

i ¼ B,CðAj ;OjÞ: Let
L ¼ fðA j

i ;C
j

i Þ: 1pjpk; 1pipnjg,fðA;CðA;OÞÞ: ðA;OÞAS; j %Ojp3g:

Then since S is a segregation of G; and ðA j
1 ;B

j
1 Þ;y; ðA j

nj
;B j

nj
Þ satisfy 3.2, it is

straightforward to verify (we omit the details) that L is a location in G\Z and every
torso of the design of L is an outgrowth by pd r-rings of a graph in one of
S1;y;Ss; that is, D contains the design of L: (We use here that for ðA;OÞAS with

j %Ojp3; the edges for the torso of L with ends in %O may all be drawn within aðA;OÞ:)
For each ðA;BÞAL; let ðAþ;BþÞ be the separation of G such that

ZDVðAþ-BþÞ; Aþ
\Z ¼ A; Bþ

\Z ¼ B and EðBþÞ contains every edge of

EðGÞ\EðAÞ with both ends in VðBþÞ: Let Lþ ¼ fðAþ;BþÞ: ðA;BÞALg: Then Lþ

is a location in G; and its design belongs to Dz: To complete the proof of (1) we must

show that LþDT: Let ðA;BÞAL; and suppose that ðAþ;BþÞeT: Now ðA;BÞ has
order pmaxð3; 2rþ 1Þ from the definition of L; and so ðAþ;BþÞ has order at most

maxð3; 2rþ 1Þ þ zoy: Consequently, ðBþ;AþÞAT: Let ðA0;B0Þ ¼ ðBþ;AþÞ: Then
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ZDVðA0-B0Þ; and B0
\ZDA: But there exists ðA
;O
ÞAS with ADA
 from the

construction of L; and so B0
\ZDA
: This contradicts the second condition in the

definition of S: Hence LþDT: This completes the proof of (1).

From (1) and 2.3, we deduce that every graph G with no L-minor may be
constructed by clique-sums, starting from graphs G0 such that either

* jVðG0Þjp4y	 3pw; or
* G0 is a ðp3y	 2Þ-vertex extension of a torso of a member of Dz:

But since L is nonplanar, it follows that there is a surface in which L cannot be

drawn, and so the null graph is a torso of a member of Dz: Consequently any graph
G0 satisfying either of the conditions above is a ðpwÞ-vertex extension of a torso of a
member of D; and hence is a ðpwÞ-vertex extension of an outgrowth by pd r-rings
of a graph in one of S1;y;Ss: This proves 1.3. &

4. Induction on the surface

The remainder of the paper is devoted to proving 3.1. To get much further in this
paper the reader will need to be familiar with [8,9], and so there seems little point in
repeating the large number of definitions that we shall need. The reader should
therefore see [8] for the meaning of the following terms and notation: drawing,
UðHÞ; region, AðHÞ; radial drawing, H-path, respectful tangle, metric of a tangle,
free, l-zone, clearing, rigid, dial, regional distance, battlefield. Also, the reader
should see [9] for the terms S-span, l-compression, rearranging within l of z; ðl;mÞ-
level. (As these terms turn up in the text, we shall remind the reader again where to
look for the definition.)

If T
 is a tangle in a graph G; we shall usually abbreviate ‘‘S-span in G with
respect to T
’’ by ‘‘S-span’’ when there is no danger of ambiguity. (For ‘‘S-span’’,
see [9, section 1]).

If H is a minor of G; and so EðHÞDEðGÞ; and T0 is a tangle in H of orderX2; let

T be the set of all separations ðA;BÞ of G of order oordðT0Þ such that there exists

ðA0;B0ÞAT0 with EðHÞ-EðAÞ ¼ EðA0Þ: By theorem 6.1 of [6], T is a tangle in G;

called the tangle in G induced by T0:
We shall show that 3.1 is implied by the following.

4.1. Let S be a surface and let pX0; fX1: Then there exist k; r; zX0 and yX1 such

that if T
 is a tangle in a graph G; and there is a S-span of order Xy; then either

* there is a S0-span of order Xf; for some surface S0 obtained from S by adding a

handle or crosscap, or
* there exists ZDVðGÞ with jZjpz; and a T


\Z-central segregation of G\Z of type

ðr; kÞ with a proper arrangement in S; or
* T
 controls a Kp minor of G:
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We remark that in the first outcome of 4.1 there are three possibilities for S0 (up to
homeomorphism) if S is orientable, because a handle can be added in two ways,
preserving or destroying orientability. If S is non-orientable, there are only two
possibilities.

To show that 4.1 implies 3.1, we need two lemmas. The m � n grid has vertex set

fði; jÞ: 1pipm; 1pjpng;

and ði; jÞ; ði0; j0Þ are adjacent if ji 	 i0j þ jj 	 j0j ¼ 1: For 1pjpn; the set of edges
joining ði; jÞ and ði þ 1; jÞ for 1pipm 	 1 is called a row of the grid. Our first lemma
is as follows.

4.2. For any integer yX1 there exists y
X1 such that if T
 is a tangle of order Xy
 in

a graph G; there is a S-span of order Xy; where S is the sphere.

Proof. We may assume that y is even, by increasing y if necessary. Let N0 be the
ð2yþ 1Þ � y grid, and let its rows be P1;y;Py: Let N1 be obtained from N0 by
deleting all edges with ends ði; jÞ and ði; j þ 1Þ; where 1pip2yþ 1; 1pjpy	 1 and
i þ j is odd. We see that there is a rigid drawing (see [8, sections 2 and 4]) in a sphere,
isomorphic to N1:

Let T1 be the set of all separations ðA;BÞ of N1 of order oy such that EðBÞ
includes one of P1;y;Py:

(1) T1 is a tangle in N1 of order y:

Subproof. Let us delete the vertices ð2yþ 1; 1Þ;y; ð2yþ 1; yÞ from N1; and
contract the edges joining ði; jÞ and ði þ 1; jÞ for all i; j with 1pip2y and 1pjpy
such that i is odd. We thereby obtain a graph N2 isomorphic to the y� y grid. Let
T2 be the set of all separations ðA0;B0Þ of N2 of order oy such that EðB0Þ includes
Pj-EðN2Þ for some j: By theorem 7.3 of [6], T2 is a tangle of order y in N2: But T1

is the tangle in N1 induced by T2: This proves (1).

By theorem 6.1 of [10], there exists y
X1 such that

(2) For every graph G and tangle T
 in G of order Xy
; there is a ð2yþ 1Þ �
ð2yþ 1Þ grid minor of G such that for all ðA;BÞAT
 of order p2y; EðAÞ includes no

row of the grid.

We claim that y
 satisfies the theorem. For let T
 be a tangle of order Xy
 in a
graph G: By (2), G has a ð2yþ 1Þ � ð2yþ 1Þ grid minor as in (2). Since this grid has a
subgraph isomorphic to N1 (and to simplify notation we may assume that it is N1) it
follows that N1 is a minor of G; and for every ðA;BÞAT
 of order p2y; EðAÞ
includes none of P1;y;Py: Let T3 be the tangle in G induced by T1: If ðA;BÞAT3

then EðBÞ-EðN1Þ (and hence EðBÞ) includes one of P1;y;Py; and so ðB;AÞeT
:
Consequently ðA;BÞAT
; and so T3DT
:
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Now N1 has maximum degree p3; and there is a subgraph N4 of G isomorphic to
a subdivision of N1 (and hence N1 is a minor of N4). We may assume that N4 is a
rigid drawing in a sphere S: Let T4 be the tangle in N4 induced by T1: Then T3 is
the tangle in G induced by T4; and since T3DT
 it follows that N4; T4 is a S-span
of order y: This proves 4.2. &

Our second lemma is the following, theorem 4.3 of [7].

4.3. If L is a graph and S is a surface such that L can be drawn in S; there is an integer

yX1 with the following property. If T
 is a tangle in a graph G controlling no L minor,
then there is no S-span of order Xy:

Proof of 3.1 (assuming 4.1). Up to homeomorphism, let S1;y;Sn be all the
surfaces on which L cannot be drawn together with the sphere and all the surfaces
which can be obtained from a surface on which L cannot be drawn by adding a
handle or crosscap. (There are only finitely many up to homeomorphism.) Let us
number S1;y;Sn so that for 1pi; jpn; if Sj can be obtained from Si by adding a

handle or crosscap then jXi:
Now we define ki; ri; zi for 1pipn as follows. Choose pX0 so that Kp has a minor

isomorphic to L: Inductively, suppose that 1pipn; and kj ; rj; zj; yj are defined for all

j with ipjpn: If L can be drawn in Si; choose yi so that 4.3 is satisfied (with S; y
replaced by Si; yiÞ and let ki;ri; zi ¼ 0: If L cannot be drawn in Si; then ion;
choose yi; ki; ri; zi so that 4.1 is satisfied (with f; k; z; y replaced by
maxðyiþ1;y; ynÞ; ki; ri; zi; yi). This completes the inductive definition.

Choose y
X1 so that 4.2 is satisfied (with y replaced by y1). Let k ¼
maxðk1;y; knÞ; r ¼ maxðr1;y; rnÞ; z ¼ maxðz1;y; znÞ and y ¼ y
: We claim that
k; r; z; y satisfy 3.1.

For let T
 be a tangle of order Xy ¼ y
 in a graph G; controlling no L-minor.
By 4.2, there is a S1-span of order Xy1 (because S1 is the sphere). Choose i with
1pipn maximum so that there is a Si-span of order Xyi: If L can be drawn
in Si then yi satisfies 4.3 and yet T
 controls no L-minor, a contradiction. Thus, L

cannot be drawn in Si; and so one of the outcomes of 4.1 holds (with f; k; r; z; y
replaced by max ðyiþ1;y; ynÞ; ki; ri; zi; yiÞ: Since L cannot be drawn in Si it
follows that every surface which can be obtained from Si by adding a handle or
crosscap occurs in the list Siþ1;y;Sn (up to homeomorphism), and so the first
outcome of 4.1 does not hold from the maximality of i: Moreover the third outcome
of 4.1 does not hold, since T
 controls no L-minor and hence controls no Kp-minor,

by theorem 4.2 of [7]. Thus the second outcome of 4.1 holds, and so 3.1 holds as
required. &

5. Induction on horns

Thus, it remains to prove 4.1. Let S be a surface, let T
 be a tangle in a
graph G; and let H; Z;T be a S-span in G with respect toT
: Let vAVðGÞ\VðZðHÞÞ:
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A horn at v of breadth Xy (over H; Z;T) is a set fP1;y;Psg of paths of G; such that

* P1;y;Ps each have one end v and are otherwise mutually disjoint,
* for 1pips;Pi has precisely one vertex in VðZðHÞÞ; its end different from v; let

this end be ZðuiÞ; where uiAVðHÞ;
* for 1piojps; dðui; ujÞXy where d is the metric of T (see [8, section 3]).

Let S be a surface. An animal (in G; with respect to T
) is a quintuple
ðH; Z;T;X ;YÞ; such that H; Z;T is a S-span, XDVðGÞ\VðZðHÞÞ and YDVðHÞ: If
jX j ¼ w and jY j ¼ d; we call this an animal with w horns and d hairs. The animal has
strength Xðy; sÞ; where yX1 and sX0 are integers, if

* T has order Xy;
* for each vAX there is a horn at v of cardinality Xs and breadth Xy;
* for each uAY there is an ZðHÞ-path (see [8, section 3]) P with ends ZðuÞ; ZðvÞ say,

such that X-VðPÞ ¼ | and dðu; vÞXy; where d is the metric of T;
* dðu1; u2ÞXy for all distinct u1; u2AY :

As usual, we shall omit reference to Z if Z is the identity, and instead speak of the

animal ðH;T;X ;YÞ: The animal ðH; Z;T;X ;YÞ is hairless if Y ¼ |; and in that
case we shall speak of ðH; Z;T;X Þ or ðH;T;X Þ: In this section we shall only be
concerned with hairless animals.

We shall show that the following implies 4.1.

5.1. Let S be a surface and let p; t; wX0 and f;cX1: Then there exist s; k; r; zX0 and

yX1 such that if T
 is a tangle in a graph G, and there is a hairless animal with w
horns, of strength Xðy; sÞ; then either:

1. there is a S0-span of order Xf; for some surface S0 obtained from S by adding a

handle or a crosscap, or

2. there is a hairless animal with wþ 1 horns, of strength Xðc; tÞ; or

3. there exists ZDVðGÞ with jZjpz; and a T

\Z-central segregation of G\Z of type

ðr; kÞ with a proper arrangement in S; or

4. T
 controls a Kp-minor of G:

To prove that 5.1 implies 4.1 we need several lemmas. The first is theorem 4.4
of [7].

5.2. Let S be a surface and let pX0: Then there exists yX1 such that if T
 is a tangle

in a graph G; and H; Z;T is a S-span of order Xy with metric d; and

* s1; t1;y; sm; tm are distinct vertices of H, where m ¼ 1
2
pðp 	 1Þ; such that dðu; vÞXy

for all distinct u; vAfs1; t1;y; sm; tmg; and
* Q1;y;Qm are mutually disjoint ZðHÞ-paths, such that Qi has ends ZðsiÞ;

ZðtiÞð1pipmÞ;

then T
 controls a Kp-minor of G:
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We also need

5.3. Let G be a graph and let YDVðGÞ; such that no component of G contains exactly

one vertex in Y : If m; tX0 are integers and jY j4tðm	 1Þ; then either:

* there are m disjoint paths of G each with both ends distinct and in Y and with no

internal vertex in Y ; or
* there exist vAVðGÞ and t paths P1;y;Pt of G; with ends v; uiðlpiptÞ respectively,

mutually disjoint except for v; and such that for 1pipt; uiAY and uiav; and no

internal vertex of Pi is in Y.

Proof. Let T be a minimal subgraph of G with the properties that YDVðTÞ
and any two vertices in Y which belong to the same component of G also belong
to the same component of T : We deduce that T is a forest, every component of
T contains at least two vertices in Y ; and every vertex T with degree 1 in T

belongs to Y :
Now let P be the set of all paths P of T with distinct ends both in Y ; and with no

internal vertex in Y : Since P is a set of subtrees of a forest, it follows by an
elementary theorem that either there are m members of P; mutually
vertex-disjoint, or there exists XDVðTÞ with jX jom meeting all members of P: In
the first case we are finished, and so we assume that the second case holds. For
each yAY ;X meets the component T 0 of T containing y; since jVðT 0Þ-Y jX2 and X

meets every member of P: Hence there is a minimal path Py of T from y to some

member vy of X : Since jY j4tðm	 1ÞXtjX j; there exists xAX and Y 0DY such

that jY 0jXtþ 1 and vy ¼ x for all yAY 0: For each yAY ; no vertex of Py belongs

to X except vy; and so for distinct y; y0AY 0;Py and Py0 intersect in precisely x (since

X meets every path between y and y0). Since there are at least t members of Y 0

different from x; it follows that the second outcome of the theorem holds. This
proves 5.3. &

5.4. Let G be a graph, and let vAVðGÞ: For 1pipn let Pi be a path of G with distinct

ends v; ui; such that P1;y;Pn are mutually disjoint except for v: Let Q1;y;Qm be

mutually disjoint paths of G; not passing through v; such that Qi has ends si; ti for

1pipm: Let

Z ¼ fu1;y; un; s1; t1;y; sm; tmg:
If nX5m þ 2; there are m þ 1 mutually disjoint paths of G; each with distinct ends both

in Z:

Proof. Let H be the graph formed by the union of P1;y;Pn and Q1;y;Qm; we see
that no vertex of H has degree 44 except possibly v: Let J be the union of all
components of H\v which contain at least two vertices in Z; and let Y ¼ Z-VðJÞ:
Let us apply 5.3 to J;Y ; setting m ¼ m þ 1 and t ¼ 5: Certainly the second statement
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of 5:3 does not hold, because no vertex of J has degree X5: If the first statement
holds then the theorem is satisfied, and so we assume not. By 5.3, it follows
that jY jp5m: Now certainly each Qj is a path of J because it has at least two

vertices in Z; and so Pi\vDJ for each i such that Pi meets some Qj: Con-

sequently,

jZ\Y j ¼ jfi: 1pipn;Pi meets no Qjgj:

But jZ\Y j ¼ jZj 	 jY jXn 	 5mX2; and so there exist distinct i; i0 with 1pi; i0pn

such that Pi,Pi0 meets no Qj : But then fQ1;y;Qm;Pi,Pi0 g is a set of m þ 1 paths

satisfying the theorem. This proves 5.4. &

We deduce

5.5. For any surface S and integer pX0; there exists yX1 such that, if T
 is a tangle in

a graph G and there is a hairless animal with 1
2
pðp 	 1Þ horns and with strength

Xðy; 4pðp 	 1ÞÞ; then T
 controls a Kp-minor of G:

Proof. Let m ¼ 1
2

pðp 	 1Þ; and choose y1X1 so that 5.2 is satisfied (with y
replaced by y1). Let y ¼ 2y1: we claim that 5.5 is satisfied. For let T
 be a
tangle in G; and let ðH;T;X Þ be a hairless animal of strength Xðy; 8mÞ and with
jX j ¼ m:

(1) For 0pmpm there are m H-paths Q1;y;Qm; mutually vertex-disjoint, such

that

� jVðQ1,?,QmÞ-X jpm; and

� dðu; vÞXy1 for all distinct u; vAfs1; t1;y; sm; tmg; where Qi has ends

si; ti ð1pipmÞ:

Subproof. We proceed by induction on m: Certainly (1) holds if m ¼ 0; we suppose
that it holds for some mom; and shall prove that it also holds for m þ 1: Let
Q1;y;Qm; s1; t1;y; sm; tm be as in (1).

Since jðVðQ1Þ,?,VðQmÞÞ-X jpm; and jX j ¼ m4m; there exists xAX with
xeVðQ1Þ;y;VðQmÞ: Let fP1;y;P8mg be a horn at x with breadth Xy; and let Pi

have ends x; uið1pip8mÞ: Since jX j ¼ m; at most m	 1 of P1;y;P8m have a vertex

in X different from x; and so we may assume that P1;y;P7m have no vertex in

X \fxg: Let W ¼ fs1; t1;y; sm; tmg: Now for each wAW there is at most one

iðlpip7mÞ such that dðui;wÞo1
2
y ¼ y1; since dðui; ujÞXy for all distinct i; j:

Consequently, we may assume that for 1pip5m; dðui;wÞX1
2
y for all wAW :

Let n ¼ 5m and let G0 ¼ P1,?,Pn,Q1,?,Qm: Now n ¼ 5mX5m þ 2; and
so by 5.4 (with G replaced by G0) there are m þ 1 mutually disjoint paths
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R1;y;Rmþ1 of G0; each with distinct ends both in fu1;y; ung,W ; and we
may assume that they have no internal vertex in this set. Each of these paths
Ri is therefore an H-path since VðG0-HÞ ¼ fu1;y; ung,W : But dðu; vÞXy1 for all
distinct u; vAfu1;y; ung,W : Moreover, jVðG0Þ-X jpm þ 1; and so

jðVðR1Þ,?,VðRmþ1ÞÞ-X jpm þ 1:

This completes the inductive argument, and hence proves (1).

Consequently, (1) holds with m ¼ m: Let Q1;y;Qm be the corresponding paths,

and let Qi have ends si; tið1pipmÞ: Since 5.2 is satisfied (replacing y by y1) and
dðu; vÞXy1 for all distinct u; vAfs1; t1;y; sm; tmg; it follows from 5.2 that T
 controls
a Kp-minor. This proves 5.5. &

Proof of 4.1 (assuming 5.1). Let S be a surface and let pX0;fX1: Let m ¼
1
2

pðp 	 1Þ; and choose ym so that 5.5 holds (with y replaced by ym). Let sm ¼ 8m and

km ¼ rm ¼ zm ¼ 0: We define si; yi; ki; ri; zi for 0pipm inductively as follows.

Suppose that 0piom and siþ1; yiþ1 have already been defined. Choose si; yi; ki; ri; zi

so that 5.1 is satisfied (with t; w;c; s; k; r; z; y replaced by siþ1; i; yiþ1; si; ki; ri; zi; yi).
This completes the inductive definition.

Let k ¼ maxðk0;y; kmÞ; r ¼ maxðr0;y; rmÞ; z ¼ maxðz0;y; zmÞ; and let y ¼ y0:
We claim that k; r; z; y satisfy 4.1. For let T
 be a tangle in G with a S-span of
order Xy ¼ y0; and hence with a hairless animal with 0 horns, of strength
Xðy0; s0Þ: Choose i with 0pipm maximum so that there is a hairless animal
with i horns, of strength Xðyi; siÞ: If i ¼ m; then since ym satisfies 5.5, it follows

that the third outcome of 4.1 holds. We assume then that iom: From the
maximality of i; there is no hairless animal with i þ 1 horns, of strength
Xðyiþ1;siþ1Þ: By 5.1, we deduce that one of outcomes 1; 3; 4 of 5.1 holds, and so
4.1 holds, as required. &

6. Induction on hairs

Next, we show that 5.1 is implied by the following.

6.1. Let S be a surface, and let p; t; w; dX0 and f;cX1: Then there exist s; k; r; zX0
and yX1 such that if T
 is a tangle in a graph G; and there is an animal with w horns

and d hairs, of strength Xðy; sÞ; then either

1. there is a S0-span of order Xf; for some surface S0 obtained from S by adding a

handle or a crosscap, or

2. there is an animal with w horns and dþ 1 hairs, of strength Xðc; tÞ; or

3. there exists ZDVðGÞ with jZjpz; and a T

\Z-central segregation of G\Z of type

ðr; kÞ with a proper arrangement in S; or

4. T
 controls a Kp-minor of G:
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To show that 6.1 implies 5.1 we need the following lemmas. (For the meaning of
‘‘l-zone’’, see [8, section 3], and for ‘‘l-compression’’ see [9, section 1].)

6.2. Let S be a surface and let sX0 be an integer. Let T
 be a tangle in a graph G;
and let H;T be a S-span of order y: Let lX2 be an integer with yX4lþ 3; let

LDS be a l-zone such that H-ðS\LÞ is rigid, and let T0 be the tangle in H 0 ¼
H-ðS\LÞ of order y	 4l	 2 which is a ð4lþ 2Þ-compression of T: Let

vAVðGÞ\VðHÞ; such that there is a horn at v over H; T with cardinality sþ 1

and breadth Xy: Then there is a horn at v over H 0;T0 with cardinality s and breadth

Xy	 4l	 2:

Proof. First, we remark that T0 exists, by theorem 7.10 of [7]. Let fP1;y;Psþ1g be
a horn at v over H;T; of breadth Xy: For 1pipsþ 1 let Pi have ends v; ui: Now if
ui; ujAL where iaj; then dðui; ujÞp2l since L is a l-zone, and yet dðui; ujÞXy42l by
hypothesis, a contradiction. Thus, L contains at most one of u1;y; usþ1; and hence

we may assume that u1;y; useL: Since T0 is the ð4lþ 2Þ-compression of T; it
follows that for 1piojps;

d 0ðui; ujÞXdðui; ujÞ 	 4l	 2Xy	 4l	 2:

Thus fP1;y;Psg is a horn at v over H 0;T0 of breadth Xy	 4l	 2: This proves
6.2. &

6.3. Let S be a surface, and let p; t; wX0 and cX1 be integers. Then there exists dX0
and yX1 such that if T
 is a tangle in a graph G, and there is an animal with w horns

and d hairs of strength Xðy; tþ 1Þ; then either

* there is a hairless animal with wþ 1 horns of strength Xðc; tÞ; or
* T
 controls a Kp-minor of G:

Proof. We may assume that pX2; for otherwise the result holds trivially. Let m ¼
1
2

pðp 	 1Þ; and choose y1 so that 5.2 holds (with y replaced by y1). We may assume,

by increasing y1; that y1Xmaxðc; 3Þ: Let y ¼ 5y1 þ 34; t0 ¼ maxðt; 2Þ; and d ¼
2m2t02:

We claim that d; y satisfy the theorem. For let T
 be a tangle in a graph G; and let
ðH;T;X ;YÞ be an animal of strength Xðy; tþ 1Þ; with jX j ¼ w and jY j ¼ d: For
each yAY let Py be an H-path with ends y; vðyÞ; such that X-VðPyÞ ¼ | and

dðy; vðyÞÞXy where d is the metric of T: For each yAY let Qy ¼ Py\fvðyÞg; and let

G0 ¼ ,ðQy: yAYÞ: Let G1 be the union of all components of G0 which contain at

least two vertices in Y ; and let Y1 ¼ Y-VðG1Þ:We may assume that T
 controls no
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Kp-minor of G: Since dðy; y0ÞXyXy1 for all distinct y; y0AY1; it follows from 5.2

that:

(1) There do not exist m disjoint paths of G1; each with distinct ends, both in Y1; and

with no internal vertex in Y1:

We may assume that:

(2) There do not exist vAVðG1Þ and t0 paths of G1 each from v to Y1\fvg; mutually

disjoint except for v and with no internal vertex in Y1:

Subproof. Otherwise, veVðHÞ since v has degree Xt0X2 in G1 and every vertex of
G1 in VðHÞ has degree 1 in G1: Since dðy; y0ÞXyXc for all distinct y; y0 it follows
that there is a horn at v over H;T with cardinality t and breadthXc: But veX since

vAVðG1Þ and X-VðG1Þ ¼ | (since X-VðPyÞ ¼ | for each yAY ) and so

ðH;T;X,fxgÞ is an animal of strength Xðc; tÞ with wþ 1 horns. Thus we may
assume (2).

From (1), (2) and 5.3 applied to G1;Y1; we deduce that jY1jpðm	 1Þt0; and so

jY \Y1jXd	 ðm	 1Þt0Xð2m	 1Þmt0:
We see that Qy1 is disjoint from Qy2 for all distinct y1; y2AY \Y1:

Choose Y2DY \Y1 maximal such that the set W ¼ fy; vðyÞ: yAY2g has cardinality
2jY2j and dðu; vÞXy1 for any two distinct u; vAW : By 5.2, we may assume that
jY2jpm	 1: From the maximality of Y2 we deduce that for any yAY2 there exists
wAW such that either dðy;wÞoy1 or dðvðyÞ;wÞoy1; Consequently there exist wAW

and a set Y3DY \Y1 with

jY3jXjY \Y1j=ð2jY2jÞ4mt0

such that for all yAY3; either dðy;wÞoy1 or dðvðyÞ;wÞoy1: Now dðy;wÞoy1 for at
most one value of yAY since 2y1oy and dðy; y0ÞXy for all distinct y; y0AY :
Consequently there exists Y4DY3 with jY4jXmt0; such that dðvðyÞ;wÞoy1 for all
yAY4:

By theorem 9.2 of [8], there is a ðy1 þ 2Þ-zone L1 around fwg such that xDL1 for
every xAAðHÞðAðHÞ is the set of atoms of H—see [8, section 2]) with dðfwg; xÞoy1;
since 2py1py	 3: Consequently vðyÞA %L1 for all yAY4: By theorem 9.3 of [8] there
is a ðy1 þ 8Þ-zone L around fwg such that H-ðS\LÞ is rigid and xDL for every

xAAðHÞ with dðz; xÞoy1 þ 3; since 2py1 þ 3py	 6: Consequently, %L1DL; and so
every two vertices in Y4 are joined by a path P of H with UðPÞDL: (For UðPÞ see [8,
section 2]). Let H2 be a connected subgraph of H with Y4DVðH2Þ and UðH2ÞDL:

Let H 0 ¼ H-ðS\LÞ; and let T0 be the ð4ðy1 þ 8Þ þ 2Þ-compression of T

in H 0 (this exists, by theorem 7.10 of [7]). Then H 0;T0 is a S-span of order
y	 ð4y1 þ 34Þ ¼ y	 1:

(3) Y4DVðH 0Þ:
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Subproof. Let yAY4: Then dðw; vðyÞÞoy1; but dðy; vðyÞÞ ¼ y1 and so dðw; yÞ4
y	 y1: Since y	 y1Xy1 þ 8 and L is a ðy1 þ 8Þ-zone, it follows that yeL; and so
yAVðH 0Þ: This proves (3).

Let d 0 be the metric of T0: Since T0 is a ð4y1 þ 34Þ-compression of T; and
dðy1; y2Þ ¼ y; it follows that d 0ðy1; y2Þ ¼ y1 for all distinct y1; y2AY4: Let G2 be the

union of H2 and all PyðyAY4Þ: From 5.2, since H 0;T0 is a S-span of order y1; it
follows that there do not exist m mutually disjoint paths of G2 each with distinct ends
both in Y4 and with no internal vertex in Y4:

Now G2 is connected and Y4DVðG2Þ and jY4jXmt0X2: From 5.3 (applied to
G2;Y4Þ; we deduce there exist vAVðG2Þ and t0 paths of G2 from v to Y4\fvg;
mutually disjoint except for v; and each with no internal vertex in Y4: Since each
yAY4 has degree 1 in G2; and t041; it follows that veY4 and so vAVðGÞ\VðH 0Þ;
since VðG2-H 0Þ ¼ Y4: Consequently there is a horn at v over H 0;T0; with breadth

Xy1 and cardinality t: But veX since X-VðG2Þ ¼ |; and from 6.2, for each xAX

there is a horn at x over H 0;T0 with breadth Xy1 and cardinality t; since yX4y1 þ
35: Hence ðH 0;T0;X,fvgÞ is a hairless animal with wþ 1 horns, of strength
Xðy1; tÞXðc; tÞ; and so the first outcome of 6.3 holds. This proves 6.1. &

Proof of 5.1 (assuming 6.1). Let S be a surface and let p; t; wX0 and f;cX1 be
integers. Choose d and yd so that 6.3 is satisfied (with y replaced by yd). Let kd ¼
rd ¼ zd ¼ 0 and sd ¼ tþ 1: For 0pipd we define yi; si; ki; ri; zi inductively, as
follows. Suppose that 0piod and siþ1; yiþ1 have already been defined. Choose
yi; si; ki; ri; zi so that 6.1 is satisfied (with t; d;c; s;k; r; z; y replaced by
siþ1; i; yiþ1; si; ki; ri; zi; yiÞ: This completes the inductive definition.

Let k ¼ maxðk0;y;kdÞ; r ¼ maxðr0;y; rdÞ; z ¼ maxðz0;y; zdÞ; s ¼ s0 and y ¼
y0: We claim that s; k; r; z; y satisfy 5.1. For let T
 be a tangle in a graph G; with a
hairless animal with w horns of strength Xðy; sÞ ¼ ðy0; s0Þ: Choose i with ypipd
maximum such that there is an animal with w horns and i hairs of strength Xðyi; siÞ:
If i ¼ d then by 6.3, either

* there is a hairless animal with wþ 1 horns, of strength Xðc; tÞ; or
* T
 controls a Kp-minor of G

and in either case 5.1 holds. We assume then that iod: From the maximality of i;
there is no animal with w horns and i þ 1 hairs and strength Xðyiþ1; siþ1Þ: By 6.1,
either

* there is a S0-span of order Xf; for some surface S0 obtained from S by adding a
handle or a crosscap, or

* there exist ZDVðGÞ with jZjpzipz; and a T

\Z-central segregation of G\Z of

type ðri; kiÞ (and hence of type ðr; kÞ) with a proper arrangement in S; or
* T
 controls a Kp-minor of G:

In each case 5.1 holds, as required. &
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7. The Giant Steps application

The previous paper of this series contains a result designed to be used at this point.
We apply it to prove that 6.1 is implied by the following. (For ‘‘ðl; mÞ-level’’, see [9,
section 8].)

7.1. Let S be a surface, and let t; w; d; lX0; y0X1 and f;cX3: Then there exist yX1
and sX0 such that if T
 is a tangle in a graph G; and there is an animal with w horns

and d hairs, of strength Xðy; sÞ; then either

* there is a S0-span of order Xf; for some surface S0 obtained from S by adding a

handle, or
* there is an animal with w horns and dþ 1 hairs, of strength Xðc; tÞ; or
* there exists ZDVðGÞ with jZjpwþ 1

2
d2f2 such that some S-span of order Xy0 in

G\Z with respect to T

\Z is ðl; 2cÞ-level.

To encourage the reader, let us point out that we are making progress. 7.1 no
longer involves segregations of type ðr; kÞ nor does it involve controlling minors,
which were the two fundamental ingredients of 3.1. Also, crosscaps have gone from
the first outcome.

To show that 7.1 implies 6.1 we use the following, which is almost theorem 8.4
of [9].

7.2. Let S be a surface and let p;f; mX0: Then there exist k; l; rX0 and yX1 such

that if T
 is a tangle in a graph G; and some S-span of order Xy is ðl; mÞ-level, then

either:

1. there is a S0-span of order f; for some surface S0 obtained from S by adding a

crosscap, or

2. there is a T
-central segregation of G of type ðr;kÞ with a proper arrangement

in S; or

3. T
 controls a Kp minor of G:

However, let us point out a discrepancy. We were not farsighted enough in [9], and
omitted to include the term ‘‘proper’’ in the statement of the theorem, although the
proof in that paper does yield a proper arrangement. (All the arrangements in [9] first
come into being via the proof of theorem 7.7 of that paper, so it is enough to check
that they are proper at that stage; and they are, as we can see from theorem 7.6 of [9],
or from statement (i) of 7.5 in [9].) Alternately, we could pay for the mistake by
starting with a non-proper arrangement, and showing how to convert it to a proper
one; that is straightforward, but not very short, and it seems unnecessary to inflict it
on the reader.

We also need two other lemmas.
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7.3. Let T
 be a tangle in a graph G; let ZDVðGÞ with jZjo ord ðT
Þ; and let ðA;BÞ
be a separation of G of order o ord ðT
Þ 	 jZj: Then ðA;BÞAT
 if and only if

ðA\ðZ-VðAÞÞ;B\ðZ-VðBÞÞÞAT

\Z:

Proof. Choose a separation ðA
;B
Þ of G such that ZDVðA
Þ-VðB
Þ; and A

\Z ¼

A; B

\Z ¼ B: Then ðA
;B
Þ has order at most jZj more than that of ðA;BÞ; and

hence less than ordðT
Þ: By theorem 2.9 of [6], ðA;BÞAT
 if and only if
ðA
;B
ÞAT
: But ðA
;B
ÞAT
 if and only if ðA


\Z;B

\ZÞAT


\Z: This proves
7.3. &

7.4. Let T
 be a tangle in G; and let ZDVðGÞ with jZjoordðT
Þ: If H; Z;T
is a S-span in G\Z with respect to T


\Z then H; Z;T is a S-span in G with respect

to T
:

Proof. For simplicity we assume that Z is the identity. Let ðA;BÞAT
 have order
oordðTÞ; it suffices to show that ðA-H;B-HÞAT: Now

jVðA-BÞjoordðTÞpordðT

\ZÞ ¼ ordðT
Þ 	 jZj

and so by 7.3, ðA0;B0ÞAT

\Z; where A0 ¼ A\ðZ-VðAÞÞ; B0 ¼ B\ðZ-VðBÞÞ: Since

H; Z;T is a S-span in G\Z with respect to T

\Z and ðA0;B0Þ has order oordðTÞ; it

follows that ðA0-H;B0-HÞAT: But A-H ¼ A0-H since Z-VðHÞ ¼ |; and
similarly B-H ¼ B0-H: Hence ðA-H;B-HÞAT: This proves 7.4. &

Proof of 6.1 (assuming 7.1). Let S be a surface, and let p; t; w; dX0 and f;cX1: By

increasing f;c we may assume that f;cX3: Choose k; l; rX0 and y0X1 so that 7.2

is satisfied (with y; m replaced by y0; 2cÞ: Choose y; s as in 7.1 and let z ¼
I1
2
d2f2mþ w: We claim that 6.1 holds. For let T
 be a tangle in G; with an animal

with w horns and d hairs, of strength Xðy; sÞ: Let us apply 7.1. If 7.1.1 or 7.1.2 holds
then 6.1.1 or 6.1.2 holds, and so we may assume that 7.1.3 holds, that is,

(1) There exists ZDVðGÞ with jZjpz such that some S-span of order Xy0 in G\Z

with respect to T

\Z is ðl; 2cÞ-level.

Let us apply 7.2 (with y;T
;G; m replaced by y0;T

\Z;G\Z; 2c). By (1), the

hypotheses of 7.2 are satisfied. We deduce that one of the outcomes of 7.2 holds. But

if 7.2.1 holds, that is, there is a S0-span of order Xf in G\Z with respect to T

\Z;

then 6.1.1 holds, by 7.4. If 7.2.2 holds then 6.1.3 holds, while if 7.2.3 holds then 6.1.4
holds, because it is easy to see thatT
 controls every minor controlled byT


\Z: The
result follows. &
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8. Non-level R-spans

Let T be a respectful tangle (see [8, section 3]) of order y in a rigid drawing H in a
surface S; and let YDVðHÞ: If gX0; a g-envelope around Y is a family ðLy: yAYÞ
such that:

* for each yAY ;Ly is a g-zone around y;
* for all distinct y; y0AY ; %Ly- %Ly0 ¼ |;
* for every subset Y 0DY ; the drawing H-ðS\,ðLy: yAY 0ÞÞ is rigid.

(Actually, the third statement here is implied by the same statement for all
singleton subsets Y 0; but it is convenient to present it this way.)

In this section we show that 7.1 is implied by the following. (8.1 will be proved in
the next section.)

8.1. Let S be a surface and let dX0 and f;cX3: Then there exists gX0 and y4
ð4gþ 2Þd such that if T
 is a tangle in a graph G and H;T is a S-span of order

Xy; and YDVðHÞ satisfies jY j ¼ d and dðy; y0ÞXy for all distinct y; y0AY (where

d is the metric of T), then either:

1. there is a S0-span of order Xf for some surface S0 obtained from S by adding a

handle, or

2. there is an H-path in G with ends s; t; such that dðs; tÞXc and dðs; yÞXc for all

yAY ; or

3. there is a g-envelope ðLy: yAYÞ around Y ; and there exists ZDVðGÞ\VðH 0Þ with

jZjp1
2
d2f2; such that Z meets every H 0-path in G with ends s; t; satisfying

d 0ðs; tÞX2c; where H 0 ¼ H-ðS\,ðLy: yAYÞÞ and d 0 is the metric of the

ð4gþ 2Þd-compression of T in H 0:

To show that 8.1 implies 7.1, we need two lemmas. The first is a kind of converse
of 7.4. IfT is a tangle in G and 1pypordðTÞ; the set of members ofT of orderoy
is called the truncation of T to order y:

8.2. Let T
 be a tangle in a graph G; and let H;T be a S-span. Let ZDVðGÞ\VðHÞ
with jZjoordðTÞ; let 1py0pordðTÞ 	 jZj; and let T0 be the truncation of T to

order y0: Then H;T0 is a S-span in G\Z with respect to T

\Z:

Proof. Since H is a subgraph of G\Z and

ordðT0Þ ¼ y0pordðTÞ 	 jZjpordðT
Þ 	 jZj ¼ ordðT

\ZÞ;

it suffices to show that ðA-H;B-HÞAT0 for all ðA;BÞAT

\Z of order oy0:

Thus, let ðA;BÞAT

\Z have order oy0 . By definition of T


\Z; there exists
ðA
;B
ÞAT
 with ZDVðA
-B
Þ; such that A


\Z ¼ A and B

\Z ¼ B: Then ðA
;B
Þ

has order

jZj þ jVðA-BÞjojZj þ y0 ¼ ordðTÞ
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and so ðA
-H;B
-HÞAT; since H;T is a S-span with respect to T: Now

ðA
-H;B
-HÞ ¼ ðA-H;B-HÞ since Z-VðHÞ ¼ |; and so ðA-H;B-HÞAT;

and consequently ðA-H;B-HÞAT0; since it has order pjVðA-BÞjoordðT0Þ:
This proves 8.2. &

Our second lemma is the following.

8.3. Let S be a surface, and let t; w; d; l; zX0 and cX3: Then there exists y4z such

that if T
 is a tangle in a graph G; and ðH;T;X ;YÞ is an animal with w horns

and d hairs, of strength Xðy; zþ tÞ; and ZDVðGÞ\VðHÞ with XDZ and jZjpz; then

either:

* there is an animal with w horns and dþ 1 hairs of strength Xðc; tÞ; or
* there is an H-path in G\Z with ends s1; s2 and there are distinct y1; y2AY with

dðs1; y1Þ; dðs2; y2Þoc; where d is the metric of T; or
* H;T0 is a ðl; 2cÞ-level S-span of order y	 jZj in G\Z with respect to T


\Z; where

T0 is the truncation of T to order y	 jZj:

Proof. Let y ¼ 4cþ 10lþ 3zþ 11: We claim that y satisfies 8.3. For let
T
;G;H;T;X ;Y ;Z be as in the hypothesis of 8.3, and let d be the metric of T:
We may assume that

(1) ordðTÞ ¼ y:

Subproof. Let T0 be the truncation ofT to order y: Then ðH;T0;X ;YÞ is another
animal satisfying the same hypotheses, and since yXc; it is easy to see that if the

theorem is true for ðH;T0;X ;YÞ then it is true for ðH;T;X ;Y Þ: Thus it suffices to
prove the theorem for ðH;T0;X ;YÞ and (1) follows.

Also, we may assume that

(2) If there is an H-path in G\Z with ends s1; s2 then dðs1; s2Þo2c:

Subproof. Suppose that dðs1; s2ÞX2c: If dðs1; yÞXc for all yAY ; then
ðH;T;X ;Y ;,fs1gÞ is an animal with w horns and dþ 1 hairs of strength
Xðc; tÞ; since XDZ; and so the first outcome of 8.3 holds. We may assume then
that dðs1; y1Þoc for some y1AY ; and similarly dðs2; y2Þoc for some y2AY : But
y1ay2 since

2cpdðs1; s2Þpdðs1; y1Þ þ dðy1; y2Þ þ dðy2; s2Þo2cþ dðy1; y2Þ
and so the second outcome of 8.3 holds. Thus we may assume (2).

Let T0 be the truncation of T to order y	 jZj: By 8.2, H; T0 is a S-span in G\Z

with respect to T

\Z; and we may assume that it is not ðl; 2cÞ-level, for otherwise

the third outcome of 8.3 holds. But by (2), there is no H-path in G\Z with ends s1; s2
such that d0ðs1; s2ÞX2c; for d0ðs1; s2Þpdðs1; s2Þ (where d0 is the metric of T0). Yet
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y	 jZjX4lþ 2cþ 2; and so from the definition of ðl; 2cÞ-level we deduce the
following. (For ‘‘rearranging’’ see [9, section 1].)

(3) There is a S-span H 0; Z0;T00 in G\Z with respect to T

\Z; of order y	 jZj 	

4l	 2; obtained from H;T0 by rearranging with l of some zAAðHÞ; and there is an

Z0ðH 0Þ-path in G\Z with ends Z0ðsÞ; Z0ðtÞ; such that dðz; sÞ; dðz; tÞpl and d 00ðs; tÞX2c;
where d 00 is the metric of T00:

Let l0 be an integer with

lþ 1

4
jZjpl0olþ 1

4
jZj þ 1:

Now T00 has order y	 jZj 	 4l	 2; let T0 be the truncation of T00 to order

y	 4l0 	 2:

(4) H 0; Z0;T0 is a S-span in G with respect to T
; obtained from H;T by

rearranging within l0 of z; and d 0ðs; tÞX2c where d 0 is the metric of T0:

Subproof. Now H 0; Z0;T0 is a S-span in G\Z with respect to T

\Z; and hence in G

with respect to T
 by 7.4. Let aAAðHÞ with dða; zÞ4l0: Then

d0ða; zÞ ¼ minðdða; zÞ; y	 jZjÞ4l0Xl

and so zAAðH 0Þ (because H 0; Z0;T00 is obtained from H;T0 by rearranging within l
of z). Similarly if x is a vertex or edge of H with dðx; zÞ4l0; then d0ðx; zÞ4l and so

Z0ðxÞ ¼ x: Since T0 is the ð4l0 þ 2Þ-compression of T in H 0; the first claim follows.
For the second, we observe that

d 0ðs; tÞ ¼ minðd 00ðs; tÞ; y	 4l0 	 2ÞX2c:

This proves (4).

(5) For each vertex wAVðZ0ðH 0ÞÞÞ\VðHÞ; there is a path Q of Z0ðH 0Þ from w to a

vertex xAVðHÞ; such that no vertex of Q belongs to H except x; and dðz; xÞpl0 þ 2:

Subproof. Let Q be a minimal path of Z0ðH 0Þ from w to VðHÞ; and let its ends be
w; x: Then xAVðHÞ; and no vertex of Q belongs to H except x; by the minimality of

Q: Suppose that dðz; xÞXl0 þ 3: Then xAVðH 0Þ and Z0ðxÞ ¼ x by (4). Since xaw;
there is an edge e of Q incident with x; let e ¼ Z0ð f Þ where fAEðH 0Þ: Since Z0ð f Þ is
incident with Z0ðxÞ ¼ x; it follows that f is incident with x: Let aAAðHÞ; with xA %a

and a-fa|: Since xA %a; it follows that dða; xÞp2; and so dðz; aÞXl0 þ 1; since

dðz; xÞXl0 þ 3: By (4), we deduce that aAAðH 0Þ and so a ¼ f ; since a-fa| and

fAEðH 0Þ: Consequently fAEðHÞ and dðz; f ÞXl0 þ 1: By (4) again e ¼ Z0ð f Þ ¼ f ;
and so eAEðHÞ; contrary to the minimality of Q: This proves (5).

Let vAX ; and let fP1;y;Pzþtg be a horn at v over H;T of breadthXy; and let Pi

have ends v; uið1pipzþ tÞ:
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(6) P1;y;Pzþt may be numbered so that dðz; uiÞXl0 þ 2þ 2c; and VðPiÞ-Z ¼
fvg for 1pipt:

Subproof. Since dðui; ujÞXy for 1piojpzþ t; and since yX2ðl0 þ 2þ 2cÞ; it

follows that dð’z; uiÞol0 þ 2þ 2c for at most one value of i: Moreover, since jZjpz;
there are at most z	 1 values of i such that Z-VðPiÞafvg: This proves (6).

(7) For 1pipt; no internal vertex of Pi belongs to VðZ0ðH 0ÞÞ:

Subproof. Suppose that w is an internal vertex of Pi; where 1pipt and wAVðH 0Þ:
Let R be the subpath of Pi between w and ui; and let Q be a path in Z0ðH 0Þ between w

and some xAVðHÞ with dðz; xÞpl0 þ 2; such that no vertex of Q is in H except x

(this exists by (5).) Then by (6).

l0 þ 2þ 2cpdðz; uiÞpdðz; xÞ þ dðx; uiÞpl0 þ 2þ dðx; uiÞ

and so dðx; uiÞX2c: In particular, xaui; and so Q,R is an H-path. But

Z-VðQ,RÞ ¼ | since VðQÞDVðZ0ðH 0ÞÞDVðG\ZÞ and VðRÞDVðPiÞ\fvgD
VðGÞ\Z by (6). This contradicts (2), and hence proves (7).

(8) For 1pipt; uiAVðH 0Þ and ui ¼ Z0ðuiÞAVðZ0ðH 0ÞÞ; and for 1piojpt;
d 0ðui; ujÞXc:

Subproof. By (6), dðz; uiÞ4l0 and so by (4), uiAVðH 0Þ and ui ¼ Z0ðuiÞAVðZ0ðH 0ÞÞ:
For the second claim, let 1piojpt: Then dðui; ujÞXy since fP1;y;Pzþtg has

breadth Xy; and so d 0ðui; ujÞXy	 4l0 	 2 since T0 is a ð4l0 þ 2Þ-compression on T:

Since y	 4l0 	 2Xc; this proves (8).

(9) For each vAX there is a horn at v over H 0; Z0;T0 of cardinality t and breadth

Xc:

Subproof. This follows from (7) and (8), because veVðZ0ðH 0ÞÞ since vAXDZ and
VðZ0ðH 0ÞÞDVðG\ZÞ: This proves (9).

Let Y1 ¼ fyAY : dðz; yÞXcþ 5lþ 2g:

(10) jY1jXd	 1; and Y1DVðH 0Þ; and Z0ðyÞ ¼ y for all yAY1:

Subproof. Suppose that y; y0AY \Y1 are distinct. Then dðz; yÞ; dðz; y0Þpcþ 5l0 þ 1;

and so dðy; y0Þp2ðcþ 5l0 þ 1Þoy; a contradiction. Hence jY 0jXjY j 	 1 ¼ d	 1:

Now if yAY1; then dðz; yÞXcþ 5l0 þ 2Xl0; and so yAVðH 0Þ and Z0ðyÞ ¼ y by (4).
This proves (10).

Let Y 0 ¼ Y,fs; tg (we recall that s and t are defined in (3)). Then Y 0DVðH 0Þ;
by (10).

(11) d 0ðy1; y2ÞXc for all distinct y1; y2AY 0:
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Subproof. If fy1y2g ¼ fs; tg this is true by (3). If y1; y2AY1; then

d 0ðy1; y2ÞXdðy1; y2Þ 	 4l0 	 2Xy	 4l0 	 2Xc

since T0 is a ð4l0 þ 2Þ-compression of T: Finally, if y1AY1 and y2Afs; tg; then
d 0ðy1; y2ÞX d 0ðy1; zÞ 	 d 0ðy2; zÞXdðy1; zÞ 	 4l0 	 2	 dðy2; zÞ

X ðcþ 5l0 þ 2Þ 	 4l0 	 2	 lXc

since dðy2; zÞpl by (3). This proves (11).

(12) For all yAY 0 there is an Z0ðH 0Þ-path in G\X with ends Z0ðxÞ; Z0ðyÞ say, where

d 0ðx; yÞXc:

Subproof. If y ¼ s or t this is true by (3), since d 0ðs; tÞX2cXc by (4). We assume
then that yAY1: Since Y1DY and ðH;T;X ;YÞ is an animal over H;T of strength
Xðy; zþ tÞ; it follows that there is an H-path Q in G\X with ends x; y say, where
dðx; yÞXy: Suppose first that some vertex of Q different from y belongs to Z0ðH 0Þ:
Let w be the first such vertex, and let Q0 be the subpath of Q between y and w: Let
w ¼ Z0ðy0Þ where y0AVðH 0Þ: We claim that d 0ðy; y0ÞXc: For let aAAðHÞ with y0Aa:

If dða; zÞ4l0 then by (4), aAAðH 0Þ and so a ¼ fy0g; and y0AVðHÞ; and by (4) again,
w ¼ Z0ðy0Þ ¼ y0: Thus wAVðHÞ; and so w ¼ x; since Q is an H-path. But dðx; yÞXy;
and so d 0ðx; yÞXy	 4l0 	 2; since T0 is a ð4lþ 2Þ-compression of T; that is,
d 0ðy0; yÞXy	 4l	 2Xc; as claimed.

We may therefore assume that dða; zÞpl0; and so

dða; yÞXdðz; yÞ 	 dða; zÞXðcþ 5l0 þ 2Þ 	 l0 ¼ cþ 4l0 þ 2:

Since y0Aa andT0 is a ð4l0 þ 2Þ-compression ofT; it follows that dðy; y0ÞXdða; yÞ 	
4l0 	 2Xc; and so again our claim is true. Thus we have shown that d 0ðy; y0ÞXc;
and consequently yay0 and y; y0 are not adjacent in H 0 (since cX3). We deduce that
Q0 is an Z0ðH 0Þ-path with ends y; y0 (for no vertex of Q0 belongs to Z0ðH 0Þ except y;w;

and EðQ0Þ-EðZ0ðH 0ÞÞ ¼ | even if jEðQ0Þj ¼ 1; since y; y0 are not adjacent in H 0).
Hence (12) holds in this case.

We may therefore assume that y is the only vertex of Q in Z0ðH 0Þ: Since xAVðHÞ;
there is a minimal path R of H between x and VðZ0ðH 0ÞÞ; let its ends be x;w where
w ¼ Z0ðx0Þ and x0AVðH 0Þ: Suppose that d 0ðy; x0Þoc: Let aAAðHÞ with x0Aa; then

dðy; aÞocþ 4l0 þ 2 since T0 is a ð4l0 þ 2Þ-compression of T: Since dðz; yÞXcþ
5l0 þ 2 (because yAY1) it follows that dðz; aÞ4l0: By (4), aAAðH 0Þ and so a ¼ fx0g;
and x0AVðHÞ; and dðz; x0Þ4l0; and by (4) again w ¼ Z0ðx0Þ ¼ x0: Let e be the edge of

R incident with w: Then eAEðHÞ; and dðz; eÞXdðz; x0Þ4l0: By (4), eAEðH 0Þ and
Z0ðeÞ ¼ e; and so both ends of e belong to VðZ0ðH 0ÞÞ; contrary to the minimality of R:
We deduce that d 0ðy; x0ÞXc: Hence yax0 and so Q,R is an Z0ðH 0Þ-path, satisfying
(12). This proves (12).

From (9)–(12) we see that ðH 0; Z0;T0;X ;Y 0Þ is an animal with w horns and Xdþ 1
hairs, and so the first outcome of 8.3 holds. This proves 8.3. &.
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Proof of 7.1 (assuming 8.1). Let S be a surface, and let t; w; d; lX0; y0X1; and
f;cX3: Choose gX0 and y14ð4gþ 2Þd so that 8.1 holds (with y replaced by y1). Let
z ¼ I1

2
d2f2mþ w; and choose y24z so that 8.3 holds (with y replaced by y2). We

may assume that y2Xmaxðy0 þ z; 4cþ 2Þ: Let s ¼ dþ tþ z and y ¼ wþ y1 þ 3gþ
ð4gþ 2Þdþ y2:

We claim that s; y satisfy 7.1. For let T
 be a tangle in G; and let ðH;T;X ;Y Þ be
an animal with w horns and d hairs, of strength Xðy; sÞ: Let T0 be the truncation of

T to order y	 w: By 8.2, H; T0 is a S-span in G\X with respect to T

\X : Let d 0 be

the metric of T0: From 7.4 we deduce

(1) If there is a S0-span of order Xf in G\X ; for some surface S0 obtained from S by

adding a handle, then 7.1.1 holds.

Next, we observe

(2) If there is an H-path in G\X with ends s; t such that d 0ðs; tÞXc and d 0ðs; yÞXc
for all yAY ; then 7.1.2 holds.

Subproof. Then dðs; tÞXd 0ðs; tÞ; and dðs; yÞXd 0ðs; yÞ for all yAY ; and so
ðH;T;X ;Y,fsgÞ is an animal (in G; with respect to T
) with w horns and dþ 1
hairs, of strength Xðc; sÞXðc; tÞ: This proves (2).

Now T0 has order y	 wXy1; and for all distinct y1; y2AY ;

d 0ðy1; y2Þ ¼ minðdðy1; y2Þ; y	 wÞXminðy; y	 wÞ ¼ y	 wXy1

and so 8.1 may be applied (with T
;G;T; y replaced by T

\X ;G\X ;T0; y1). From

(1) and (2) we may therefore assume that 8.1.3 holds, that is,

(3) There is a g-envelope ðLy: yAYÞ around Y ; and there exists ZDVðG\XÞ\VðH 00Þ
with jZjp1

2
d2f2; such that Z meets every H-path in G\X with ends s; t satisfying

d 00ðs; tÞX2c; where H 00 ¼ H-ðS\,ðLy: yAY ÞÞ; and d 00 is the metric of the ð4gþ 2Þd-
compression T00 of T0 in H 00:

Now ðH;T0;X ;Y Þ is an animal of strength Xðy	 w; sÞ; and H 00;T00 is obtained
from H;T0 by repeating d times the operation of clearing a g-zone (see [8, section 3]).
From d applications of 6.2 we deduce

(4) For each vAX there is a horn at v over H 00;T00 of cardinality s	 d ¼ tþ z and

breadth Xy	 w	 ð4gþ 2ÞdXy2:

For each yAY ; let Py be a minimal path of H between y and VðH-bdðLyÞÞ; with
ends y; pðyÞ say.

(5) d 00ðpðy1Þ; pðy2ÞÞXy2 for all distinct y1; y2AY :
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Subproof. Now

y	 wp d 0ðy1; y2Þpd 0ðy1; pðy1ÞÞ þ d 0ðpðy1Þ; pðy2ÞÞ þ d 0ðpðy2Þ; y2Þ

p 2gþ d 0ðpðy1Þ; pðy2ÞÞ

since for i ¼ 1; 2;Lyi
is a g-zone around yi and pðyiÞA %Lyi

: But

d 0ðpðy1Þ; pðy2ÞÞpd 00ðpðy1Þ; pðy2ÞÞ þ ð4gþ 2Þd

since T00 is a ð4gþ 2Þd-compression of T0: Consequently,

d 00ðpðy1Þ; pðy2ÞÞXy	 w	 2g	 ð4gþ 2ÞdXy2:

This proves (5).

(6) For each yAY there is a H 00-path in G\X with ends pðyÞ; qðyÞ say, such that

d 00ðpðyÞ; qðyÞÞXy2:

Subproof. Let Qy be an H-path in G\X with ends y; rðyÞ say, such that

d 0ðy; rðyÞÞXy	 w: Let Ry be a minimal path of H between rðyÞ and VðH 0Þ; with ends

rðyÞ; qðyÞ say. Then for some y0AY ; %Ly0 contains both rðyÞ and qðyÞ; and so

d 0ðy0; rðyÞÞ; d 0ðy0; qðyÞÞpg:

Hence d 0ðqðyÞ; rðyÞÞp2g: But d 0ðy; pðyÞÞpg since pðyÞA %Ly; and so

y	 wp d 0ðy; rðyÞÞpd 0ðy; pðyÞÞ þ d 0ðpðyÞ; qðyÞÞ þ d 0ðqðyÞ; rðyÞÞ

p 3gþ d 0ðpðyÞ; qðyÞÞ:

Thus d 0ðpðyÞ; qðyÞÞXy	 w	 3gXy2; and so Py,Qy,Ry is an H 00-path satisfying

(6). This proves (6).

Let Y 00 ¼ fpðyÞ: yAYg: From (4)–(6) it follows that ðH 00;T00;X ;Y 00Þ is an animal
in G with respect to T
 with w horns and d hairs, of strength Xðy2; zþ tÞ: By 8.3

(with y;H;T;Y ;Z replaced by y2;H 00;T00;Y 00;Z,X ) we deduce that one of the
outcomes of 8.3 holds.

If the first outcome of 8.3 holds, then 7.1.3 is true. Suppose that the second
outcome of 8.3 holds, that is, there is an H 00-path P in G\ðX,ZÞ with ends s1; s2 and
there are distinct y1; y2AY 00 with d 00ðs1; y1Þ; d 00ðs2; y2Þoc: Then P is an H-path in
G\X ; not meeting Z; and so d 00ðs1; s2Þo2c by (3). Hence

d 00ðy1; y2Þpd 00ðy1; s1Þ þ d 00ðs1; s2Þ þ d 0ðs2; y2Þo4cpy2

contrary to (5). Thus this case does not occur. We may therefore assume that the
third outcome of 8.3 holds, that is, there is a ðl; 2cÞ-level S-span H 00;T0 of order
y2 	 jX,Zj in G\ðX,ZÞ with respect to T


\ðX,ZÞ: But then 7.1.3 holds, since

y2 	 jX,ZjXy2 	 zXy0: In all cases, therefore, 7.1 holds, as required. &
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9. The main proof

Now we complete the series of reductions by proving 8.1.

Proof of 8.1. Let S be a surface, and let dX0 and f;cX3 be integers. Let k ¼
I1
2
f2d2mþ 1; let b be even with kðcþ 6Þpbpkðcþ 6Þ þ 1; let g ¼ 3bþ 3; and let

y ¼ 12ðdþ 3Þðbþ 1Þ: We claim that g; y satisfy 8.1. For let T
 be a tangle in a graph
G; let H;T be a S-span of order Xy with metric d; and let YDVðHÞ with jY j ¼ d;
such that dðy; y0ÞXy for all distinct y; y0AY : We may assume that 8.1.2 is false,
that is,

(1) There is no H-path with ends s; t such that dðs; tÞXc and dðs; yÞXc for all

yAY :

Let Y ¼ fy1;y; ydg: For 1pipd there is a battlefield ðLi;Ci;XiÞ around yi of size
b (see [8, section 9]), by theorem 9.5 of [8], since bX4 is even and yX16bþ 17: We
may assume that jXij ¼ b for each i:

For 1piojpd; if sA %Li- %Lj then dðy1; sÞ; dðyj ; sÞp3bþ 3; and so

ypdðyi; yjÞpdðyi; siÞ þ dðyj; sjÞp6bþ 6;

a contradiction. Thus the discs %L1;y; %Ld are mutually disjoint.
For i ¼ 0; 1;y; d; let Hi ¼ H-ðS\ðL1,?,LiÞÞ:

(2) For 0pipd;Hi is a rigid drawing in S:

Subproof. Certainly H0 ¼ H is rigid, and so we may assume that iX1: Let FDS be
an O-arc with F-UðHiÞDVðHiÞ and jF-VðHiÞjp2: Since the circuits
H-bdðL1Þ;y;H-bdðLiÞ are mutually disjoint and jF-VðHiÞjp2; and iX1; it
follows that for some jð1pjpiÞ; the sets F-L1;y;F-Li are all empty except
possibly F-Lj: Consequently, if H 0 denotes H-ðS\LjÞ; then F-UðH 0ÞDVðH 0Þ
and jF-VðH 0Þjp2: But H 0 is rigid, since ðLj;Cj;XjÞ is a battlefield, and so there is a

dial D for F ;H 0 (see [8, section 4]). Now D includes none of bdðL1Þ;y; bdðLiÞ since
it includes no circuit of H 0; and F meets none of L1;y;Li except possibly Lj; and it

follows that D is disjoint from all of L1;y;Li except possibly Lj: Consequently, D is

a dial for F ;Hi: This proves (2).

Let T0 ¼ T; and for i ¼ 1;y; d let Ti be the tangle obtained between from Ti	1

by clearing the ð3bþ 3Þ-zone Li: (We observe that Li is indeed a ð3bþ 3Þ-zone with
respect to Ti	1 since it is for T0; and thus this clearing operation is possible since
Ti	1 has order Xy	 ð12bþ 14Þði 	 1Þ412bþ 14: We see that Ti has order
ordðTÞ 	 ð12bþ 14Þi and is the ð12bþ 14Þi-compression of T in Hi:

For ‘‘free’’, see [8, section 3].

(3) For 1pipd; X1 is free with respect to Ti:
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Subproof. This is true for i ¼ 1; since ðL1;C1;X1Þ is a battlefield. We proceed by
induction on i; and suppose that 1oipd; and that X1 is free with respect to Ti	1:
Let di	1 be the metric of Ti	1: Then for each vAX1;

di	1ðyi; vÞX di	1ðyi;L1Þ 	 1Xdðyi; y1Þ 	 ð12bþ 14Þði 	 1Þ 	 1

X y	 ð12bþ 14Þðd	 1Þ 	 142bþ 5ð3bþ 3Þ þ 2

and so X1 is free with respect to Ti; by theorem 4.7 of [9] (with T;H; z; l;X ;H 0

replaced by Ti	1;Hi	1; yi; 3bþ 3;X1;Hi). This proves (3).

By theorem 4.1 of [9] there is at most one ð12bþ 14Þi-compression ofT in Hi; and
so Ti is unique. In particular, Ti does not depend on the order in which L1;y;Li

are cleared. From this observation and (2), (3), we deduce that for 1pipjpd;Xi is

free with respect to Tj; and ðLi: 1pipdÞ is a g-envelope around Y : Let H 0 ¼
Hd;T

0 ¼ Td:

(4) For 1piojpd; if there are f2 mutually disjoint H 0-paths in G with one end in Xi

and the other in Xj; then 8.1.1 holds.

Subproof. Let P1;y;Pf2 be such a set of paths, and let Pk have ends akAXi; bkAXj

where a1;y; af2 are in order in bdðLiÞ: By a theorem of Erdös and Szekeres [3] there

exist 1pi1oi2o?oifpf2 such that bi1 ; bi2 ;y; bif are in order in bdðL2Þ (under

one of the orientations of bdðL2Þ). The claim follows from theorem 3.5 of [9], since
fX3: This proves (4).

In view of (4), we may assume that there exists Z0 such that

(5) Z0DVðGÞ;Z0-VðH 0ÞDX1,?,Xd; jZ0jok; and Z0 meets every H 0-path

with ends in distinct Xi;Xj:

Subproof. Let 1piojpd: By (4) and Menger’s theorem, we may assume that

there exists ZijDVðGÞ with Zij-VðH 0ÞDXi,Xj and jZijjp1
2
f2; such that Zij

meets every H 0-path with ends in Xi and Xj: Set Z0 ¼ ,ðZij: 1piojpdÞ; then Z0

satisfies (5).

We suppose, for a contradiction, that setting Z ¼ Z0-ðVðGÞ\VðH 0ÞÞ does not

satisfy 8.1.3. Consequently, if d 0 is the metric of T0; it follows that there is an H 0-
path P0 in G with ends s1; s2; such that:

(6) Z0-VðP0ÞDfs1; s2g-ðX1,?,XdÞ and d 0ðs1; s2ÞX2c:

For i ¼ 1; 2 let ti be the second vertex of P0 in VðHÞ as P0 is traversed from si (si is
the first).

(7) dðs1t1Þoc and dðs2; t2Þoc:
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Subproof. If s1; t1 are adjacent in P0; joined by an edge of H; then dðs1; t1Þp2oc;
so we assume not. Then the subpath of P0 between s1 and t1 is an H-path. But for
1pipd; since s1eLi it follows from the definition of a battlefield that
dðs1; yiÞXbXc: Consequently, dðs1; t1Þoc by (1). This proves (7).

We may assume that

(8) t1AL1 and t2AL2:

Subproof. Now t1as2 since dðs1; s2ÞXd 0ðs1; s2ÞX2c and dðs1; t1Þoc: Conse-
quently, t1AL1,?,Ld since P0 is an H 0-path. Similarly, t2AL1,?,Ld: If for
some i; ft1; t2gDLi; then by (7), d 0ðs1;LiÞpdðs1; t1Þoc and similarly d 0ðs2;LiÞoc;
and so d 0ðs1; s2Þo2c contrary to (6). Thus t1; t2 belong to distinct members of
L1;y;Ld; and we may assume from the symmetry that t1AL1 and t2AL2: This
proves (8).

We may assume that

(9) There is no path Q of H from X1 to VðP0Þ with VðQÞ-VðH 0ÞDX1 and with

Z0-VðQÞ ¼ |:

Subproof. Suppose that for i ¼ 1; 2;Qi is a path of H from Xi to VðP0Þ with

VðQiÞ-VðH 0ÞDXi and with Z0-VðQiÞ ¼ |: The union of Q1;Q2 and P0 includes a

path P of G from X1 to X2 with VðPÞ-VðH 0ÞDX1,X2 and with Z0-VðPÞ ¼ |:
But this contradicts (5). Thus either Q1 or Q2 does not exist, and without loss of
generality we may assume the former. This proves (9).

For 3pipb	 3 there is an ði þ 2Þ-zone Mi around y1 including every xAAðHÞ
with dðy1; xÞoi; since y4b:

(10) There are k mutually disjoint paths of H between VðHÞ-bdðMkÞ and

VðHÞ-bdðL1Þ:

Subproof. Suppose not. By a form of Menger’s theorem for planar graphs, there is
a circuit C of a radial drawing (see [8, section 2]) K of H; of length o2k with

UðCÞD %L1; bounding an open disc in %L1 including Mk: By theorem 7.5 of [8],

insðCÞD %L1 since

jEðCÞjo2ko2ðy	 ð3bþ 3ÞÞ:

Let r be a region of H with r-UðCÞa| (see [8, section 2]). Then

dðr; y1Þp1
2
jEðCÞjok since r-UðCÞe| and y1AinsðCÞ; and so rDMk by the choice

of Mk: But then r is a subset of the open disc bounded by UðCÞ; and so r-UðCÞ ¼
|; a contradiction. This proves (10).
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(11) There is a path P1 of H between VðHÞ-bdðMkÞ and X1; with only one vertex in

VðH 0Þ and such that Z0-VðP1Þ ¼ |:

Subproof. We recall that ðL1;C1;X1Þ is a battlefield of size b; and hence %Mk is
included in the open disc in L1 bounded by UðC1Þ: Moreover, the regional distance

between UðC1Þ and bdðL1Þ (see [8, section 5]) is at least 1þ 1
2
b; and so from (10) and

theorem 10.5 of [5], there are k disjoint paths of H between VðHÞ-bdðMkÞ and X1;
each with only one vertex in VðH 0Þ: Since jZ0jok; one of these paths is disjoint from
Z0: This proves (11).

(12) For 3piojpb	 3 if j 	 iX3 then %MiDMj:

Subproof. Now dðy1; xÞpi þ 2 for every xAAðHÞ with xD %Mi; and since i þ 2oj it
follows that xDMj : This proves (12).

Let i be such that 3pipb	 c	 5: Then Mi and Miþcþ2 are both defined, and
%MiDMiþcþ2 by (12). Consequently Si ¼ %Miþcþ2\Mi is homeomorphic to a closed

cylinder. Let Ji be the subdrawing of H formed by the vertices and edges of H in Si:
Now the cylinders Skþrðcþ5Þ ðr ¼ 0;y; k	 1Þ all exist since kþ ðk	 1Þðcþ 5Þp
b	 c	 5; and by (12) they are mutually disjoint. Consequently the graphs
Jkþrðcþ5Þ ðr ¼ 0;y; k	 1Þ are mutually disjoint, and since jZ0jok; there exists i

with kpipb	 c	 5 such that Z0-VðJiÞ ¼ |:

(13) %MkDMiþcþ2; and Miþcþ2DL1:

Subproof. Now iXk and cX1; so the first inclusion follows from (12). For the

second, let xAAðHÞ which xD %Miþcþ2: Then dðy1; xÞpi þ cþ 4 by definition of

Miþcþ2; and so xDL1 since L1;C1;X1 is a battlefield of size b around y1 and

i þ cþ 4ob: This proves (13).

We recall that P0 was defined before (6).

(14) P0-Ji is null.

Subproof. Now H is connected, and both O-arcs in bdðSiÞ correspond to circuits
of Ji; and so Ji is connected. Let P1 be as in (11); then P1 has one end in bdðMkÞ and
the other in bdðL1Þ; and so from (13), P1 meets H-bdðMiþcþ2ÞDJi: Suppose that

P0 also meets Ji: Now UðJiÞDL1 by (13), and so there is a path of P1,Ji from X1 to

VðP0Þ with only one vertex in H 0: But VðP1,JiÞ-Z0 ¼ |; contrary to (9). This
proves (14).

Let v be the first vertex of P0 (as P0 is traversed from s1) such that vAVðHÞ; vas1
and veL1\Mi: (Such a vertex exists, because s2AVðHÞ; s2es1 and s2eL1\Mi:) Let u
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be the last vertex of P0 in VðHÞ before v: (This exists, because s1AVðHÞ is before v:)
Let P be the subpath of P1 between u and v:

(15) i þ cþ 2pdðu; y1Þp3bþ 3þ c:

Subproof. Now ueMi and hence ueMiþcþ2 by (14). The first inequality follows

from the choice of Miþcþ2: For the second, it follows from (7) and (8) if u ¼ s1;

because

dðs1; y1ÞXdðs1; t1Þ þ dðt1; y1Þocþ 3bþ 3:

If uas1; then uAL1 by the choice of v and so dðv; y1Þp3bþ 3: This proves (15).

From (15), dðu; y1ÞXc; and for 2pjpd;

dðu; yjÞXdðy1; yjÞ 	 dðu; y1ÞXy	 ð3bþ 3þ cÞXc

by (15). Since P is an H-path with ends u; v; it follows from (1) that dðu; vÞoc: Now
if vAMi then dðy1; vÞpi þ 2; and so

dðu; yjÞXdðu; vÞ þ dðy1; vÞocþ i þ 2;

contrary to (15). Thus veMi; and so veL1 from the definition of v: But vas2 by (1),
and so vALj for some j with 2pjpd; since P0 is an H 0-path. Consequently

dðv; yjÞp3bþ 3: Hence

ypdðy1; yjÞpdðy1; uÞ þ dðu; vÞ þ dðv; yjÞoð3bþ 3þ cÞ þ cþ ð3bþ 3Þoy;

a contradiction. Thus, our assumption that 8.1.3 is not satisfied was false. This
proves 8.3. &
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