
Single-exponential parameterized algorithms:
good and bad news

Ignasi Sau

CNRS, LIRMM, Montpellier, France

Journées AGAPE

1

Outline

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

2

FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs G such that
tw(G) ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

3

FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs G such that
tw(G) ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

3

FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs G such that
tw(G) ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

3

Next section is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

4

Next subsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

5

Next subsubsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

6

Fast algorithms for graphs on surfaces

Objective:
framework to obtain single-exponential parameterized algorithms
for a class of NP-hard problems in graphs embedded on surfaces.

[Rué, S., Thilikos. ICALP’10]

7

Branch decompositions and branchwidth

A branch decomposition of a graph G = (V ,E) is tuple (T , µ)
where:

T is a tree where all the internal nodes have degree 3.
µ is a bijection between the leaves of T and E(G).

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

For each e ∈ E(T), we define mid(e) = V (Ae) ∩ V (Be).

The width of a branch decomposition is maxe∈E(T) |mid(e)|.

The branchwidth of a graph G (denoted bw(G)) is the minimum
width over all branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T)

|mid(e)|

8

Branch decompositions and branchwidth

A branch decomposition of a graph G = (V ,E) is tuple (T , µ)
where:

T is a tree where all the internal nodes have degree 3.
µ is a bijection between the leaves of T and E(G).

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

For each e ∈ E(T), we define mid(e) = V (Ae) ∩ V (Be).

The width of a branch decomposition is maxe∈E(T) |mid(e)|.

The branchwidth of a graph G (denoted bw(G)) is the minimum
width over all branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T)

|mid(e)|

8

Surfaces

SURFACE = TOPOLOGICAL SPACE, LOCALLY “FLAT”

9

Handles

10

Cross-caps

11

Surface Classification Theorem

Surface Classification Theorem:

any compact, connected and without boundary surface can be
obtained from the sphere S2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding g ≥ 0 handles to the sphere S2, obtaining the
g-torus Tg with Euler genus eg(Tg) = 2g.

Non-orientable surfaces:

obtained by adding h > 0 cross-caps to the sphere S2, obtaining a
non-orientable surface Ph with Euler genus eg(Ph) = h.

12

Surface Classification Theorem

Surface Classification Theorem:

any compact, connected and without boundary surface can be
obtained from the sphere S2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding g ≥ 0 handles to the sphere S2, obtaining the
g-torus Tg with Euler genus eg(Tg) = 2g.

Non-orientable surfaces:

obtained by adding h > 0 cross-caps to the sphere S2, obtaining a
non-orientable surface Ph with Euler genus eg(Ph) = h.

12

Surface Classification Theorem

Surface Classification Theorem:

any compact, connected and without boundary surface can be
obtained from the sphere S2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding g ≥ 0 handles to the sphere S2, obtaining the
g-torus Tg with Euler genus eg(Tg) = 2g.

Non-orientable surfaces:

obtained by adding h > 0 cross-caps to the sphere S2, obtaining a
non-orientable surface Ph with Euler genus eg(Ph) = h.

12

Graphs on surfaces

EMBEDDED GRAPH: GRAPH DRAWN ON A SURFACE, NO CROSSINGS

The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.

13

Graphs on surfaces

EMBEDDED GRAPH: GRAPH DRAWN ON A SURFACE, NO CROSSINGS

The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.

13

Dynamic programming (DP)

Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

The size of the tables reflects the dependence on k = |mid(e)| in
the running time of the DP.

The precise definition of the tables of the DP depends on each
particular problem.

14

Dynamic programming (DP)

Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

The size of the tables reflects the dependence on k = |mid(e)| in
the running time of the DP.

The precise definition of the tables of the DP depends on each
particular problem.

14

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

15

Next subsubsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

16

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

17

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

17

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

17

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

17

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

17

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

17

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

18

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

18

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

18

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

18

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

18

“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.

19

“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.

19

“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.

19

“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.

19

From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.

20

From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.

20

From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.

20

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T)

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T)

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T)

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T)

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T)

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.

Construct a branch decomposition of G by merging the branch decompositions
of all the pieces.

22

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.

Construct a branch decomposition of G by merging the branch decompositions
of all the pieces.

22

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.

Construct a branch decomposition of G by merging the branch decompositions
of all the pieces.

22

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.

Construct a branch decomposition of G by merging the branch decompositions
of all the pieces.

22

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.

Construct a branch decomposition of G by merging the branch decompositions
of all the pieces.

22

Main results (II)

The main result is that if DP is applied on surface cut decompositions,
then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) ≤ k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2O(log g·k+log k ·g).

This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.

Upper bound of [Dorn, Fomin, Thilikos. SWAT’06]: 2O(g·k+log k·g2).

23

Main results (II)

The main result is that if DP is applied on surface cut decompositions,
then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) ≤ k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2O(log g·k+log k ·g).

This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.

Upper bound of [Dorn, Fomin, Thilikos. SWAT’06]: 2O(g·k+log k·g2).

23

Main results (II)

The main result is that if DP is applied on surface cut decompositions,
then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) ≤ k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2O(log g·k+log k ·g).

This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.

Upper bound of [Dorn, Fomin, Thilikos. SWAT’06]: 2O(g·k+log k·g2).

23

Sketch of the enumerative part: Bipartite subdivisions

Subdivision of the surface in vertices, edges and 2-dimensional regions
(not necessary contractible).
All vertices lay in the boundary.
2 types of 2-dimensional regions: black and white.
Each vertex is incident with exactly 1 black region (also called block).
Each border is rooted.

Fixing the number of vertices on a given surface, we have an infinite
number of bipartite subdivisions.

24

Non-crossing partitions in higher genus surfaces

Each bipartite subdivision induces a non-crossing partition on the set of
vertices.
Problem: Different bipartite subdivisions can define the same
non-crossing partition.

Objective: finding “good” bounds for the number of non-crossing
partitions on a given surface.

25

Non-crossing partitions in higher genus surfaces

Each bipartite subdivision induces a non-crossing partition on the set of
vertices.
Problem: Different bipartite subdivisions can define the same
non-crossing partition.

Objective: finding “good” bounds for the number of non-crossing
partitions on a given surface.

25

Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)
Let Σ be a surface with boundary. Then the number of non-crossing partitions
on Σ with k vertices is asymptotically bounded by

C(Σ)

Γ (−3/2χ(Σ) + β(Σ))
· k−3/2χ(Σ)+β(Σ)−1 · 4k ,

where
C(Σ) is a function depending only on Σ (cubic maps in Σ with β(Σ) faces).
χ(Σ) is the Euler characteristic (χ(Σ) = 2− eg(Σ)).
β(Σ) is the number of components of the boundary (it depends linearly on the
branchwidth of the input graph).

In the case of the disk (Catalan numbers): 1√
π
· k−3/2 · 4k .

26

Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)
Let Σ be a surface with boundary. Then the number of non-crossing partitions
on Σ with k vertices is asymptotically bounded by

C(Σ)

Γ (−3/2χ(Σ) + β(Σ))
· k−3/2χ(Σ)+β(Σ)−1 · 4k ,

where
C(Σ) is a function depending only on Σ (cubic maps in Σ with β(Σ) faces).
χ(Σ) is the Euler characteristic (χ(Σ) = 2− eg(Σ)).
β(Σ) is the number of components of the boundary (it depends linearly on the
branchwidth of the input graph).

In the case of the disk (Catalan numbers): 1√
π
· k−3/2 · 4k .

26

Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)
Let Σ be a surface with boundary. Then the number of non-crossing partitions
on Σ with k vertices is asymptotically bounded by

C(Σ)

Γ (−3/2χ(Σ) + β(Σ))
· k−3/2χ(Σ)+β(Σ)−1 · 4k ,

where
C(Σ) is a function depending only on Σ (cubic maps in Σ with β(Σ) faces).
χ(Σ) is the Euler characteristic (χ(Σ) = 2− eg(Σ)).
β(Σ) is the number of components of the boundary (it depends linearly on the
branchwidth of the input graph).

In the case of the disk (Catalan numbers): 1√
π
· k−3/2 · 4k .

26

How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “clever” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.

27

How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “clever” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.

27

How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “clever” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.

27

How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “clever” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.

27

How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “clever” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.

27

Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...

28

Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...

28

Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...

28

Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...

28

Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...
28

Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...
28

Next subsubsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

29

Extension to minor-free graphs

I planned to say something about it on the board, but finally I decided
to skip it, sorry!

Idea: use the structure of minor-free graphs.
The apices are not a real problem, but the vortices are a different
story...
We can capture their behavior with the help of h-triangulations.
Maaaaaany details missing, hopefully written down soon.

30

Next subsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

31

Parameterizing by the size of the solution

Another natural parameter: size of the solution.

Example: k -VERTEX COVER.

Let Θc be the graph with two vertices and c ≥ 1 parallel edges.

[Joret, Paul, S., Saurabh, Thomassé. 2011]:

The k -Θc-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain Θc as a minor?

32

Parameterizing by the size of the solution

Another natural parameter: size of the solution.

Example: k -VERTEX COVER.

Let Θc be the graph with two vertices and c ≥ 1 parallel edges.

[Joret, Paul, S., Saurabh, Thomassé. 2011]:

The k -Θc-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain Θc as a minor?

32

Parameterizing by the size of the solution

Another natural parameter: size of the solution.

Example: k -VERTEX COVER.

Let Θc be the graph with two vertices and c ≥ 1 parallel edges.

[Joret, Paul, S., Saurabh, Thomassé. 2011]:

The k -Θc-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain Θc as a minor?

32

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...

33

More general problem

[Fomin, Lokshtanov, Misra, Philip, Saurabh. STACS’11]:

Let F be a finite list of graphs.

The k -F-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain any graph in F as a minor?

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

34

More general problem

[Fomin, Lokshtanov, Misra, Philip, Saurabh. STACS’11]:

Let F be a finite list of graphs.

The k -F-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain any graph in F as a minor?

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

34

More general problem

[Fomin, Lokshtanov, Misra, Philip, Saurabh. STACS’11]:

Let F be a finite list of graphs.

The k -F-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain any graph in F as a minor?

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

34

Single-exponential algorithms for c ≥ 3

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

This kernel yiels a simple FPT algorithm with running time(k2 log3/2 k
k

)
· nO(1) = 2O(k log k) · nO(1).

Using iterative compression, we obtain an algorithm for
k -Θc-DELETION problem in time 2O(k) · nO(1).

OPEN QUESTIONS:

Can we do it faster in sparse graphs?
Deleting at most k vertices so that the resulting graph has tw ≤ c?

35

Single-exponential algorithms for c ≥ 3

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

This kernel yiels a simple FPT algorithm with running time(k2 log3/2 k
k

)
· nO(1) = 2O(k log k) · nO(1).

Using iterative compression, we obtain an algorithm for
k -Θc-DELETION problem in time 2O(k) · nO(1).

OPEN QUESTIONS:

Can we do it faster in sparse graphs?
Deleting at most k vertices so that the resulting graph has tw ≤ c?

35

Single-exponential algorithms for c ≥ 3

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

This kernel yiels a simple FPT algorithm with running time(k2 log3/2 k
k

)
· nO(1) = 2O(k log k) · nO(1).

Using iterative compression, we obtain an algorithm for
k -Θc-DELETION problem in time 2O(k) · nO(1).

OPEN QUESTIONS:

Can we do it faster in sparse graphs?
Deleting at most k vertices so that the resulting graph has tw ≤ c?

35

Single-exponential algorithms for c ≥ 3

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

This kernel yiels a simple FPT algorithm with running time(k2 log3/2 k
k

)
· nO(1) = 2O(k log k) · nO(1).

Using iterative compression, we obtain an algorithm for
k -Θc-DELETION problem in time 2O(k) · nO(1).

OPEN QUESTIONS:

Can we do it faster in sparse graphs?
Deleting at most k vertices so that the resulting graph has tw ≤ c?

35

Next section is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

36

Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?

37

Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?

37

Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?

37

Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?

37

Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?

37

Lower bounds (II)

For problems that can be solved in ck · nO(1) for some constant c > 1,
which is the best c?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that SAT cannot be solved in O(2− ε)n time (SETH), then
for any ε > 0:

INDEPENDENT SET cannot be solved in (2− ε)tw · nO(1) time.
DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?

38

Lower bounds (II)

For problems that can be solved in ck · nO(1) for some constant c > 1,
which is the best c?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that SAT cannot be solved in O(2− ε)n time (SETH), then
for any ε > 0:

INDEPENDENT SET cannot be solved in (2− ε)tw · nO(1) time.
DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?

38

Lower bounds (II)

For problems that can be solved in ck · nO(1) for some constant c > 1,
which is the best c?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that SAT cannot be solved in O(2− ε)n time (SETH), then
for any ε > 0:

INDEPENDENT SET cannot be solved in (2− ε)tw · nO(1) time.
DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?

38

Lower bounds (II)

For problems that can be solved in ck · nO(1) for some constant c > 1,
which is the best c?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that SAT cannot be solved in O(2− ε)n time (SETH), then
for any ε > 0:

INDEPENDENT SET cannot be solved in (2− ε)tw · nO(1) time.
DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?

38

Gràcies!

39

	Good news
	Parameterizing by branchwidth
	Parameterizing by the size of the solution

	Bad news

