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FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs G such that
tw(G) ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

3



FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs G such that
tw(G) ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

3



FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs G such that
tw(G) ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

3



Next section is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

4



Next subsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

5



Next subsubsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news

6



Fast algorithms for graphs on surfaces

Objective:
framework to obtain single-exponential parameterized algorithms
for a class of NP-hard problems in graphs embedded on surfaces.

[Rué, S., Thilikos. ICALP’10]
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Branch decompositions and branchwidth

A branch decomposition of a graph G = (V ,E) is tuple (T , µ)
where:

T is a tree where all the internal nodes have degree 3.
µ is a bijection between the leaves of T and E(G).

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

For each e ∈ E(T ), we define mid(e) = V (Ae) ∩ V (Be).

The width of a branch decomposition is maxe∈E(T ) |mid(e)|.

The branchwidth of a graph G (denoted bw(G)) is the minimum
width over all branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T )

|mid(e)|
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Surfaces

SURFACE = TOPOLOGICAL SPACE, LOCALLY “FLAT”
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Handles
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Cross-caps
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Surface Classification Theorem

Surface Classification Theorem:

any compact, connected and without boundary surface can be
obtained from the sphere S2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding g ≥ 0 handles to the sphere S2, obtaining the
g-torus Tg with Euler genus eg(Tg) = 2g.

Non-orientable surfaces:

obtained by adding h > 0 cross-caps to the sphere S2, obtaining a
non-orientable surface Ph with Euler genus eg(Ph) = h.
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Graphs on surfaces

EMBEDDED GRAPH: GRAPH DRAWN ON A SURFACE, NO CROSSINGS

The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.

13



Graphs on surfaces

EMBEDDED GRAPH: GRAPH DRAWN ON A SURFACE, NO CROSSINGS

The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.

13



Dynamic programming (DP)

Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

The size of the tables reflects the dependence on k = |mid(e)| in
the running time of the DP.

The precise definition of the tables of the DP depends on each
particular problem.
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A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...
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Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.
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Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .
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“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.
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From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.
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Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T )

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.

21
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Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

Sketch of the construction of surface cut decompositions:

Partition G into polyhedral pieces, plus a set of A vertices, with |A| = O(g).

For each piece H, compute a branch decomposition, using Amir’s algorithm.

Transform this branch decomposition to a carving decomposition of the medial
graph of H.

Make the carving decomposition bond, using Seymour and Thomas’ algorithm.

Transform it to a bond branch decomposition of H.

Construct a branch decomposition of G by merging the branch decompositions
of all the pieces.

22
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Main results (II)

The main result is that if DP is applied on surface cut decompositions,
then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) ≤ k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2O(log g·k+log k ·g).

This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.

Upper bound of [Dorn, Fomin, Thilikos. SWAT’06]: 2O(g·k+log k·g2).
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Sketch of the enumerative part: Bipartite subdivisions

Subdivision of the surface in vertices, edges and 2-dimensional regions
(not necessary contractible).
All vertices lay in the boundary.
2 types of 2-dimensional regions: black and white.
Each vertex is incident with exactly 1 black region (also called block).
Each border is rooted.

Fixing the number of vertices on a given surface, we have an infinite
number of bipartite subdivisions.
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Non-crossing partitions in higher genus surfaces

Each bipartite subdivision induces a non-crossing partition on the set of
vertices.
Problem: Different bipartite subdivisions can define the same
non-crossing partition.

Objective: finding “good” bounds for the number of non-crossing
partitions on a given surface.
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Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)
Let Σ be a surface with boundary. Then the number of non-crossing partitions
on Σ with k vertices is asymptotically bounded by

C(Σ)

Γ (−3/2χ(Σ) + β(Σ))
· k−3/2χ(Σ)+β(Σ)−1 · 4k ,

where
C(Σ) is a function depending only on Σ (cubic maps in Σ with β(Σ) faces).
χ(Σ) is the Euler characteristic (χ(Σ) = 2− eg(Σ)).
β(Σ) is the number of components of the boundary (it depends linearly on the
branchwidth of the input graph).

In the case of the disk (Catalan numbers): 1√
π
· k−3/2 · 4k .
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How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “clever” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.
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Extensions

1 Can this framework be applied to more complicated problems?

Fundamental problem: H-MINOR CONTAINMENT

? Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT’10]

With running time 2O(k) · h2k · 2O(h) · n.
(h = |V (H)|, k = bw(G), n = |V (G)|)

? Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA’10]

Truly single-exponential: 2O(h) · n.

Can it be generalized to host graphs on arbitrary surfaces?

Rooted graph problems: DISJOINT PATHS

2 Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...
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Next subsubsection is...

1 Good news
Parameterizing by branchwidth

Graphs on surfaces
Main ideas of our approach
Extensions

Parameterizing by the size of the solution

2 Bad news
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Extension to minor-free graphs

I planned to say something about it on the board, but finally I decided
to skip it, sorry!

Idea: use the structure of minor-free graphs.
The apices are not a real problem, but the vortices are a different
story...
We can capture their behavior with the help of h-triangulations.
Maaaaaany details missing, hopefully written down soon.
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Parameterizing by the size of the solution

Another natural parameter: size of the solution.

Example: k -VERTEX COVER.

Let Θc be the graph with two vertices and c ≥ 1 parallel edges.

[Joret, Paul, S., Saurabh, Thomassé. 2011]:

The k -Θc-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain Θc as a minor?
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Hitting Θc ’s

For c = 1: k -VERTEX COVER.
Well-known algorithms in time 2O(k) · nO(1).
[Balasubramanian, Fellows, Raman. IPL’98]

For c = 2: k -FEEDBACK VERTEX SET.
Algorithms in time 2O(k) · nO(1) were more difficult to obtain:
[Guo, Gramm, Hüffner, Niedermeier, Wernicke. J. Comp. Syst. Sci.’06]
[Dehne, Fellows, Langston, Rosamond, Stevens. Th. Comp. Syst.’06]

For c = 3: k -DIAMOND HITTING SET.

No known 2O(k) · nO(1) algorithms for c ≥ 3...
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More general problem

[Fomin, Lokshtanov, Misra, Philip, Saurabh. STACS’11]:

Let F be a finite list of graphs.

The k -F-DELETION problem

Instance: A graph G = (V ,E) and a non-negative integer k .

Parameter: k .

Question: Does there exist S ⊆ V , |S| ≤ k , such that
Question:aG[V \ S] does not contain any graph in F as a minor?

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).
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Single-exponential algorithms for c ≥ 3

If Θc ∈ F for some c ≥ 1, then k -F-DELETION admits a kernel of
size O(k2 log3/2 k).

This kernel yiels a simple FPT algorithm with running time(k2 log3/2 k
k

)
· nO(1) = 2O(k log k) · nO(1).

Using iterative compression, we obtain an algorithm for
k -Θc-DELETION problem in time 2O(k) · nO(1).

OPEN QUESTIONS:

Can we do it faster in sparse graphs?
Deleting at most k vertices so that the resulting graph has tw ≤ c?
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Lower bounds (I)

For an FPT problem, is it always possible to obtain algorithms with
running time ck · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that 3SAT cannot be solved in 2o(n) time (ETH), then:

DISJOINT PATHS cannot be solved in 2o(tw log tw) · nO(1) time.
d-DISTORTION cannot be solved in 2o(d log d) · nO(1) time.

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Parameterizing by treewidth: HAMILTONIAN PATH, FVS,
CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?
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CONNECTED VERTEX COVER, CONNECTED DOMINATING SET...
Is 2O(tw log tw) · nO(1) time optimal?
Parameterizing by solution size: DIRECTED FVS, INTERVAL

COMPLETION... Is 2O(k log k) · nO(1) time optimal?
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Lower bounds (I)
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Lower bounds (II)

For problems that can be solved in ck · nO(1) for some constant c > 1,
which is the best c?

[Lokshtanov, Marx, Saurabh. SODA’11]:
Assuming that SAT cannot be solved in O(2− ε)n time (SETH), then
for any ε > 0:

INDEPENDENT SET cannot be solved in (2− ε)tw · nO(1) time.
DOMINATING SET cannot be solved in (3− ε)tw · nO(1) time.
MAX CUT cannot be solved in (2− ε)tw · nO(1) time.
For any q ≥ 3, q-COLORING cannot be solved in (q − ε)tw · nO(1).

Here, tw = tw(G) and n = |V (G)|. These bounds are tight.

OPEN QUESTIONS:

Can one prove similar bounds when G is planar? Or maybe better
algorithms?
Lower bounds for other parameters?
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Gràcies!
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