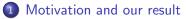
Eun Jung Kim¹ Christophe Paul² Ignasi Sau²

Alexander Langer³ Felix Reidl³ Peter Rossmanith³ Somnath Sikdar³

arXiv/1207.0835

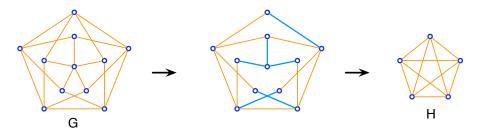
- ¹ CNRS, LAMSADE, Paris (France)
- ² CNRS, LIRMM, Montpellier (France)
- ³ Department of Computer Science, RWTH Aachen University (Germany)



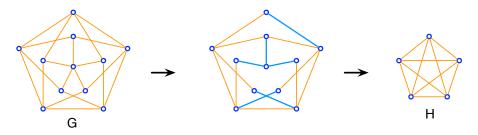
2 Idea of proof

2 Idea of proof

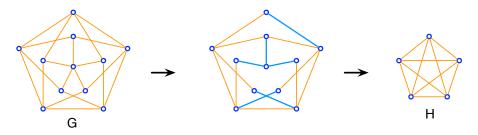




• *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.

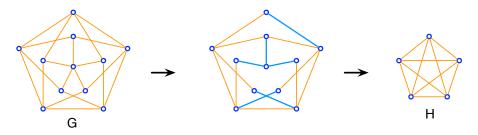


- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg ≤ 2.



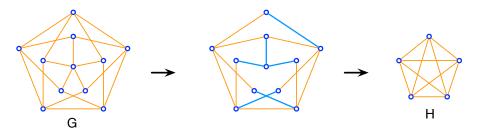
- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore:

H minor of $G \Rightarrow H$ topological minor of G.



- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore:

H minor of $G \notin H$ topological minor of G.



- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore:

H minor of $G \not\leftarrow H$ topological minor of G.

• Fixed *H*: *H*-minor-free graphs \subseteq *H*-topological-minor-free graphs.

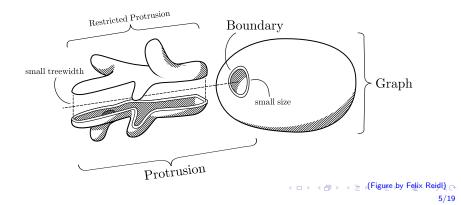
Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Given a graph G, a set $W \subseteq V(G)$ is a *t*-protrusion of G if

 $|\partial_G(W)| \leq t$ and $\operatorname{tw}(G[W]) \leq t$.

- The vertex set $W' = W \setminus \partial_G(W)$ is the restricted protrusion of W.
- We call $\partial_G(W)$ the boundary and |W| the size of W.



 $\bullet \ \mbox{Dominating Set}$ on planar graphs.

[Alber, Fellows, Niedermeier '04]

• DOMINATING SET on planar graphs.

[Alber, Fellows, Niedermeier '04]

• Framework for several problems on planar graphs. [Guo, Niedermeier '04]

- DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs. [Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

- DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs. [Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Meta-result for *H*-minor-free graphs.

[Fomin, Lokshtanov, Saurabh, Thilikos '10]

- DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs. [Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

- Meta-result for *H*-minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos '10]
- Meta-result for *H*-topological-minor-free graphs. [Our result]

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem Π is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ Π then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem Π is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ Π then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

• FII allows us to replace large protrusions by smaller gadgets...

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem Π is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ Π then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

• FII allows us to replace large protrusions by smaller gadgets...

 \star We assume that the gadgets are given . Our algorithm is non-uniform.

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem Π is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ Π then

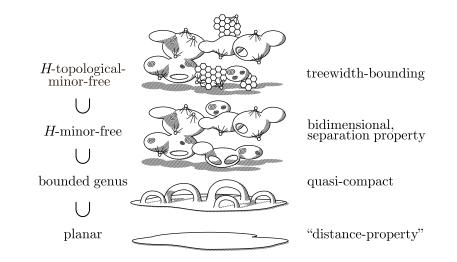
 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

• FII allows us to replace large protrusions by smaller gadgets...

 \star We assume that the gadgets are given . Our algorithm is non-uniform.

Problems affected by our result:

Linear kernels on sparse graphs – the conditions



We require **FII** + treewidth-bounding

We require FII + treewidth-bounding

• FII is necessary when using protrusion replacement rules.

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?
 Conditions on *H*-minor-free graphs:
 bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?
 Conditions on *H*-minor-free graphs:
 bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]

But it holds that

bidimensional + separation property $| \Rightarrow |$ tree

 \Rightarrow treewidth-bounding

We require **FII** + treewidth-bounding

FII is necessary when using protrusion replacement rules.

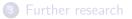
• What about requiring the problems to be treewidth-bounding? Conditions on *H*-minor-free graphs: bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]

But it holds that

bidimensional + separation property $| \Rightarrow |$ treewidth-bounding

• Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos '10]

Motivation and our result



[Bodlaender, de Fluiter '01]

[Bodlaender, de Fluiter '01]

• Let Π be a parameterized graph problem restricted to a class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .

- Let Π be a parameterized graph problem restricted to a class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .
- We say that $G_1 \equiv_{\Pi,t} G_2$ if there exists a constant $\Delta_{\Pi,t}(G_1, G_2)$ such that for all *t*-boundaried graphs *H* and for all *k*:
 - $G_1 \oplus H \in \mathcal{G}$ iff $G_2 \oplus H \in \mathcal{G}$; • $(G_1 \oplus H, k) \in \Pi$ iff $(G_2 \oplus H, k + \Delta_{\Pi, t}(G_1, G_2)) \in \Pi$.

- Let Π be a parameterized graph problem restricted to a class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.

- Let Π be a parameterized graph problem restricted to a class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.

- Let Π be a parameterized graph problem restricted to a class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi} \colon \mathbb{N} \to \mathbb{N}$ defined as $\rho_{\Pi}(t) = \max_{G \in \mathcal{R}_t} |V(G)|.$

- Let Π be a parameterized graph problem restricted to a class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi} \colon \mathbb{N} \to \mathbb{N}$ defined as $\rho_{\Pi}(t) = \max_{G \in \mathcal{R}_t} |V(G)|$. We also define $\rho'_{\Pi}(t) = \rho_{\Pi}(2t)$.

Disconnected PLANAR- \mathcal{F} -DELETION has not FII

• We prove: if \mathcal{F} is a family of graphs containing some disconnected graph H, then PLANAR- \mathcal{F} -DELETION has not FII (in general).

Disconnected PLANAR- \mathcal{F} -DELETION has not FII

• Let *o*-Π be the non-parameterized version of PLANAR-*F*-DELETION. Let *G*₁ and *G*₂ be two *t*-boundaried graphs.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem $o-\Pi$ on graph G. • We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.
- Then, if we take $1 \leq n < m$,

$$\pi(G_n \oplus H_{n-1}) - \pi(G_m \oplus H_{n-1}) = (n-1) - (n-1) = 0, \pi(G_n \oplus H_m) - \pi(G_m \oplus H_m) = n - m < 0.$$

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem $o-\Pi$ on graph G.

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.
- Then, if we take $1 \leq n < m$,

$$\pi(G_n \oplus H_{n-1}) - \pi(G_m \oplus H_{n-1}) = (n-1) - (n-1) = 0,$$

$$\pi(G_n \oplus H_m) - \pi(G_m \oplus H_m) = n - m < 0.$$

• Thus, $G_n, G_m \notin \text{same equiv. class of } \sim_{\Pi,1} \text{ whenever } 1 \leq n < m_{\mathbb{R}}$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 13/19

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X \subseteq V(G)$ s.t. $\rho'_{\Pi}(t) < |X|$, then one can, in time O(|X|), find a 2t-protrusion W s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X \subseteq V(G)$ s.t. $\rho'_{\Pi}(t) < |X|$, then one can, in time O(|X|), find a 2t-protrusion W s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.

Lemma (Replacing protrusions of constant size)

For $t \in \mathbb{N}$, suppose that the set \mathcal{R}_t of representatives of $\equiv_{\Pi,t}$ is given. If W is a t-protrusion of size at most a fixed constant c, then one can decide in constant time which $G' \in \mathcal{R}_t$ satisfies $G' \equiv_{\Pi,t} G[W]$.

Protrusion reduction rule

• Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following: *Reduce* (G, k) to (G', k') = (G[V \ W] ⊕ G₁, k − Δ_{Π,2t}(G₁, G_W)).

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following: *Reduce* (G, k) to (G', k') = (G[V \ W] ⊕ G₁, k - Δ_{Π,2t}(G₁, G_W)).

It runs in polynomial time ...

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following: Reduce (G, k) to (G', k') = (G[V \ W] ⊕ G₁, k − Δ_{Π,2t}(G₁, G_W)).

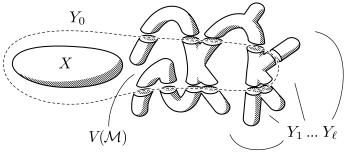
It runs in polynomial time ... given the sets of representatives!

Protrusion decompositions

An (α, t) -protrusion decomposition of a graph G is a partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) such that:

- for every $1 \leq i \leq \ell$, $N(Y_i) \subseteq Y_0$;
- for every $1 \leq i \leq \ell$, $Y_i \cup N_{Y_0}(Y_i)$ is a *t*-protrusion of *G*;

• $\max\{\ell, |Y_0|\} \leq \alpha$.



(Figure by Felix Reidl) 《□▶ 《圕▶ 《≣▶ 《≣▶ 볼 ∽ ९ (~ 15/19

We apply exhaustively the protrusion replacement rule.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

2

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

Using what Christophe explained yesterday, we can easily prove that: Let Π be a parameterized graph problem that has FII and is *t*-treewidth-bounding, both on the class of *H*-topological-minor-free graphs.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion *W* of *G* has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

Using what Christophe explained yesterday, we can easily prove that:

Let Π be a parameterized graph problem that has FII and is *t*-treewidth-bounding, both on the class of *H*-topological-minor-free graphs. Then any reduced YES-instance (G, k) has a protrusion decomposition $V(G) = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ s.t.:

•
$$|Y_0| = O(k);$$

• $|Y_i| \le \rho'_{\Pi}(2t + \omega_{\mathcal{H}})$ for $1 \le i \le \ell$; and
• $\ell = O(k).$

D Motivation and our result

2 Idea of proof

< □ > < @ > < 글 > < 글 > < 글 > 三 · 의익() 17/19

• For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - **②** Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$.

[Fomin, Lokshtanov, Misra, Saurabh '12]

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of bounded expansion (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: *k^{0(t)}*.

[Fomin, Lokshtanov, Misra, Saurabh '12]

• Constructing the kernels? Finding the sets of representatives!!

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$. [For a second secon

[Fomin, Lokshtanov, Misra, Saurabh '12]

- Constructing the kernels? Finding the sets of representatives!!
- Explicit constants? Lower bounds on their size?

Gràcies!!

<□ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 둘 ▶ 오 ↔ 19/19