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Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

@ H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg < 2.

@ Therefore: ’H minor of G < H topological minor of G ‘

o Fixed H: ‘H—minor—free graphs C H-topological-minor-free graphs ‘
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Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

e Given a graph G, aset W C V(G) is a t-protrusion of G if
|0c(W)| <t and tw(G[W]) < t.

@ The vertex set W' = W \ Og(W) is the restricted protrusion of W.

o We call 9g(W) the boundary and |W/| the size of W.

Restricted Protrusion

Boundary

small treewidth

Graph

(Figure by Felix Reidl)
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@ Framework for several problems on planar graphs. [Guo, Niedermeier '04]
@ Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]
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Fix a graph H. Let Il be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FIl). Then I admits a linear kernel.

@ A parameterized graph problem 1 is treewidth-bounding if 3
constants ¢, t such that if (G, k) € I then

IX C V(G)st. |[X|<c-kandtw(G—X) <t

o FIl allows us to replace large protrusions by smaller gadgets...

% We assume that the ’gadgets are given ‘ Our algorithm is non-uniform.

Problems affected by our result:
TREEWIDTH-t VERTEX DELETION, CHORDAL VERTEX DELETION,
INTERVAL VERTEX DELETION, EDGE DOMINATING SET, FEEDBACK

VERTEX SET, CONNECTED VERTEX COVER, ...
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Linear kernels on sparse graphs — the conditions

H-topological-
minor-free

U

H-minor-free

U

bounded genus

U

planar

treewidth-bounding

bidimensional,
separation property

quasi-compact

“distance-property”

(Figure by Felix Reidl)
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Are our conditions very restrictive?

’We require FIl + treewidth-bounding

@ Fll is necessary when using protrusion replacement rules.

@ What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bldlmenSIona| + Separation property [Fomin, Lokshtanov, Saurabh, Thilikos "10]

But it holds that

bidimensional + separation property‘:>‘treewidth—bounding

@ Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos '10]
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Idea of proof
(2 ) p
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[Bodlaender, de Fluiter '01]

@ Let 1 be a parameterized graph problem restricted to a class G and
let Gi, Gy be two t-boundaried graphs in G;.

o We say that G; =p ; G if there exists a constant Ap (G, G2) such
that for all t-boundaried graphs H and for all k:

QO GOHeGIffGaHEG;
Q (Gi@ H, k) eNiff (G & H, k+ An(Gi, G)) € M.

@ Problem I1 has Fll in the class G if for every integer t, the equivalence
relation =p ; has a finite number of equivalence classes.

° If a parameterized problem has Fll then its instances can

be reduced by replacing any “large” protrusion by a “small” gadget
(representative in a set R;) from the same equivalence class.

@ The protrusion limit of I is a function pn: N — N defined as
pr(t) = maxger, |V(G)|. We also define p(t) = pn(2t).
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Disconnected PLANAR-F-DELETION has not FlI

@ We prove: if F is a family of graphs containing some disconnected
graph H, then PLANAR-F-DELETION has not FIl (in general).
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@ By construction, if i,j > 1, it holds 7(G; & H;) = min{i,j}.
@ Then, if we take 1 < n < m,
m(Gp ® Hpo1) = 7(Gm® Hym1) = (n—1)—(n—1) = 0,
7(Gp ® Hp) —7(Gm® Hn) = n—m< 0.

@ Thus, G, G, ¢ same equiv. class of ~p; whenever 1 < n < m.
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If one is given a t-protrusion X C V(G) s.t. pp(t) < |X
time O(|X

, then one can, in
), find a 2t-protrusion W' s.t. pr(t) < |W| < 2- pp(t).

§

Lemma (Replacing protrusions of constant size)

For t € N, suppose that the set R; of representatives of =n ; is given. If
W is a t-protrusion of size at most a fixed constant c, then one can decide
in constant time which G’ € R satisfies G' =p ; G[W]. 131
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It runs in ’polynomial time ‘ given the sets of representatives!

14/19



Protrusion decompositions

An (a, t)-protrusion decomposition of a graph G is a partition
P=YowW YW WYy of V(G) such that:

e forevery 1 < i</, N(Y;) C Yo,

<
<4, YiU Ny,(Y;) is a t-protrusion of G;
.

i
<

<
o for every 1 <
e max{/,|Yo|}

(Figure by Felix Reidl)
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If (G, k) is reduced w.r.t the protrusion reduction rule with boundary
size 3 (this can be done in polynomial time), Vt < 3, every
t-protrusion W of G has size < pp;(t).

We can choose [ := 2t + w(H), where t comes from the
treewidth-bounding property of 1.

© | We use protrusion decompositions to analyze the kernel size.

Using what Christophe explained yesterday, we can easily prove that:

Let 1 be a parameterized graph problem that has Fll and is
t-treewidth-bounding, both on the class of H-topological-minor-free
graphs. Then any reduced YEs-instance (G, k) has a protrusion
decomposition V(G) = YouW Y1 W --- W Y s.t.:

@ |Yo| = O(k);

@ |Yi| < pp(2t +wy) for 1 <i < ¢; and

0 (= O(k).
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Limits of our approach and further research

@ For which notions of sparseness (beyond H-topological-minor-free
graphs) can we use our technique to obtain polynomial kernels?
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© A class G of graphs ’ locally excludes a minor‘ if Vr € N, 3H, s.t. the
r-neighborhood of a vertex of any graph of G excludes H, as a minor.

(includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

© Graphs of’ bounded expansion ‘ (contains H-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs
of bounded expansion is as hard as on general graphs.

Best known kernel: ko(t). [Fomin, Lokshtanov, Misra, Saurabh '12]
o Constructing the kernels? Finding the sets of representatives!!

@ Explicit constants? Lower bounds on their size?
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