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Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg 6 2.

Therefore: H minor of G ⇒ H topological minor of G .

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs .
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Protrusions
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos ’09]

Given a graph G , a set W ⊆ V (G ) is a t-protrusion of G if

|∂G (W )| 6 t and tw(G [W ]) 6 t.

The vertex set W ′ = W \ ∂G (W ) is the restricted protrusion of W .

We call ∂G (W ) the boundary and |W | the size of W .

(Figure by Felix Reidl)
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Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier ’04]

Framework for several problems on planar graphs. [Guo, Niedermeier ’04]

Meta-result for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos ’09]

Meta-result for H-minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos ’10]

Meta-result for H-topological-minor-free graphs. [Our result]
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Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem Π is treewidth-bounding if ∃
constants c , t such that if (G , k) ∈ Π then

∃X ⊆ V (G ) s.t. |X | 6 c · k and tw(G − X ) 6 t.

FII allows us to replace large protrusions by smaller gadgets...

F We assume that the gadgets are given . Our algorithm is non-uniform.

Problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion,
Interval Vertex Deletion, Edge Dominating Set, Feedback
Vertex Set, Connected Vertex Cover, . . .
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Linear kernels on sparse graphs – the conditions

(Figure by Felix Reidl)
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Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos ’10]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos ’10]
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Finite Integer Index (FII)
[Bodlaender, de Fluiter ’01]

Let Π be a parameterized graph problem restricted to a class G and
let G1,G2 be two t-boundaried graphs in Gt .

We say that G1 ≡Π,t G2 if there exists a constant ∆Π,t(G1,G2) such
that for all t-boundaried graphs H and for all k :

1 G1 ⊕ H ∈ G iff G2 ⊕ H ∈ G;
2 (G1 ⊕ H, k) ∈ Π iff (G2 ⊕ H, k + ∆Π,t(G1,G2)) ∈ Π.

Problem Π has FII in the class G if for every integer t, the equivalence
relation ≡Π,t has a finite number of equivalence classes.

Main idea If a parameterized problem has FII then its instances can
be reduced by replacing any “large” protrusion by a “small” gadget
(representative in a set Rt) from the same equivalence class.

The protrusion limit of Π is a function ρΠ : N→ N defined as
ρΠ(t) = maxG∈Rt |V (G )|. We also define ρ′Π(t) = ρΠ(2t).
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Disconnected Planar-F-Deletion has not FII

We prove: if F is a family of graphs containing some disconnected
graph H, then Planar-F-Deletion has not FII (in general).

We define G1 ∼Π,t G2 iff ∃ integer i such that ∀ t-boundaried graph
H, it holds

π(G1 ⊕ H) = π(G2 ⊕ H) + i ,

where π(G ) denotes the optimal value of problem o-Π on graph G .

We let F1 = K4, F2 = K2,3, F := F1 ] F2, and F = {F}.
For i > 1, let Gi (resp. Hi ) be the 1-boundaried graph consisting of a
boundary vertex v (resp. u) together with i disjoint copies of F1

(resp. F2) joined to v (resp. u) by an edge.

By construction, if i , j > 1, it holds π(Gi ⊕ Hj) = min{i , j}.
Then, if we take 1 6 n < m,

π(Gn ⊕ Hn−1)− π(Gm ⊕ Hn−1) = (n − 1)− (n − 1) = 0,

π(Gn ⊕ Hm)− π(Gm ⊕ Hm) = n −m < 0.

Thus, Gn,Gm /∈ same equiv. class of ∼Π,1 whenever 1 6 n < m.
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boundary vertex v (resp. u) together with i disjoint copies of F1

(resp. F2) joined to v (resp. u) by an edge.

By construction, if i , j > 1, it holds π(Gi ⊕ Hj) = min{i , j}.

Then, if we take 1 6 n < m,

π(Gn ⊕ Hn−1)− π(Gm ⊕ Hn−1) = (n − 1)− (n − 1) = 0,

π(Gn ⊕ Hm)− π(Gm ⊕ Hm) = n −m < 0.
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Some important ingredients (suppose problem Π has FII)

Lemma (The parameter does not increase)

∀ fixed t, ∃ finite set Rt of t-boundaried graphs s.t. for each t-boundaried
graph G ∈ Gt ∃ G ′ ∈ Rt s.t. G ≡Π,t G ′ and ∆Π,t(G ,G ′) > 0.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G , a t-protrusion of G with
the maximum number of vertices can be found in time O(nt+1).

Lemma (Big... but not too big!)

If one is given a t-protrusion X ⊆ V (G ) s.t. ρ′Π(t) < |X |, then one can, in
time O(|X |), find a 2t-protrusion W s.t. ρ′Π(t) < |W | 6 2 · ρ′Π(t).

Lemma (Replacing protrusions of constant size)

For t ∈ N, suppose that the set Rt of representatives of ≡Π,t is given. If
W is a t-protrusion of size at most a fixed constant c, then one can decide
in constant time which G ′ ∈ Rt satisfies G ′ ≡Π,t G [W ].
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Protrusion replacement

Protrusion reduction rule

Let (G , k) ∈ Π and let t ∈ N be a constant (to be fixed later).

Suppose that G has a t-protrusion W ′ ⊆ V (G ) s.t. |W ′| > ρ′Π(t).

Let W ⊆ V (G ) be a 2t-protrusion of G s.t. ρ′Π(t) < |W | 6 2 · ρ′Π(t).

We let GW denote the 2t-boundaried graph G [W ] with boundary
bd(GW ) = ∂G (W ).

Let further G1 ∈ R2t be the representative of GW for the equivalence
relation ≡Π,|∂(W )|.

The protrusion reduction rule (for boundary size t) is the following:

Reduce (G , k)
to (G ′, k ′) = (G [V \W ]⊕ G1, k −∆Π,2t(G1,GW )).

It runs in polynomial time ... given the sets of representatives!
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Protrusion decompositions

An (α, t)-protrusion decomposition of a graph G is a partition
P = Y0 ] Y1 ] · · · ] Y` of V (G ) such that:

for every 1 6 i 6 `, N(Yi ) ⊆ Y0;

for every 1 6 i 6 `, Yi ∪ NY0(Yi ) is a t-protrusion of G ;

max{`, |Y0|} 6 α.

(Figure by Felix Reidl)
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Kernelization algorithm

1 We apply exhaustively the protrusion replacement rule.

If (G , k) is reduced w.r.t the protrusion reduction rule with boundary
size β (this can be done in polynomial time), ∀t 6 β, every
t-protrusion W of G has size 6 ρ′Π(t).

We can choose β := 2t + ω(H), where t comes from the
treewidth-bounding property of Π.

2 We use protrusion decompositions to analyze the kernel size.

Using what Christophe explained yesterday, we can easily prove that:

Let Π be a parameterized graph problem that has FII and is
t-treewidth-bounding, both on the class of H-topological-minor-free
graphs. Then any reduced Yes-instance (G , k) has a protrusion
decomposition V (G ) = Y0 ] Y1 ] · · · ] Y` s.t.:

1 |Y0| = O(k);
2 |Yi | ≤ ρ′Π(2t + ωH) for 1 ≤ i ≤ `; and
3 ` = O(k).
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Next section is...

1 Motivation and our result

2 Idea of proof

3 Further research
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Limits of our approach and further research

For which notions of sparseness (beyond H-topological-minor-free
graphs) can we use our technique to obtain polynomial kernels?

1 A class G of graphs locally excludes a minor if ∀r ∈ N, ∃Hr s.t. the

r -neighborhood of a vertex of any graph of G excludes Hr as a minor.

(includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

2 Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth-t Vertex Deletion on graphs
of bounded expansion is as hard as on general graphs.

Best known kernel: kO(t). [Fomin, Lokshtanov, Misra, Saurabh ’12]

Constructing the kernels? Finding the sets of representatives!!

Explicit constants? Lower bounds on their size?
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Except for a very restricted case, our technique fails.

2 Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth-t Vertex Deletion on graphs
of bounded expansion is as hard as on general graphs.

Best known kernel: kO(t). [Fomin, Lokshtanov, Misra, Saurabh ’12]

Constructing the kernels? Finding the sets of representatives!!

Explicit constants? Lower bounds on their size?
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Gràcies!!

19/19


	Motivation and our result
	Idea of proof
	Further research

