Subexponential Parameterized Algorithms for Bounded-Degree Connected Subgraph Problems on Planar Graphs

Ignasi Sau

Mascotte Project - CNRS/INRIA/UNSA (France) +

Applied Mathematics IV Department of UPC (Spain)

Dimitrios M. Thilikos

Department of Mathematics of National Capodistrian University of Athens (Greece)

DIMAP Workshop on Algorithmic Graph Theory (AGT)

Warwick - March 24th, 2009

Outline of the talk

- Preliminaries
 - FPT and subexponential algorithms
 - Branchwidth
 - Minors
 - Parameters
- General framework to obtain subexponential algorithms
 - Bidimensionality
 - Fast dynamic programming
- MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d)
 - Definition + example
 - Bidimensional behaviour
 - Dynamic programming techniques

1. Preliminaries

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

• A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{O(1)}$, for some function f.

Examples: k-VERTEX COVER k-LONGEST PATH

$$f(k)=2^{o(k)}.$$

- Typically $f(k) = 2^{O(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size *n* and a parameter *k*:

• A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{O(1)}$, for some function f.

Examples: k-Vertex Cover, k-Longest Path.

$$f(k)=2^{o(k)}.$$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size *n* and a parameter *k*:

• A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.

Examples: k-Vertex Cover, k-Longest Path.

$$f(k)=2^{o(k)}.$$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size *n* and a parameter *k*:

• A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.

Examples: k-Vertex Cover, k-Longest Path.

$$f(k)=2^{o(k)}.$$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

• A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.

Examples: k-Vertex Cover, k-Longest Path.

$$f(k)=2^{o(k)}.$$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

• A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.

Examples: k-Vertex Cover, k-Longest Path.

$$f(k)=2^{o(k)}.$$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is max_{e∈E(T)} |mid(e)|
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{\theta \in E(T)} |\operatorname{mid}(\theta)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} | \operatorname{mid}(e) |$
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:
 - $\mathsf{bw}(\mathit{G}) = \min_{(\mathit{T},\mu)} \max_{e \in \mathit{E}(\mathit{T})} |\mathsf{mid}(e)|$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} | \operatorname{mid}(e) |$
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{pw}(G) = \min_{(T,\mu)} \max_{\theta \in E(T)} |\operatorname{mid}(\theta)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

Graph minors

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G} .
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

Graph Minors Theorem

• Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \leq_m .

- Consequence: every minor closed graph class G has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $(\mathcal{O}(n^3))$.

Graph Minors Theorem

• Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \leq_m .

- Consequence: every minor closed graph class G has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $(\mathcal{O}(n^3))$.

Graph Minors Theorem

• Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \leq_m .

- Consequence: every minor closed graph class G has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $(\mathcal{O}(n^3))$.

$$\mathbf{P}:\mathcal{G} \to \mathbb{N}^+$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with P asks, for some fixed k, whether P(G) ≥ k for a given graph G.
- We say that a parameter P is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G)$$

$$\mathbf{P}:\mathcal{G} \to \mathbb{N}^+$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with **P** asks, for some fixed k, whether $P(G) \ge k$ for a given graph G.
- We say that a parameter P is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G)$$

$$\mathbf{P}:\mathcal{G} \to \mathbb{N}^+$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with **P** asks, for some fixed k, whether $P(G) \ge k$ for a given graph G.
- We say that a parameter P is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G)$$
.

$$\mathbf{P}:\mathcal{G} \to \mathbb{N}^+$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with **P** asks, for some fixed k, whether $P(G) \ge k$ for a given graph G.
- We say that a parameter P is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G)$$
.

Every minor closed parameterized problem has an

$$\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$$

- ▶ **Problem**: f(k) is unknown or huge!
- **Question**: How and when can we improve f(k) above?
- **Question**: When can f(k) be a subexponential function?

Every minor closed parameterized problem has an

$$\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$$

- **Problem**: f(k) is unknown or huge!
- **Question**: How and when can we improve f(k) above?
- **Question**: When can f(k) be a subexponential function?

Every minor closed parameterized problem has an

$$\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$$

- **Problem**: f(k) is unknown or huge!
- **Question**: How and when can we improve f(k) above?
- **Question**: When can f(k) be a subexponential function?

Every minor closed parameterized problem has an

$$\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$$

- Problem: f(k) is unknown or huge!
- **Question**: How and when can we improve f(k) above?
- **Question**: When can f(k) be a subexponential function?

2. General framework to obtain subexponential parameterized algorithms

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for k-Dominating Set on planar

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for k-Dominating Set on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for k-DOMINATING SET on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
 - [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
 - [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
 - [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
 - [Fernau. MFCS' 04]
 - [Kanj and L. Perković. MFCS' 02]

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for k-DOMINATING SET on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
 - [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
 - [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
 - [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
 - [Fernau. MFCS' 04]
 - [Kanj and L. Perković. MFCS' 02]

Given a parameter ${\bf P}$ defined in a graph class ${\cal G}$:

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- ▶ Bidimensionality. [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
 - [F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07][F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

Given a parameter **P** defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph
$$G \in \mathcal{G}$$
, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- Bidimensionality.

Given a parameter **P** defined in a graph class G:

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- Bidimensionality. [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
- For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
 - Catalan structures.[F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07][F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

Given a parameter **P** defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph
$$G \in \mathcal{G}$$
, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- Bidimensionality. [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
- **(B)** Dynamic programming which uses graph structure:

For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of P(G) can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Given a parameter **P** defined in a graph class G:

(A) Combinatorial bounds via Graph Minor theorems:

For every graph
$$G \in \mathcal{G}$$
, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- ▶ Bidimensionality. [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
- **(B)** Dynamic programming which uses graph structure:

For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Catalan structures.

[F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07]
[F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

- (A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$
- **(B)** For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of P(G) can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
- Case 1: If bw(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \ge k.$$

- (A) For every graph $G \in \mathcal{G}$, $bw(G) \leq \alpha \cdot \sqrt{P(G)} + \mathcal{O}(1)$
- **(B)** For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of P(G) can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
- Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \ge k.$$

- **Case 2**: Otherwise (**bw**(G) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(G) can be

- (A) For every graph $G \in \mathcal{G}$, $bw(G) \leq \alpha \cdot \sqrt{P(G)} + \mathcal{O}(1)$
- **(B)** For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
- Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \ge k.$$

- Case 2: Otherwise (**bw**(G) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(G) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.
 - If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with

- (A) For every graph $G \in \mathcal{G}$, $bw(G) \leq \alpha \cdot \sqrt{P(G)} + \mathcal{O}(1)$
- **(B)** For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
- Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \ge k.$$

- Case 2: Otherwise (**bw**(G) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(G) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.
 - ▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow \text{subexponential}!$

- (A) For every graph $G \in \mathcal{G}$, $bw(G) \leq \alpha \cdot \sqrt{P(G)} + \mathcal{O}(1)$
- **(B)** For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
- Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \ge k.$$

- Case 2: Otherwise (**bw**(G) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(G) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.
 - ▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow \text{subexponential!}$
 - Note: we must add $\mathcal{O}(n^3)$ to compute an optimal branch 4 D > 4 D > 4 D > 4 D > 3

- (A) For every graph $G \in \mathcal{G}$, $bw(G) \leq \alpha \cdot \sqrt{P(G)} + \mathcal{O}(1)$
- **(B)** For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of P(G) can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
- Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \ge k.$$

- Case 2: Otherwise (**bw**(G) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(G) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.
 - If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow \text{subexponential!}$
 - **Note**: we must add $\mathcal{O}(n^3)$ to compute an optimal branch decomposition of a planar graph.

3. MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH

Preliminaries General framework MDBCS_d Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS_d

Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in F'} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).

Definition of the problem: MDBCS_d

Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the Longest Path (OR @YCLE): ₹ >

Preliminaries General framework MDBCS_d Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS_d

• MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in F'} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d=2 it is the **Longest Path** (or **Cycle**).

Definition of the problem: MDBCS_d

• MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d=2 it is the Longest Path (or @ycle).

Definition of the problem: MDBCS_d

Maximum d-Degree-Bounded Connected Subgraph:

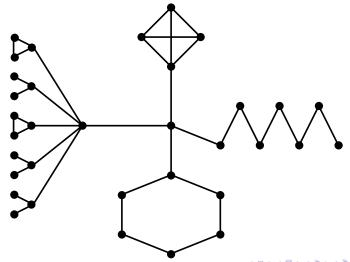
Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

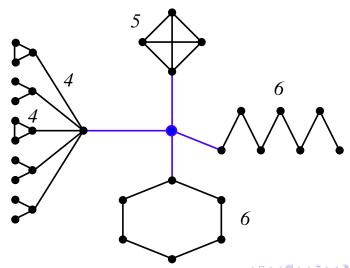
Output:

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in F'} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d=2 it is the **Longest Path (or Cycle)**.

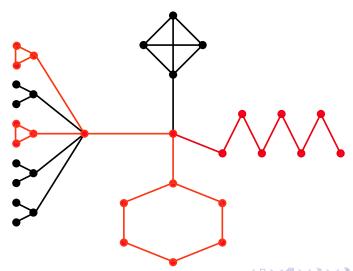
Example with d = 3, $\omega(e) = 1$ for all $e \in E(G)$



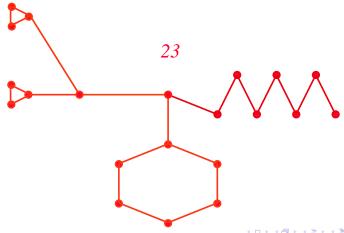
Example with d = 3 (II)



Example with d = 3 (III)



Example with d = 3 (IV)



State of the art

Case d = 2 (LONGEST PATH):

Approximation algorithms:

 $O\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick. STOC'94].

$$\mathcal{O}\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt. SIAM J. Computing'03].

• Hardness results:

It does not accept any constant-factor approximation.

[D. Karger, R. Motwani, and G. Ramkumar

Algorithmica'97].

State of the art

Case d = 2 (Longest Path):

Approximation algorithms:

 $O\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick. STOC'94].

$$O\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt. SIAM J. Computing'03].

Hardness results:

It does not accept *any* constant-factor approximation.

[D. Karger, R. Motwani, and G. Ramkumar

Algorithmica'97].

State of the art

Case d = 2 (Longest Path):

Approximation algorithms:

 $O\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick. STOC'94].

$$O\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt. SIAM J. Computing'03].

Hardness results:

It does not accept any constant-factor approximation.

[D. Karger, R. Motwani, and G. Ramkumar.

Algorithmica'97].

Case $d \ge 2$ [O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

• For each fixed $d \ge 2$, MDBCS_d does not accept **any** constant-factor approximation in general graphs.

Case $d \ge 2$ [O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

 For each fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

Case $d \ge 2$ [O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed $d \ge 2$, MDBCS_d does not accept **any** constant-factor approximation in general graphs.

Case $d \ge 2$ [O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

 For each fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

Let us apply the general strategy...

We define the following **parameter** on a **planar** graph *G*:

$$\mathbf{mdbcs}_d(G) = \max\{|E(H)| \mid H \subseteq G \land H \text{ is connected } \land \Delta(H) \le d\}.$$

(we focus on the **unweighted** version of the problem)

- (A) If **bw**(*G*) is **big** (> $\alpha \cdot \sqrt{k}$):

We define the following **parameter** on a **planar** graph *G*:

$$\mathbf{mdbcs}_{\textit{d}}(\textit{G}) = \max\{|\textit{E}(\textit{H})| \mid \textit{H} \subseteq \textit{G} \land \textit{H} \text{ is connected } \land \Delta(\textit{H}) \leq \textit{d}\}.$$

(we focus on the **unweighted** version of the problem)

We distinguish two cases according to **bw**(G):

- (A) If **bw**(G) is **big** (> $\alpha \cdot \sqrt{k}$): we must exhibit a *certificate* that $\mathbf{mdbcs}_d(G)$ is also *big*.

Let us apply the general strategy...

We define the following **parameter** on a **planar** graph *G*:

$$\mathbf{mdbcs}_d(G) = \max\{|E(H)| \mid H \subseteq G \land H \text{ is connected } \land \Delta(H) \leq d\}.$$

(we focus on the **unweighted** version of the problem)

We distinguish two cases according to $\mathbf{bw}(G)$:

- (A) If **bw**(G) is **big** (> $\alpha \cdot \sqrt{k}$): we must exhibit a *certificate* that $\mathbf{mdbcs}_d(G)$ is also *big*.
- (B) Otherwise, if **bw**(G) is **small** ($\leq \alpha \cdot \sqrt{k}$): we compute $\mathbf{mdbcs}_d(G)$ efficiently using Catalan structures and *dynamic programming* techniques over an optimal branch decomposition of G.

Theorem (Robertson, Seymour & Thomas, 1994)

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.
- (A.2) How the parameter behaves on the square grid.

Case (A)

Theorem (Robertson, Seymour & Thomas, 1994)

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.
- (A.2) How the parameter behaves on the square grid.

Theorem (Robertson, Seymour & Thomas, 1994)

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.
- (A.2) How the parameter behaves on the square grid.

Theorem (Robertson, Seymour & Thomas, 1994)

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.
- (A.2) How the parameter behaves on the square grid.

Condition (A.1): the parameter is minor closed

Let G' be a minor of G.

- If G' occurs from G after an edge removal, then clearly mdbcs_d(G') ≤ mdbcs_d(G).
- If G' occurs after the **contraction** of an edge $\{x, y\}$: let $H' \subseteq G'$ be a solution, and let H be the *major* of H' in G
 - \rightarrow We will show that we can find a connected subgraph $H^* \subseteq H \subseteq G$ with $\Delta(H^*) \leq d$ and $|E(H^*)| \geq |E(H')|$.

Condition (A.1): the parameter is minor closed

Let G' be a minor of G.

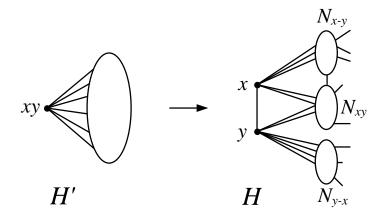
- If G' occurs from G after an **edge removal**, then clearly $\mathbf{mdbcs}_d(G') \leq \mathbf{mdbcs}_d(G)$.
- If G' occurs after the **contraction** of an edge $\{x, y\}$: let $H' \subseteq G'$ be a solution, and let H be the *major* of H' in G
 - \rightarrow We will show that we can find a connected subgraph $H^* \subseteq H \subseteq G$ with $\Delta(H^*) \leq d$ and $|E(H^*)| \geq |E(H')|$.

Condition (A.1): the parameter is minor closed

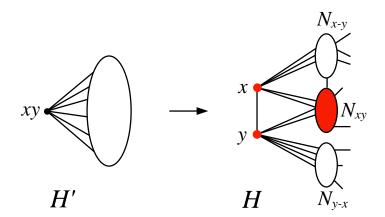
Let G' be a minor of G.

- If G' occurs from G after an **edge removal**, then clearly $\mathbf{mdbcs}_d(G') \leq \mathbf{mdbcs}_d(G)$.
- If G' occurs after the **contraction** of an edge $\{x, y\}$: let $H' \subseteq G'$ be a solution, and let H be the *major* of H' in G
 - \rightarrow We will show that we can find a connected subgraph $H^* \subseteq H \subseteq G$ with $\Delta(H^*) \leq d$ and $|E(H^*)| \geq |E(H')|$.

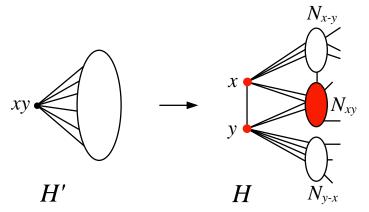
- $H' \subseteq G' \leq_m G$.
- The edge $\{x,y\} \in E(G)$ has been contracted to the vertex $xy \in V(G')$.
- Let $H \subseteq G$ be the major of $H' \subseteq G'$.



- $N_H(x) \cup N_H(y) \{x\} \{y\} = N_{x-y} \sqcup N_{xy} \sqcup N_{y-x}.$
- x, y, and the vertices in N_{xy} may have degree d + 1!!
- We will extract a subgraph $H^* \subseteq H'$ such that $|E(H^*)| \ge |E(H')|$. Suppose w.l.o.g. that $|N_{x-y}| \ge |N_{y-x}|$.



- If $|N_{x-y}| = d$, let $H^* = (V(H) \{y\}, E(H) \{x, y\})$.
- If $|N_{X-V}| < d$:
 - If $|N_{xy}| = 0$, let $H^* = H$.
 - If $N_{xy} = \{z_1\}$, let $H^* = (V(H), E(H) \{x, z_1\})$.
 - If $N_{xy} = \{z_1, \dots, z_k\}$ for some $k \ge 2$, let $H^* = (V(H), E(H) \{x, z_1\} \bigcup_{i=2}^k \{y, z_i\})$.



Condition (A.2): how it behaves in the square grid

• We must see that in an $(r \times r)$ -grid R,

$$\mathsf{mdbcs}_d(R) = (\delta r)^2 + o((\delta r)^2).$$

- Indeed:
 - If d = 2, a Hamiltonian path in R gives

$$mdbcs_2(R) \ge r^2 - 1.$$

• If $d \ge 4$, the whole grid R is a solution, giving

$$mdbcs_d(R) = 2r(r-1).$$

• Finally, if d = 3, the subgraph below gives

$$\mathbf{mdbcs}_3(R) \geq 2r(r-1) - \left\lceil \frac{r-2}{2} \right\rceil (r-2).$$



Lemma

For any $d \geq 2$ and for any planar graph G it holds that

$$\mathbf{bw}(G) \leq \frac{4}{\delta} \cdot \sqrt{\mathbf{mdbcs}_d(G)} + \mathcal{O}(1), \text{ with }$$

$$\delta = \begin{cases} 1, & \text{if } d = 2\\ \sqrt{3/2}, & \text{if } d = 3\\ \sqrt{2}, & \text{if } d > 4 \end{cases}$$

Case (B): fast dynamic programming

Given an optimal branch decomposition (T, μ) of a planar graph G, there are two main ideas in the dynamic programming algorithm:

(B.1) Catalan structure in mid(e) to bound the size of the *tables*.

(B.2) How to deal with the connectivity in the *join/forget* operations.

- Given a set A, we define a $\frac{d\text{-weighted packing}}{d}$ of A as any pair (A, ϕ) where
 - A is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
 - φ : A → {0,...,d} is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_e be the collection of all d-weighted packings (\mathcal{A}, ϕ) of $\mathbf{mid}(e)$.
- We calculate $\operatorname{opt}_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If $|\mathbf{mid}(e)| = \ell$ it is easy to see that $|\mathscr{P}_e| \le f(\ell) \cdot (d+1)^{\ell}$, with $f(\ell) \le 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

4 D > 4 P > 4 B > 4 B > B

- Given a set A, we define a d-weighted packing of A as any pair (A, ϕ) where
 - A is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
 - φ : A → {0,...,d} is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_e be the collection of all d-weighted packings (\mathcal{A}, ϕ) of $\mathbf{mid}(e)$.
- We calculate $\operatorname{opt}_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If $|\mathbf{mid}(e)| = \ell$ it is easy to see that $|\mathscr{P}_e| \le f(\ell) \cdot (d+1)^{\ell}$, with $f(\ell) \le 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

- Given a set A, we define a $\frac{d\text{-}weighted\ packing}{d}$ of A as any pair (A,ϕ) where
 - A is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
 - φ: A → {0,...,d} is a mapping corresponding numbers from 0 to d to the elements of A.
- Let P_e be the collection of all d-weighted packings (A, φ) of mid(e).
- We calculate $\mathbf{opt}_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$.
- If $|\mathbf{mid}(e)| = \ell$ it is easy to see that $|\mathscr{P}_e| \le f(\ell) \cdot (d+1)^{\ell}$, with $f(\ell) \le 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

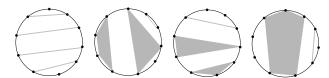
- Given a set A, we define a $\frac{d\text{-weighted packing}}{d}$ of A as any pair (A, ϕ) where
 - A is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
 - φ: A → {0,...,d} is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_e be the collection of all d-weighted packings (\mathcal{A}, ϕ) of $\mathbf{mid}(e)$.
- We calculate $\mathbf{opt}_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$.
- If $|\mathbf{mid}(e)| = \ell$ it is easy to see that $|\mathscr{P}_e| \le f(\ell) \cdot (d+1)^{\ell}$, with $f(\ell) \le 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

- Given a set A, we define a $\frac{d\text{-weighted packing}}{d}$ of A as any pair (A, ϕ) where
 - A is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
 - φ: A → {0,...,d} is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_e be the collection of all d-weighted packings (\mathcal{A}, ϕ) of $\mathbf{mid}(e)$.
- We calculate $\mathbf{opt}_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$.
- If $|\mathbf{mid}(e)| = \ell$ it is easy to see that $|\mathscr{P}_e| \le f(\ell) \cdot (d+1)^{\ell}$, with $f(\ell) \le 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

- Sphere cut decomposition: Branch decomposition where the vertices in mid(e) are situated around a noose.
 - → for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition IP. Seymour and R. Thomas. Combinatorica'941

- Sphere cut decomposition: Branch decomposition where the vertices in mid(e) are situated around a noose.
 - → for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition [P. Seymour and R. Thomas. Combinatorica'94]

- Sphere cut decomposition: Branch decomposition where the vertices in mid(e) are situated around a noose.
 - → for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition [P. Seymour and R. Thomas. Combinatorica'94]
- We have to calculate in how many ways we can draw hyperedges inside a cycle such that they touch the cycle only on its vertices and they do not intersect:



 The number of such configurations is exactly the number of *non-crossing partitions* over ℓ vertices, which is closely related to the \ell-th Catalan number:

$$\text{CN}(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi}\ell^{3/2}} \approx 4^\ell = \frac{2^{\mathcal{O}(\ell)}}{2^{\ell}}.$$

$$|\mathscr{P}_{e}| = (d+1)^{\ell} \cdot \sum_{i=0}^{\ell} {\ell \choose i} CN(\ell-i) \le (d+1)^{\ell} \cdot \sum_{i=0}^{\ell} {\ell \choose i} 4^{\ell-i} =$$

$$= (d+1)^{\ell} 4^{\ell} \cdot \sum_{i=0}^{\ell} {\ell \choose i} \left(\frac{1}{4}\right)^{i} = (d+1)^{\ell} 4^{\ell} \cdot \left(1 + \frac{1}{4}\right)^{\ell} = (d+1)^{\ell} \cdot 5^{\ell}$$

• The number of such configurations is exactly the number of non-crossing partitions over ℓ vertices, which is closely related to the ℓ-th Catalan number:

$$\text{CN}(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi}\ell^{3/2}} \approx 4^\ell = \frac{2^{\mathcal{O}(\ell)}}{2^{\ell}}.$$

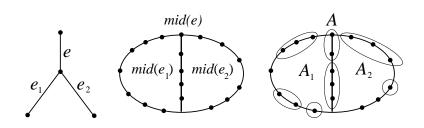
$$|\mathscr{P}_{e}| = (d+1)^{\ell} \cdot \sum_{i=0}^{\ell} {\ell \choose i} CN(\ell-i) \leq (d+1)^{\ell} \cdot \sum_{i=0}^{\ell} {\ell \choose i} 4^{\ell-i} =$$

$$= (d+1)^{\ell} 4^{\ell} \cdot \sum_{i=0}^{\ell} {\ell \choose i} \left(\frac{1}{4}\right)^{i} = (d+1)^{\ell} 4^{\ell} \cdot \left(1 + \frac{1}{4}\right)^{\ell} = (d+1)^{\ell} \cdot 5^{\ell}$$

Preliminaries General framework MDBCS_d Definition Example State of the art Subexponential algo

Case (B.2): How to deal with connectivity

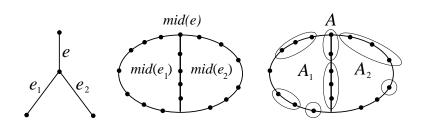
 General idea: we have to keep track of the connected components of the solutions, depending on how they intersect mid(e):



- We distinguish two cases according to the partition A of mid(e):
 - (1) $\mathcal{A} \neq \emptyset$.
 - (2) $A = \emptyset$.

Case (B.2): How to deal with connectivity

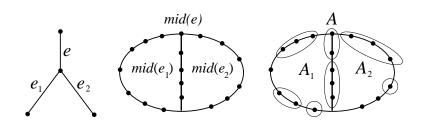
 General idea: we have to keep track of the connected components of the solutions, depending on how they intersect mid(e):



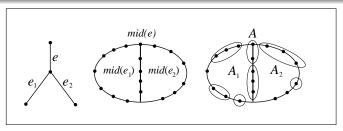
- We distinguish two cases according to the partition A of mid(e):
 - (1) $\mathcal{A} \neq \emptyset$.
 - (2) $A = \emptyset$.

Case (B.2): How to deal with connectivity

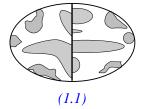
 General idea: we have to keep track of the connected components of the solutions, depending on how they intersect mid(e):

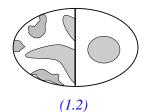


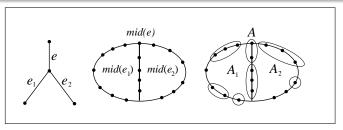
- We distinguish two cases according to the partition A of mid(e):
 - (1) $\mathcal{A} \neq \emptyset$.
 - (2) $A = \emptyset$.



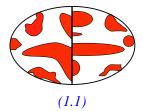
- (1) Case $A \neq \emptyset$.
 - (1.1) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.
 - (1.2) Case $A_1 \neq \emptyset$, $A_2 = \emptyset$.

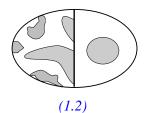


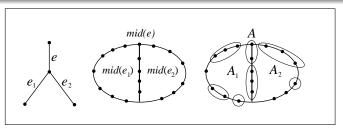




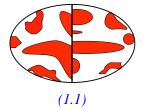
- (1) Case $A \neq \emptyset$.
 - (1.1) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.
 - (1.2) Case $A_1 \neq \emptyset$, $A_2 = \emptyset$.

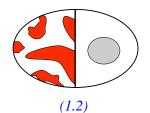


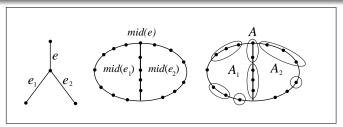




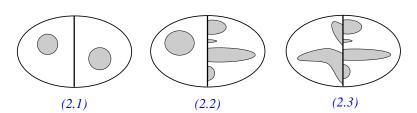
- (1) Case $A \neq \emptyset$.
 - (1.1) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.
 - (1.2) Case $A_1 \neq \emptyset$, $A_2 = \emptyset$.

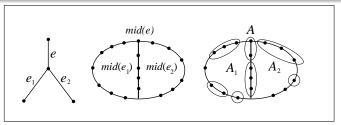




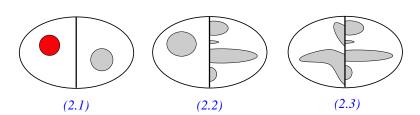


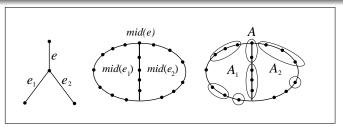
- (2) Case $A = \emptyset$.
 - (2.1) Case $A_1 = \emptyset$, $A_2 = \emptyset$.
 - (2.2) Case $A_1 = \emptyset$, $A_2 \neq \emptyset$.
 - (2.3) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.



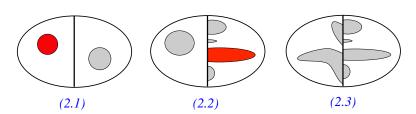


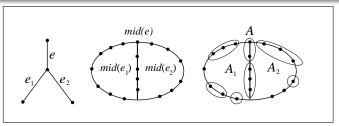
- (2) Case $A = \emptyset$.
 - (2.1) Case $A_1 = \emptyset$, $A_2 = \emptyset$.
 - (2.2) Case $A_1 = \emptyset$, $A_2 \neq \emptyset$.
 - (2.3) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.



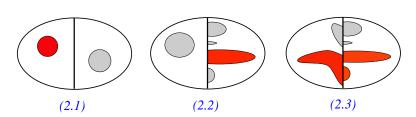


- (2) Case $A = \emptyset$.
 - (2.1) Case $A_1 = \emptyset$, $A_2 = \emptyset$.
 - (2.2) Case $A_1 = \emptyset$, $A_2 \neq \emptyset$.
 - (2.3) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.





- (2) Case $A = \emptyset$.
 - (2.1) Case $A_1 = \emptyset$, $A_2 = \emptyset$.
 - (2.2) Case $A_1 = \emptyset$, $A_2 \neq \emptyset$.
 - (2.3) Case $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.



Finally...

Theorem

k-Planar Maximum d-Degree-Bounded Connected SUBGRAPH is solvable in time $\mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k}\cdot n + n^3\right)$ for any d > 2.

- If $\mathbf{bw}(G) > 4/\delta \cdot \sqrt{k}$, then the answer to the parameterized
- Otherwise, if **bw**(G) $\leq 4/\delta \cdot \sqrt{k}$, the value of the parameter

$$\mathcal{O}\left((d+1)^{8\sqrt{k}/\delta} \cdot 5^{8\sqrt{k}/\delta} \cdot 4/\delta\sqrt{k} \cdot n\right) = \mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k} \cdot n\right).$$

Finally...

Theorem

k-Planar Maximum d-Degree-Bounded Connected Subgraph is solvable in time $\mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k}\cdot n + n^3\right)$ for any $d \geq 2$.

Proof.

First, we construct in time $\mathcal{O}(n^3)$ an optimal sphere cut decomposition of G of width $\mathbf{bw}(G)$. We distinguish two cases according to $\mathbf{bw}(G)$:

- If $\mathbf{bw}(G) > 4/\delta \cdot \sqrt{k}$, then the answer to the parameterized problem is automatically YES.
- Otherwise, if $\mathbf{bw}(G) \le 4/\delta \cdot \sqrt{k}$, the value of the parameter $\mathbf{mdbcs}_d(G)$ can be computed in time

$$\mathcal{O}\left((d+1)^{8\sqrt{k}/\delta} \cdot 5^{8\sqrt{k}/\delta} \cdot 4/\delta\sqrt{k} \cdot n\right) = \mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k} \cdot n\right).$$

Theorem

k-Planar Maximum d-Degree-Bounded Connected SUBGRAPH is solvable in time $\mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k}\cdot n + n^3\right)$ for any d > 2.

Proof.

First, we construct in time $\mathcal{O}(n^3)$ an optimal sphere cut decomposition of G of width **bw**(G). We distinguish two cases according to **bw**(G):

- If **bw**(G) > $4/\delta \cdot \sqrt{k}$, then the answer to the parameterized problem is automatically YES.
- Otherwise, if **bw**(G) $\leq 4/\delta \cdot \sqrt{k}$, the value of the parameter

$$\mathcal{O}\left((d+1)^{8\sqrt{k}/\delta} \cdot 5^{8\sqrt{k}/\delta} \cdot 4/\delta\sqrt{k} \cdot n\right) = \mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k} \cdot n\right).$$

Theorem

k-Planar Maximum d-Degree-Bounded Connected SUBGRAPH is solvable in time $\mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k}\cdot n + n^3\right)$ for any d > 2.

Proof.

First, we construct in time $\mathcal{O}(n^3)$ an optimal sphere cut decomposition of G of width **bw**(G). We distinguish two cases according to **bw**(G):

- If $\mathbf{bw}(G) > 4/\delta \cdot \sqrt{k}$, then the answer to the parameterized problem is automatically YES.
- Otherwise, if **bw**(G) $\leq 4/\delta \cdot \sqrt{k}$, the value of the parameter $\mathbf{mdbcs}_d(G)$ can be computed in time

$$\mathcal{O}\left((d+1)^{8\sqrt{k}/\delta} \cdot 5^{8\sqrt{k}/\delta} \cdot 4/\delta\sqrt{k} \cdot n\right) = \mathcal{O}\left(2^{\log(5(d+1))8\sqrt{k}/\delta}\sqrt{k} \cdot n\right).$$

- Maximising the number of vertices (instead of edges).
- Looking for an induced subgraph.
- More general constraints on the degree.
- Exact algorithms.

- Maximising the number of vertices (instead of edges).
- Looking for an induced subgraph.
- More general constraints on the degree.
- Exact algorithms.

- Maximising the number of vertices (instead of edges).
- Looking for an induced subgraph.
- More general constraints on the degree.
- Exact algorithms.

- Maximising the number of vertices (instead of edges).
- Looking for an induced subgraph.
- More general constraints on the degree.
- Exact algorithms.

- Maximising the number of vertices (instead of edges).
- Looking for an induced subgraph.
- More general constraints on the degree.
- Exact algorithms.

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
 - Consider a more general family of problems:
 largest subgraph excluding a fixed graph F as a minor.

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
 - Consider a more general family of problems:
 largest subgraph excluding a fixed graph F as a minor...

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
 - Consider a more general family of problems:
 largest subgraph excluding a fixed graph F as a minor...

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
 - Consider a more general family of problems:
 largest subgraph excluding a fixed graph F as a minor...

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
 - Consider a more general family of problems:
 largest subgraph excluding a fixed graph F as a minor...
 - ...

Gràcies!