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Given a (NP-hard) problem with input of size n and a parameter
k:
@ A fixed-parameter tractable (FPT) algorithm runs in
f(k) - n®M | for some function f.
Examples: k-VERTEX COVER, k-LONGEST PATH.

@ A subexponential parameterized algorithm is a FPT

algo s.t.
f(k) = 2000,

e Typically f(k) = 20(Vh),

@ The aim of this talk is to explain how to obtain
subexponential parameterized algorithms for some
NP-hard problems on planar graphs.
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Branchwidth

@ A branch decomposition of a graph G = (V, E) is tuple
(T, ) where:

e T is atree where all the internal nodes have degree 3.
e . is a bijection between the leaves of T and E(G).

@ Each edge e € T partitions E(G) into two sets Ae and Be.
@ Foreach e € E(T), we define mid(e) = V(Aeg) N V(Be).

@ The width of a branch decomposition is maxecg(ry mid(e)|.

@ The branchwidth of a graph G (denoted bw(GQ)) is the
minimum width over all branch decompositions of G:

bw(G) = min max |mid(e)|
(T,u) ecE(T)
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Graph minors

@ His a contraction of G (H =<¢ G) if H occurs from G after
applying a series of edge contractions.

@ His aminorof G (H <, G) if H is the contraction of some
subgraph of G.

@ A graph class G is minor closed if every minor of a graph in
Gisagaining.

@ A graph class G is H-minor-free (or, excludes H as a
minor) if no graph in G contains H as a minor.
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Graph Minors Theorem

@ Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation <p,.

@ Consequence: every minor closed graph class G has a
finite set of minimal excluded minors.

@ Algorithmic Consequence: Membership testing for any

minor closed graph class G can be done in polynomial time
(O(n%)).
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Parameters

@ A parameter P is any function mapping graphs to
non-negative integers:

P:G—>NINT

@ Examples: Size of a minimum vertex cover, size of a
maximum clique, ...

@ The parameterized problem associated with P asks, for
some fixed k, whether P(G) > k for a given graph G.

@ We say that a parameter P is minor closed if for every

graph H,
H=<mnG = P(H) <P(G).
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An algorithmic consequence of the Graph Minors

Theorem

@ Every minor closed parameterized problem has an
O(f(k) - n°M)

steps algorithm.

» Problem: /(k) is unknown or huge!
» Question: How and when can we improve (k) above?

» Question: When can 7(k) be a subexponential function?
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State of the art General idea

2. General framework
to obtain subexponential
parameterized algorithms
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General framework State of the art General idea

Subexponential parameterized algorithms on planar

graphs

@ [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R.
Niedermeier. SWAT’00, Algorithmica 2002]

° O(cﬂn) algorithm for k-DOMINATING SET on planar
graphs.

e First non-trivial result for an NP-hard FPT problem with
sublinear exponent.

@ Other references:
o [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
e [M. S. Chang, T. Kloks, and C. M. Lee. WG’01]
o [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
o [Fernau. MFCS’ 04]
e [Kanj and L. Perkovi¢. MFCS’ 02]
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» Bidimensionality.
[E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos.
SODA’04, J.ACM’05]

(B) Dynamic programming which uses graph structure:
For every graph G € G and given an optimal branch
decomposition (T, i) of G, the value of P(G) can be
computed in 7(bw(G)) - n°() steps.

» Catalan structures.
[F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP’07]
[F. Dorn, F.V. Fomin, D.M. Thilikos. SODA’08]
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(A) Forevery graph G € G, bw(G) < o-/P(G)+ O(1

(B) For every graph G € G and glven an optlmal branch
decomposition (T, i) of G, the value of P(G) can be
computed in 7/(bw(G)) - n°() steps.

Case 1: If bw(G) > a - Vk, then by (A):
a-Vk <bw(G)<a-/P(G) +0(1) = P(G)>k.

Case 2: Otherwise (bw(G) < o - V/k) by (B), P(G) can be
computed in 7(a - Vk) - n®) steps.

» Iff(0) = ), this strategy yields an exact algorithm with
running time 20<f> n°1)  —  subexponential!

@ Note: we must add O(n®) to compute an optimal branch
decomposition of a planar graph.
13/46



MDBCS4 Definition Example State of the art Subexponential algo

3. MAXIMUM
d-DEGREE-BOUNDED

CONNECTED SUBGRAPH

14/46



MDBCS4 Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS,

@ MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:
e an undirected graph G = (V, E),
e aninteger d > 2, and
e a weight function w : E — R™.

15/46



MDBCS4 Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS,

@ MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:
e an undirected graph G = (V, E),
e aninteger d > 2, and
e a weight function w : E — R™.

Output:

a subset of edges E’ C E such that G’ = G[E']
e is connected,
o A(G') <d,
e and maximising > ., w(e).

15/46



MDBCS4 Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS,

@ MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:
e an undirected graph G = (V, E),
e aninteger d > 2, and
e a weight function w : E — R™.

Output:

a subset of edges E’ C E such that G’ = G[E']
e is connected,
o A(G') <d,
e and maximising > ., w(e).

@ It is one of the classical NP-hard problems of
[Garey and Johnson. Computers and Intractability, 1979]

15/46



MDBCS4 Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS,

@ MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:
e an undirected graph G = (V, E),
e aninteger d > 2, and
e a weight function w : E — R™.

Output:

a subset of edges E’ C E such that G’ = G[E']
e is connected,
o A(G') <d,
e and maximising > ., w(e).

@ It is one of the classical NP-hard problems of
[Garey and Johnson. Computers and Intractability, 1979]

@ If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

15/46



MDBCS4 Definition Example State of the art Subexponential algo

Definition of the problem: MDBCS,

@ MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:
e an undirected graph G = (V, E),
e aninteger d > 2, and
e a weight function w : E — R™.

Output:
a subset of edges E’ C E such that G’ = G[E']
@ is connected,
o A(G) < d,
e and maximising > ., w(e).
@ It is one of the classical NP-hard problems of
[Garey and Johnson. Computers and Intractability, 1979]

@ If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

@ For fixedd = 2 it is the LONGEST PATH (OR CYCLE). s
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Example with d = 3, w(e) = 1 for all e € E(G)
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Example with d = 3 (IV)

23
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State of the art

Case d = 2 (LONGEST PATH):

@ Approximation algorithms:
(@) (IOQn) approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick. STOC’94].
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State of the art

Case d = 2 (LONGEST PATH):

@ Approximation algorithms:
(@) (IOQn) approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick. STOC’94].

2
O (n ('Og 'og”) >—approximation.

log n

[A. Bjorklund and T. Husfeldt. SIAM J. Computing’03].

@ Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani, and G. Ramkumar.
Algorithmica’97].
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State of the art (ll)

Cased > 2
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh.
ALGO/WAOQOA'08]:

@ Approximation algorithms (n = |V(G)|, m = |E(G)|):

e min{3, % }-approximation algorithm for weighted graphs.
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State of the art (ll)

Cased > 2
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh.

ALGO/WAOA’08]:

@ Approximation algorithms (n = |V(G)|, m = |E(G)|):
e min{3, % }-approximation algorithm for weighted graphs.

° mln{logn, 2Iogn} approximation algorithm for unweighted
graphs, using color coding.
e when G accepts a low-degree spanning tree, in terms of

d, then MDBCS, can be approximated within a small
constant factor.

@ Hardness results:

e For each fixed d > 2, MDBCS, does not accept any
constant-factor approximation in general graphs.
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Let us apply the general strategy...

We define the following parameter on a planar graph G:
mdbcsy(G) = max{|E(H)| | HC G A His connected A A(H) < d}.

(we focus on the unweighted version of the problem)
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Let us apply the general strategy...

We define the following parameter on a planar graph G:
mdbcsy(G) = max{|E(H)| | HC G A His connected A A(H) < d}.
(we focus on the unweighted version of the problem)

We distinguish two cases according to bw(G):

(A) If bw(G) is big (> o - Vk):

we must exhibit a certificate that mdbcs4(G) is also big.
(B) Otherwise, if bw(G) is small (< o - Vk):

we compute mdbces,(G) efficiently using Catalan

structures and dynamic programming techniques over an
optimal branch decomposition of G.
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Theorem (Robertson, Seymour & Thomas, 1994)

Let¢ > 1 be an integer. Every planar graph of branchwidth > ¢
contains an (¢/4 x ¢/4)-grid as a minor.
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Theorem (Robertson, Seymour & Thomas, 1994)

Let¢ > 1 be an integer. Every planar graph of branchwidth > ¢
contains an (¢/4 x ¢/4)-grid as a minor.

@ Thanks to this result, it is enough to see:

(A.1) That the parameter is minor closed.

(A.2) How the parameter behaves on the square grid.
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Condition : the parameter is minor closed

Let G’ be a minor of G.

e If G’ occurs from G after an edge removal, then clearly
mdbcs,(G') < mdbesy(G).
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Condition : the parameter is minor closed

Let G’ be a minor of G.

e If G’ occurs from G after an edge removal, then clearly
mdbcs,(G') < mdbesy(G).

@ If G’ occurs after the contraction of an edge {x, y}:
let H' C G’ be a solution, and let H be the major of H' in G

— We will show that we can find a connected subgraph
H* C HC Gwith A(H*) < d and |E(H*)| > |E(H")|.
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e HC G =nmG.

@ The edge {x,y} € E(G) has been contracted to the vertex
xy € V(G).

@ Let H C G be the major of H' C G'.

N X-y
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® Ny(x) UNH(y) = {x} = {y} = Nx—y U Nyy LI Ny _x.
@ x, y, and the vertices in N,, may have degree d + 1!!
@ We will extract a subgraph H* C H' such that
|E(H*)| > |E(H'")|. Suppose w.l.o.g. that [Nx_y| > |N,_x]|.

N X-y
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If [Ny—y| = d, let H* = (V(H) — {y}, E(H) — {x.}).
If [Nx_y| < d:
o If [Ny|=0,let H* = H.
o If Ny = {z1}, let H* = (V(H), E(H) — {x, z1}).
o If Ny ={z,..., 2} for some k > 2, let
H* = (V(H), E(H) — {x.z1} — U, {y. 2i}).
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Condition : how it behaves in the square grid

@ We must see thatin an (r x r)-grid R,
mdbcs,(R) = (6r)? + o((6r)?).
@ Indeed:
e If d =2, a Hamiltonian path in R gives
mdbesy(R) > r? — 1.
e If d > 4, the whole grid R is a solution, giving
mdbcsy(R) = 2r(r — 1).
e Finally, if d = 3, the subgraph below gives

mdbcs;(R) > 2r(r — 1) — W;ﬂ (r—2).

[ 1] [[T1]
[ ] [ [T 1]
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Case :putting all together

Lemma

For any d > 2 and for any planar graph G it holds that

bw(G) < % -v/mdbesy(G) + O(1), with

1 ,ifd =2
s={ /32 ,ifd=3

V2 Jifd >4
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Case : fastdynamic programming

Given an optimal branch decomposition (T, 1) of a planar
graph G, there are two main ideas in the dynamic
programming algorithm:

(B.1) Catalan structure in mid(e) to bound the size of the tables.

(B.2) How to deal with the connectivity in the join/forget
operations.
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Case : Catalan structures

@ Given a set A, we define a d-weighted packing of A as any
pair (A, ¢) where

o Ais a (possible empty) collection of mutually disjoint
non-empty subsets of A, and

e ¢: A—{0,...,d} is a mapping corresponding numbers
from 0 to d to the elements of A.
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Case : Catalan structures

@ Given a set A, we define a d-weighted packing of A as any
pair (A, ¢) where

o Ais a (possible empty) collection of mutually disjoint
non-empty subsets of A, and

e ¢: A—{0,...,d} is a mapping corresponding numbers
from 0 to d to the elements of A.

@ Let #, be the collection of all d-weighted packings (A, ¢)
of mid(e).

@ We calculate opt,(A, ¢) for each (A, ¢) € Pe.

e If Imid(e)| = / it is easy to see that | Z,| < f(¢) - (d + 1)",
with f(¢) < 2¢1og?,

@ Can we say something better about (¢)??
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@ Sphere cut decomposition: Branch decomposition where the
vertices in mid(e) are situated around a noose.
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vertices in mid(e) are situated around a noose.
— for any planar graph there exists an optimal branch
decomposition which is also a sphere cut decomposition
[P. Seymour and R. Thomas. Combinatorica’94]
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@ Sphere cut decomposition: Branch decomposition where the
vertices in mid(e) are situated around a noose.
— for any planar graph there exists an optimal branch
decomposition which is also a sphere cut decomposition

[P. Seymour and R. Thomas. Combinatorica’94]

@ We have to calculate in how many ways we can draw
hyperedges inside a cycle such that they touch the cycle only on
its vertices and they do not intersect:

SN )
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@ The number of such configurations is exactly the number of
non-crossing partitions over ¢ vertices, which is closely related to
the ¢-th Catalan number :

1 /20 4¢ ¢ ool
CN“)—m(e>”¢W~4—2 :
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@ The number of such configurations is exactly the number of

non-crossing partitions over ¢ vertices, which is closely related to
the ¢-th Catalan number :

1 /20 4¢ ¢ ool
CN“)—m(e>”¢W~4—2 :

14 4

|Ze] = (d+1) Z()CN(E—/ < (d+1)¢- Z(f)ﬂ*" =

i=0 i=0

(d+1)244.i (f) G)i = (d+1)‘34f-<1 +%>£:(d+1)‘~5‘
i=0
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Case : How to deal with connectivity

@ General idea: we have to keep track of the connected
components of the solutions, depending on how they
intersect mid(e):

mid(e) A

mid(e) ¢ mid(e)
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Case : How to deal with connectivity

@ General idea: we have to keep track of the connected
components of the solutions, depending on how they
intersect mid(e):

mid(e) A

mid(e) ¢ mid(e)

@ We distinguish two cases according to the partition A of
mid(e):
(1) A#0.
2) A=0.
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mid(e)

e
€/ \&

(1) Case A # 0.
(1.1) Case A #
(1.2) Case A #

= =

]

P

(1.1) (1.2)
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mid(e)

(1) Case A # 0.

(1.1) Case Ay # 0, A #Q)
(1.2) Case Ay # 0, Ax = 0.
(1.1) (1.2
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mid(e)

(1) Case A # 0.
(1.1) Case A1 #0, A ;é
(1.2) Case A; # 0, Ap =

(1.1) (1.2)
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mid(e)

e
€/ \&

(2) Case A = 0.
(2.1) Case A1 =0, A> = 0.
(2.2) Case Ay =10, Ay # 0.
(2.3) Case A1 £ 0, Az # 0.

(2.3)
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mid(e)

(2) Case A = 0.
(2.1) Case A1 =0, A> = 0.
(2.2) Case A1 =0, Az # 0.
(2.3) Case A # 0, Az # 0.

(2.1) (23
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mid(e)

(2) Case A = 0.
(2.1) Case A1 =0, A> = 0.
(2.2) Case A1 =0, Az # 0.
(2.3) Case A # 0, Az # 0.

(2.1) (2.2) (2.3)
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mid(e)

(2) Case A = 0.
(2.1) Case A1 =0, A> = 0.
(2.2) Case A1 =0, Az # 0.
(2.3) Case A # 0, Az # 0.

(2.1) (2.2 (2.3)
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Finally...

k-PLANAR MAXIMUM d-DEGREE-BOUNDED CONNECTED
SUBGRAPH is solvable in time O (2'09(5(‘”1))8‘/}/5\& N+ n3)

forany d > 2.
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Finally...

k-PLANAR MAXIMUM d-DEGREE-BOUNDED CONNECTED
SUBGRAPH is solvable in time O (2'09(5(‘”1))8‘/}/5\& N+ n3)

forany d > 2.

Proof.

First, we construct in time ©O(n®) an optimal sphere cut decomposition of G of
width bw(G). We distinguish two cases according to bw(G):
o It bw(G) > 4/6 - Vk, then the answer to the parameterized
problem is automatically YES.

o Otherwise, if bw(G) < 4/ - Vk, the value of the parameter
mdbcs,(G) can be computed in time

0 ((d+ 1)8VK/s . 58VK/S . 4/5\/K - n) =
O (2Iog(5(d+1))8ﬁ/6\/E. n).
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Extensions

This strategy can be adapted to similar problems:

@ Maximising the number of vertices (instead of edges).
@ Looking for an induced subgraph.
@ More general constraints on the degree.

@ Exact algorithms.
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Conclusions and further research

@ We have described a framework to obtain subexponential
parameterized algorithms on planar graphs for a family
of problems dealing with degree-bounded connected
subgraphs.
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Conclusions and further research

@ We have described a framework to obtain subexponential
parameterized algorithms on planar graphs for a family
of problems dealing with degree-bounded connected
subgraphs.

@ There is still a loooooot of work to do:

e Improve the running time.

e Extend these algorithms to other sparse graph classes:
bounded genus, minor-free, ...

e Extend these algorithms to the edge-weighted version
(one can prove that the parameter is still minor closed).

e Consider a more general family of problems:
largest subgraph excluding a fixed graph F as a minor...
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Gracies!
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