Computing Distances on Graph Associahedra is

Fixed-parameter Tractable

Luis Felipe I. Cunha Univ. Federal Fluminense, Niteréi, Brazil
Ignasi Sau LIRMM, Univ. Montpellier, CNRS, France
Uéverton S. Souza UFF+IMPA, Niteréi+Rio de Janeiro, Brazil
Mario Valencia-Pabon Univ. Lorraine, LORIA, Nancy, France

Seminaire AIGCo, LIRMM, Montpellier
January 15, 2026

Originated in Il Fortaleza Workshop em Combinatéria (ForWorC 2023)
Available at arXiv:2504.18338 (ICALP 2025)

@ OLIRMM

Elimination trees

Tree T obtained from a graph G by picking recursively a vertex in each
connected component of the current graph:

G s T z
U
[u
X v
t Yy
Y s t

Elimination trees (or forests)

Tree T obtained from a graph G by picking recursively a vertex in each
connected component of the current graph:

G s T z
U
[u
X v
t Yy
Y s t
z x

Elimination trees have been studied extensively in many contexts:

graph theory, combinatorial optimization, polyhedral combinatorics,
data structures, VLSI design, ...

Elimination trees (or forests)

Tree T obtained from a graph G by picking recursively a vertex in each
connected component of the current graph:

G s T z
U
[u
X v
t Yy
Y s t
z x

Elimination trees have been studied extensively in many contexts:

graph theory, combinatorial optimization, polyhedral combinatorics,
data structures, VLSI design, ...

Elimination trees (or forests)

Tree T obtained from a graph G by picking recursively a vertex in each
connected component of the current graph:

G s T z
U
[u
X v
t Yy
Y s t
z x

Elimination trees have been studied extensively in many contexts:

graph theory, combinatorial optimization, polyhedral combinatorics,
data structures, VLSI design, ...

Rotation distance between elimination trees

rotation of edge uv
— A

T Ty T3 Ty Ty T3

Rotation distance between elimination trees

rotation of edge uv
— A

T Ty T3 Ty Ty T3

The rotation distance between two elimination trees (forests) T, T’ of a
graph G, denoted by dist(T, T’), is the minimum number of rotations it
takes to transform T into T'.

Graph associahedra

For any graph G, the flip graph of elimination forests of G under edge
rotations is the skeleton of a polytope: graph associahedron A(G).

Object introduced by [Carr, Devadoss, Postnikov. 2006-2009]

Graph associahedra

For any graph G, the flip graph of elimination forests of G under edge
rotations is the skeleton of a polytope: graph associahedron A(G).

Object introduced by

[Carr, Devadoss, Postnikov. 2006-2009]

Famous particular cases of A(G) depending on the underlying graph G:

G A(G)

path (standard) associahedron
complete graph | permutahedron

cycle cyclohedron

star stellohedron

matching hypercube

lllustration of some famous examples
D@
s »
stellohedron rd associahedron ID‘ DEERCCo

S

DO} (t 51[
3 [ONE) T-(? A
hypercube (% |§‘
u/
D Cf)
® 0 i ﬁ /\ : @? -
,»‘ I ‘ cyclohedron
[ONO)] / /
@ 0o , N ‘

Shamelessly stolen from this very nice article: [Cardinal, Merino, Miitze. 2022]
5

Zooming in: permutahedron and (standard) associahedron

Shamelessly stolen from this very nice article: [Cardinal, Merino, Miitze. 2022]

Zooming in: permutahedron and (standard) associahedron

3421 4321

1234

The (standard) associahedron has a rich history and literature, connecting
computer science, combinatorics, algebra, and topology.

Zooming in: permutahedron and (standard) associahedron

3421 4321

1234

Binary trees are in bijection with many other Catalan objects:
triangulations of a convex polygon, well-formed parenthesis, Dyck paths, ...

Intensively studied: diameter of graph associahedra

Determining the diameter exactly, or upper/lower bounds, or estimates:

o If G is a path: [Sleator, Tarjan, Thurston. 1998]
[Pournin. 2014]

o If G is a star: [Manneville, Pilaud. 2010]
o If G is a cycle: [Pournin. 2017]
o If G is a tree: [Manneville, Pilaud. 2010]

[Cardinal, Langerman, Pérez-Lantero. 2018]

o If G is a complete bipartite or trivially perfect graph:
[Cardinal, Pournin, Valencia-Pabon. 2022]

o If G is a caterpillar: [Berendsohn. 2022]

o If G has bounded treedepth or treewidth:
[Cardinal, Pournin, Valencia-Pabon. 2022]

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Only few cases known to be solvable in polynomial time:

o If G is a complete graph: [Folklore]
o If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
o If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Only few cases known to be solvable in polynomial time:

o If G is a complete graph: [Folklore]
o If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
o If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Only few cases known to be solvable in polynomial time:

o If G is a complete graph: [Folklore]
o If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
o If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.
This is the problem we solve!

Back to the general case

RoOTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Back to the general case

RoOTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Is the problem NP-hard for a general graph G?
[Cardinal, Kleist, Klemz, Lubiw, Miitze, Neuhaus, Pournin. Dagstuhl 2022]

Back to the general case

RoOTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Is the problem NP-hard for a general graph G?
[Cardinal, Kleist, Klemz, Lubiw, Miitze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!
[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

Back to the general case

RoOTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Is the problem NP-hard for a general graph G?
[Cardinal, Kleist, Klemz, Lubiw, Miitze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!
[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]
[Cardinal, Steiner. 2023]

Back to the general case

ROTATION DISTANCE
Instance: A graph G, two elimination trees T and T’ of G, and a

positive integer k.
Question: s the rotation distance between T and T’ at most k?

Is the problem NP-hard for a general graph G?
[Cardinal, Kleist, Klemz, Lubiw, Miitze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!
[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]
[Cardinal, Steiner. 2023]

This motivates the study of the | parameterized complexity | of the problem.

Preliminaries: parameterized complexity in one slide

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

o Example: O(n").

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

o Example: O(n").

e FPT problem: solvable in time (k) - n® for an absolute constant c.

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

o Example: O(n").

e FPT problem: solvable in time (k) - n® for an absolute constant c.

o Example: O(2% - n?).

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

o Example: O(n").

e FPT problem: solvable in time (k) - n® for an absolute constant c.

o Example: O(2% - n?).

e W(i]-hard problem, for i > 1: strong evidence that it is not FPT.

10

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

o Example: O(n").

e FPT problem: solvable in time (k) - n® for an absolute constant c.

o Example: O(2% - n?).
e W(i]-hard problem, for i > 1: strong evidence that it is not FPT.

@ para-NP-hard problem: NP-hard for a fixed value of the parameter.

10

Statement of the parameterized problem

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a

positive integer k.
Parameter: k.

Question: Is the rotation distance between T and T’ at most k?

11

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a

positive integer k.
Parameter: k.

Question: Is the rotation distance between T and T’ at most k?

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)|,

11

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a

positive integer k.
Parameter: k.

Question: Is the rotation distance between T and T’ at most k?

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)|,
20(6)

with f(k) = k¥
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

Y

11

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Parameter: k.

Question: Is the rotation distance between T and T’ at most k?

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
20(6)

with f(k) = k¥
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

’

Y

Prior to our work, only the case where G is a path was known to be FPT.
[Cleary, St. John. 2009] [Lucas. 2010] [Kanj, Sedgwick, Xia..2017] [Li. Xia._2023]

11

Main ideas of the FPT algorithm

Goal: find an /-rotation sequence o from T to T', for some / < k.

12

Main ideas of the FPT algorithm

Goal: find an /-rotation sequence o from T to T', for some / < k.

High level: identify a subset of marked vertices M C V/(T), of
size < f(k), so that we can assume that the
desired ¢-rotation sequence o uses only vertices in M.

12

Main ideas of the FPT algorithm

Goal: find an /-rotation sequence o from T to T', for some / < k.

High level: identify a subset of marked vertices M C V/(T), of
size < f(k), so that we can assume that the
desired ¢-rotation sequence o uses only vertices in M.

Once this is proved, an FPT algorithm follows directly by applying brute
force and guessing all possible rotations using only vertices in M.

12

Main ideas of the FPT algorithm

Goal: find an /-rotation sequence o from T to T', for some / < k.

High level: identify a subset of marked vertices M C V/(T), of
size < f(k), so that we can assume that the
desired ¢-rotation sequence o uses only vertices in M.

Once this is proved, an FPT algorithm follows directly by applying brute
force and guessing all possible rotations using only vertices in M.

Let us see how we find such a “small” set M C V/(T) of marked vertices...

12

There are few children-bad vertices

rotation of edge uv
— A

Tl TQ T3 T4 T2 T3

Observation: a rotation may change the set of children of at most three
vertices (but the parent of arbitrarily many vertices).

13

There are few children-bad vertices

rotation of edge uv
— A

Tl TQ T3 T4 T2 T3

Observation: a rotation may change the set of children of at most three
vertices (but the parent of arbitrarily many vertices).

A vertex v € V(T)is (T, T')-children-bad if its set of children in T is
different from its set of children in T.

13

There are few children-bad vertices

rotation of edge uv

Tl TQ T3 T4 T2 T3

Observation: a rotation may change the set of children of at most three
vertices (but the parent of arbitrarily many vertices).

A vertex v € V(T)is (T, T')-children-bad if its set of children in T is
different from its set of children in T.

We may assume that there are at most 3k (T, T')-children-bad vertices.

13

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by < 1.

14

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by < 1.
Let C C V(T) be the set of (T, T')-children-bad vertices.

14

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by < 1.
Let C C V(T) be the set of (T, T')-children-bad vertices.

We define B, = N2X[C U root(T)]. /T\

T

14

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by < 1.
Let C C V(T) be the set of (T, T')-children-bad vertices.

We define B, = N2X[C U root(T)]. /T\

T

If dist(T, T') < k, then there exists an (-rotation sequence from T to T’,
with ¢ < k, using only vertices in Bep.

14

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by < 1.
Let C C V(T) be the set of (T, T')-children-bad vertices.

We define B, = N2X[C U root(T)]. /T\

T

If dist(T, T') < k, then there exists an (-rotation sequence from T to T’,
with ¢ < k, using only vertices in Bep.

If A(T) is bounded (in particular, if A(G) is bounded); we are done!

14

Towards the marking algorithm: trace of a vertex

Only obstacle to get our FPT algorithm: high-degree vertices in T [Bcp].

15

Towards the marking algorithm: trace of a vertex

Only obstacle to get our FPT algorithm: high-degree vertices in T [Bcp].

Fix a connected component Z of T[B.,] (considered as a rooted tree).

15

Towards the marking algorithm: trace of a vertex

Only obstacle to get our FPT algorithm: high-degree vertices in T [Bcp].
Fix a connected component Z of T[B.,] (considered as a rooted tree).

trace(T, Z,v): “abstract” neighborhood of T(v) in its ancestors in Z.

15

Towards the marking algorithm: trace of a vertex

Only obstacle to get our FPT algorithm: high-degree vertices in T [Bcp].
Fix a connected component Z of T[B.,] (considered as a rooted tree).

trace(T, Z,v): “abstract” neighborhood of T(v) in its ancestors in Z.

trace(T, Z, vy)
trace(T, Z, vs)
trace(T, Z, v3)
trace(T, Z, vy)
trace(T,)
trace(T Z V)
trace(T, Z, v7)

15

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

16

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z”

16

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z" — recursive!

16

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.
Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f(k).

16

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.
Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f(k).

Let o be an (-rotation sequence from T to T', for some ¢ < k. For every

vertex v € V(T), there are at most k vertices uy, . .., ux € children(T,v)
such that o uses a vertex in each of the rooted subtrees T (u1),. .., T (uk).

16

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f(k).

Let o be an (-rotation sequence from T to T', for some ¢ < k. For every
vertex v € V(T), there are at most k vertices uy, . .., ux € children(T,v)
such that o uses a vertex in each of the rooted subtrees T (u1),. .., T (uk).

16

Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f(k).

Let o be an (-rotation sequence from T to T', for some ¢ < k. For every
vertex v € V(T), there are at most k vertices uy, . .., ux € children(T,v)
such that o uses a vertex in each of the rooted subtrees T (u1),. .., T (uk).

Crucial: enough to keep track of “at least k 4+ 1", not the actual_number.

16

Type of a vertex: formal definition

7(T,Z,v) is recursively defined as follows:

17

Type of a vertex: formal definition

7(T,Z,v) is recursively defined as follows:

type-children(T, Z,v) := {7(T,Z,u) | u € children(Z, v)}:
set of types occurring in the children of v.

17

Type of a vertex: formal definition

7(T,Z,v) is recursively defined as follows:

type-children(T, Z,v) := {7(T,Z,u) | u € children(Z, v)}:
set of types occurring in the children of v.

o If v is a leaf of Z, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v)).

17

Type of a vertex: formal definition

7(T,Z,v) is recursively defined as follows:

type-children(T, Z,v) := {7(T,Z,u) | u € children(Z, v)}:
set of types occurring in the children of v.

o If v is a leaf of Z, then
7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v)).
o If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v), trace(T, Z, v), f,), where

17

Type of a vertex: formal definition

7(T,Z,v) is recursively defined as follows:

type-children(T, Z,v) := {7(T,Z,u) | u € children(Z, v)}:
set of types occurring in the children of v.

o If v is a leaf of Z, then
7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v)).
@ If v is not a leaf, then
7(T,Z,v) = (want-parent(T, T', v), trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that,
for every T € type-children(T, Z, v),

f,(t) =min{k + 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

17

Type of a vertex: example

If v is not a leaf, then
7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

18

Type of a vertex: example

If v is not a leaf, then
7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

18

Type of a vertex: example

If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

11 2 2 1 2 2 2 1 2 1 2 122222 21 1 2 11 11

18

Type of a vertex: example

If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

11 2 2 1 2 2 2 1 2 1 2 122222 21 1 2 11 11

18

Type of a vertex: example

If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

11 2 2 1 2 2 2 1 2 1 2 122222 21 1 2 11 11

18

Type of a vertex: example

If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

11 2 2 1 2 2 2 1 2 1 2 122222 21 1 2 11 11

18

Type of a vertex: example

If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

11 2 2 1 2 2 2 1 2 1 2 122222 21 1 2 11 11

18

Type of a vertex: example

If v is not a leaf, then

7(T,Z,v) = (want-parent(T, T', v),trace(T, Z, v), f,), where

f, : type-children(T, Z,v) — [k + 1] is a mapping defined such that, for
every T € type-children(T, Z, v),

fu(1) =min{k+ 1, |{u € children(Z,v) | 7(T,Z,u) = 7}|}.

11 2 2 1 2 2 2 1 2 1 2 122222 21 1 2 11 11

18

Number of types bounded by a function of k

{r(T,Z,v)|veV(Z)} has size bounded by a function g(k),

19

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

19

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

19

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

k=1

3@ 3@ 3 3@3® 3e 3 3@ 3@ 3 A 4@ 4e 4 4@ 4@ 4 A 4@ 4e 4 Ao 4@ 4e 4

@ & @ e © @ @ ® @ e © @ @ & @ e © @ e © @
1 1 1 11 11 1 1 1 22 22 2 2 2 22 22 22 22

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

k=1

3@ 3@ 3 3@3® 3e 3 3@ 3@ 3 A 4@ 4e 4 4@ 4@ 4 A 4@ 4e 4 Ao 4@ 4e 4

@ & @ e © @ @ ® @ e © @ @ & @ e © @ e © @
1 1 1 11 11 1 1 1 22 22 2 2 2 22 22 22 22

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

k=1

3@ 3@ 3 3@3® 3e 3 3@ 3@ 3 A 4@ 4e 4 4@ 4@ 4 A 4@ 4e 4 Ao 4@ 4e 4

@ & @ e © @ @ ® @ e © @ @ & @ e © @ e © @
1 1 1 11 11 1 1 1 22 22 2 2 2 22 22 22 22

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

k=1

3@ 3® 3 3@3® 3e 3 3@ 3@ 3 A 4@ 4e 4 4@ 4@ 4 A 4@ 4e 4 Ao 4@ 4e 4

@ & @ e © @ @ ® @ e © @ @ & @ e © @ e © @
1 1 1 11 11 1 1 1 22 22 2 2 2 22 22 22 22

19

Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

k=1

3@ 3® 3 3@3® 3e 3 3@ 3@ 3 qe4® 4e 4 4@ 4@ 4 J@4® 4o 4 e 4® 4e 4

@ 8 @ e e @ @ ® @ e e @ @ 8 @ e © @ e © @
1 1 1 11 11 1 1 1 22 22 2 2 2 22 22 22 22

19

The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

20

The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

Main technical lemma:

If dist(T, T') < k, then there exists an (-rotation sequence from T to T',
with £ < k, using only vertices in M.

20

The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

Main technical lemma:

If dist(T, T') < k, then there exists an (-rotation sequence from T to T',
with £ < k, using only vertices in M.

Scheme of the proof:
@ Let o be an /-rotation sequence from T to T’ minimizing the number

of non-marked vertices used by o.

20

The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

Main technical lemma:

If dist(T, T') < k, then there exists an (-rotation sequence from T to T',
with £ < k, using only vertices in M.

Scheme of the proof:
@ Let o be an /-rotation sequence from T to T’ minimizing the number

of non-marked vertices used by o.
@ Goal: define another sequence ¢’ using < non-marked vertices.

20

The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

Main technical lemma:

If dist(T, T') < k, then there exists an (-rotation sequence from T to T',
with £ < k, using only vertices in M.

Scheme of the proof:
@ Let o be an /-rotation sequence from T to T’ minimizing the number

of non-marked vertices used by o.
@ Goal: define another sequence ¢’ using < non-marked vertices.
@ Let v € V(T) be a downmost non-marked vertex used by o.

20

The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

Main technical lemma:

If dist(T, T') < k, then there exists an (-rotation sequence from T to T',
with £ < k, using only vertices in M.

Scheme of the proof:
@ Let o be an /-rotation sequence from T to T’ minimizing the number

of non-marked vertices used by o.
@ Goal: define another sequence ¢’ using < non-marked vertices.
@ Let v € V(T) be a downmost non-marked vertex used by o.

@ We distinguish two cases...
20

Proof of the main technical lemma: Case 1

If v has a marked (non-used) T-sibling v/ with 7(T,Z,v) =7(T,Z,V):

root(Z)

T(T7 Z7 /U) = T(Tﬂ Z? v/)

T(T7 Z? u) = T(T7 Z? u/)

21

Proof of the main technical lemma: Case 1

If v has a marked (non-used) T-sibling v/ with 7(T,Z,v) =7(T,Z,V):

root(Z)

T(T7 Z7 /U) = T(Tﬂ Z? v/)

T(T7 Z? u) = T(T7 Z? u/)

We define o’ from o by just replacing v with v/ in all the rotations of o

involving v.
21

Proof of the main technical lemma: Case 2

All T-siblings v of v with 7(T,Z,v) =7(T,Z, V') are non-marked.

22

Proof of the main technical lemma: Case 2

All T-siblings v of v with 7(T,Z,v) =7(T,Z, V') are non-marked.

In this case, to define o/, we need to modify o in a more global way:

22

Proof of the main technical lemma: Case 2

All T-siblings v of v with 7(T,Z,v) =7(T,Z, V') are non-marked.

In this case, to define o/, we need to modify o in a more global way:

There exists a unique vertex v* € ancestors(Z, v) such that
@ all vertices in T(v*) are non-marked,
@ v* has a marked T-sibling v/ such that
o 7(T,Z,v*)=7(T,Z,v"), and
e no vertex in T(v') is used by o, and

@ v* is the vertex closest to v satisfying the above properties.

Proof of the main technical lemma: Case 2

All T-siblings v of v with 7(T,Z,v) =7(T,Z, V') are non-marked.

In this case, to define ¢/, we need to modify o in a more global way:
root(Z)

Ui
- ‘ ‘ representative function p ‘ e ‘ -t
U; ‘ U m Ui r [p(uw) \Ui
Ld Ld L Ld L] Ld
el o]l ool]
el B
T(v) T(p(v))

22

New results: can we go beyond graph associahedra?

23

New results: can we go beyond graph associahedra?

ROTATION DISTANCE problem: distances on graph associahedra.

23

New results: can we go beyond graph associahedra?

ROTATION DISTANCE problem: distances on graph associahedra.

Natural generalization: distances on hypergraphic polytopes.

23

New results: can we go beyond graph associahedra?

Fix a hypergraph H. We define the hypergraphic polytope of H as:

23

New results: can we go beyond graph associahedra?

Fix a hypergraph H. We define the hypergraphic polytope of H as:

@ Vertices: all acyclic orientations of H.
o Edges: if the two corresponding rotations are related by a flip.

23

New results: can we go beyond graph associahedra?

Computing distances on hypergraphic polytopes is NP-hard.
[Cardinal, Steiner. 2023]

23

New results: can we go beyond graph associahedra?

Computing distances on hypergraphic polytopes is NP-hard.
[Cardinal, Steiner. 2023]

Is the problem FPT?

23

New results: can we go beyond graph associahedra?

Computing distances on hypergraphic polytopes is NP-hard.
[Cardinal, Steiner. 2023]

Is the problem FPT?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025+)

Computing distances on hypergraphic polytopes is W|[2]-hard
parameterized by the distance.

23

New results: can we go beyond graph associahedra?

Computing distances on hypergraphic polytopes is NP-hard.
[Cardinal, Steiner. 2023]

Is the problem FPT?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025+)

Computing distances on hypergraphic polytopes is W|[2]-hard
parameterized by the distance.

We present a parameterized reduction from k-DOMINATING SET.

23

Conclusions and further research

24

Conclusions and further research

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
206)

with f(k) = k2
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

7

24

Conclusions and further research

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
206)

with f(k) = k2
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

7

It should be possible to improve f (k) (dominated by the number of types).

24

Conclusions and further research

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
206)

with f(k) = k2
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

7

It should be possible to improve f (k) (dominated by the number of types).

ROTATION DISTANCE || paths | general graphs |

NP-hard open v
FPT v v [this talk]
Polynomial kernel v open

24

Conclusions and further research

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
2002

with f(k) = k¥ :
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

7

It should be possible to improve f (k) (dominated by the number of types).

ROTATION DISTANCE || paths | general graphs |

NP-hard open v
FPT v v [this talk]
Polynomial kernel v open

COMBINATORIAL SHORTEST PATH ON POLYMATROIDS:

@ NP-hard. [Ilto, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. 2023]
o Is it also FPT?

24

Gracies!

25

