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Elimination trees

Tree T obtained from a graph G by picking recursively a vertex in each
connected component of the current graph:

s

u

y

xz

t

v

z

u

x

y

v

s t

G T

Elimination trees have been studied extensively in many contexts:
graph theory, combinatorial optimization, polyhedral combinatorics,
data structures, VLSI design, ...
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Elimination trees (or forests)

Tree T obtained from a graph G by picking recursively a vertex in each
connected component of the current graph:
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Rotation distance between elimination trees
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The rotation distance between two elimination trees (forests) T , T ′ of a
graph G , denoted by dist(T , T ′), is the minimum number of rotations it
takes to transform T into T ′.
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Rotation distance between elimination trees
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Graph associahedra

For any graph G , the flip graph of elimination forests of G under edge
rotations is the skeleton of a polytope: graph associahedron A(G).

Object introduced by [Carr, Devadoss, Postnikov. 2006-2009]

Famous particular cases of A(G) depending on the underlying graph G :

G A(G)
path (standard) associahedron
complete graph permutahedron
cycle cyclohedron
star stellohedron
matching hypercube
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Illustration of some famous examples

Shamelessly stolen from this very nice article: [Cardinal, Merino, Mütze. 2022]
5



Zooming in: permutahedron and (standard) associahedron

Shamelessly stolen from this very nice article: [Cardinal, Merino, Mütze. 2022]
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Zooming in: permutahedron and (standard) associahedron

The (standard) associahedron has a rich history and literature, connecting
computer science, combinatorics, algebra, and topology.
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Zooming in: permutahedron and (standard) associahedron

Binary trees are in bijection with many other Catalan objects:
triangulations of a convex polygon, well-formed parenthesis, Dyck paths, ...
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Intensively studied: diameter of graph associahedra
Determining the diameter exactly, or upper/lower bounds, or estimates:

If G is a path: [Sleator, Tarjan, Thurston. 1998]
[Pournin. 2014]

If G is a star: [Manneville, Pilaud. 2010]

If G is a cycle: [Pournin. 2017]

If G is a tree: [Manneville, Pilaud. 2010]
[Cardinal, Langerman, Pérez-Lantero. 2018]

If G is a complete bipartite or trivially perfect graph:
[Cardinal, Pournin, Valencia-Pabon. 2022]

If G is a caterpillar: [Berendsohn. 2022]

If G has bounded treedepth or treewidth:
[Cardinal, Pournin, Valencia-Pabon. 2022]
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Our focus: computing distances on graph associahedra
Suppose for simplicity that the considered graph G is connected.

Instance: A graph G , two elimination trees T and T ′ of G , and a
positive integer k.

Question: Is the rotation distance between T and T ′ at most k?

Rotation Distance

Only few cases known to be solvable in polynomial time:

If G is a complete graph: [Folklore]

If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]

If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.

This is not the problem we solve!
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Back to the general case

Instance: A graph G , two elimination trees T and T ′ of G , and a
positive integer k.

Question: Is the rotation distance between T and T ′ at most k?

Rotation Distance

Is the problem NP-hard for a general graph G?
[Cardinal, Kleist, Klemz, Lubiw, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!
[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

[Cardinal, Steiner. 2023]

This motivates the study of the parameterized complexity of the problem.
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Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.
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Statement of the parameterized problem

Instance: A graph G , two elimination trees T and T ′ of G , and a
positive integer k.

Parameter: k.
Question: Is the rotation distance between T and T ′ at most k?

Rotation Distance

Theorem

The Rotation Distance problem can be solved in time f (k) · |V (G)|,

with f (k) = kk·22..
.2O(k2)

,

where the tower of exponentials has height at most (3k + 1)4k = O(k2).

Prior to our work, only the case where G is a path was known to be FPT.
[Cleary, St. John. 2009] [Lucas. 2010] [Kanj, Sedgwick, Xia. 2017] [Li, Xia. 2023]
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Statement of the parameterized problem and our result
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Main ideas of the FPT algorithm

Goal: find an ℓ-rotation sequence σ from T to T ′, for some ℓ ≤ k.

High level: identify a subset of marked vertices M ⊆ V (T ), of
size ≤ f (k), so that we can assume that the
desired ℓ-rotation sequence σ uses only vertices in M.

Once this is proved, an FPT algorithm follows directly by applying brute
force and guessing all possible rotations using only vertices in M.

Let us see how we find such a “small” set M ⊆ V (T ) of marked vertices...
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There are few children-bad vertices
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Observation: a rotation may change the set of children of at most three
vertices (but the parent of arbitrarily many vertices).

A vertex v ∈ V (T ) is (T , T ′)-children-bad if its set of children in T is
different from its set of children in T ′.

We may assume that there are at most 3k (T , T ′)-children-bad vertices.
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Restricting the rotations to small balls around bad vertices
Observation: a rotation may change vertex distances (in T ) by ≤ 1.

Let C ⊆ V (T ) be the set of (T , T ′)-children-bad vertices.
We define Bcb = N2k

T [C ∪ root(T )].

T

Bcb

Lemma
If dist(T , T ′) ≤ k, then there exists an ℓ-rotation sequence from T to T ′,
with ℓ ≤ k, using only vertices in Bcb.

If ∆(T ) is bounded (in particular, if ∆(G) is bounded), we are done!
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Towards the marking algorithm: trace of a vertex

Only obstacle to get our FPT algorithm: high-degree vertices in T [Bcb].

Fix a connected component Z of T [Bcb] (considered as a rooted tree).

trace(T , Z , v): “abstract” neighborhood of T (v) in its ancestors in Z .

root(Z)

v1

v2

v3

T (v3)

v6 v7

v5

v4

T (v6) T (v7)

Z

trace(T,Z, v1) = (1)
trace(T,Z, v2) = (1, 1)
trace(T,Z, v3) = (1, 1, 0)
trace(T,Z, v4) = (1)
trace(T,Z, v5) = (1, 0)
trace(T,Z, v6) = (1, 1, 0)
trace(T,Z, v7) = (1, 0, 0)
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Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z” → recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v
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Crucial: enough to keep track of “at least k + 1”, not the actual number.

16



Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z”

→ recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v

T (ui) T (uj) T (u

u1 ui uj u

u′
i

T (u1)

u′
1 u′

j u′

. . . . . .. . .

k+1

k+1

k+1)

u′
1 u′

i u′
j u′

k+1

Crucial: enough to keep track of “at least k + 1”, not the actual number.

16



Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z” → recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v

T (ui) T (uj) T (u

u1 ui uj u

u′
i

T (u1)

u′
1 u′

j u′

. . . . . .. . .

k+1

k+1

k+1)

u′
1 u′

i u′
j u′

k+1

Crucial: enough to keep track of “at least k + 1”, not the actual number.

16



Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z” → recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v

T (ui) T (uj) T (u

u1 ui uj u

u′
i

T (u1)

u′
1 u′

j u′

. . . . . .. . .

k+1

k+1

k+1)

u′
1 u′

i u′
j u′

k+1

Crucial: enough to keep track of “at least k + 1”, not the actual number.

16



Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z” → recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v

T (ui) T (uj) T (u

u1 ui uj u

u′
i

T (u1)

u′
1 u′

j u′

. . . . . .. . .

k+1

k+1

k+1)

u′
1 u′

i u′
j u′

k+1

Crucial: enough to keep track of “at least k + 1”, not the actual number.

16



Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z” → recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v

T (ui) T (uj) T (u

u1 ui uj u

u′
i

T (u1)

u′
1 u′

j u′

. . . . . .. . .

k+1

k+1

k+1)

u′
1 u′

i u′
j u′

k+1

Crucial: enough to keep track of “at least k + 1”, not the actual number.

16



Defining the type of a vertex: τ(T , Z , v)
Goal: if τ(T , Z , v) = τ(T , Z , v ′), then T (v) and T (v ′) interchangeable.

Same type: same “variety of traces among children in Z” → recursive!

Problem: #children may be unbounded, and we want #types ≤ f (k).

Lemma
Let σ be an ℓ-rotation sequence from T to T ′, for some ℓ ≤ k. For every
vertex v ∈ V (T ), there are at most k vertices u1, . . . , uk ∈ children(T , v)
such that σ uses a vertex in each of the rooted subtrees T (u1), . . . , T (uk).

v

T (ui) T (uj) T (u

u1 ui uj u

u′
i

T (u1)

u′
1 u′

j u′

. . . . . .. . .

k+1

k+1

k+1)

u′
1 u′

i u′
j u′

k+1

Crucial: enough to keep track of “at least k + 1”, not the actual number.
16



Type of a vertex: formal definition

τ(T , Z , v) is recursively defined as follows:

type-children(T , Z , v) := {τ(T , Z , u) | u ∈ children(Z , v)}:
set of types occurring in the children of v .

If v is a leaf of Z , then

τ(T , Z , v) = (want-parent(T , T ′, v), trace(T , Z , v)).

If v is not a leaf, then

τ(T , Z , v) = (want-parent(T , T ′, v), trace(T , Z , v), fv ), where

fv : type-children(T , Z , v) → [k + 1] is a mapping defined such that,
for every τ ∈ type-children(T , Z , v),

fv (τ) = min{k + 1 , |{u ∈ children(Z , v) | τ(T , Z , u) = τ}|}.
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Type of a vertex: example

If v is not a leaf, then

τ(T , Z , v) = (want-parent(T , T ′, v), trace(T , Z , v), fv ), where

fv : type-children(T , Z , v) → [k + 1] is a mapping defined such that, for
every τ ∈ type-children(T , Z , v),

fv (τ) = min{k + 1 , |{u ∈ children(Z , v) | τ(T , Z , u) = τ}|}.

1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2 22

Zk = 2

18
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Number of types bounded by a function of k

Lemma
{τ(T , Z , v) | v ∈ V (Z )} has size bounded by a function g(k),

with

g(k) = k22..
.2O(k2)

, where the tower has height diam(Z ) = O(k2).

Marking algorithm : for every vertex v ∈ V (Z ), pre-mark up to k + 1
children of each type, and then prune from the root.

skip
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The set of marked vertices satisfies what we want

Lemma
The set M ⊆ V (T ) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) · |V (G)|.

Main technical lemma:

Lemma
If dist(T , T ′) ≤ k, then there exists an ℓ-rotation sequence from T to T ′,
with ℓ ≤ k, using only vertices in M. skip

Scheme of the proof:
Let σ be an ℓ-rotation sequence from T to T ′ minimizing the number
of non-marked vertices used by σ.
Goal: define another sequence σ′ using < non-marked vertices.
Let v ∈ V (T ) be a downmost non-marked vertex used by σ.
We distinguish two cases... skip
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Proof of the main technical lemma: Case 1
If v has a marked (non-used) T -sibling v ′ with τ(T , Z , v) = τ(T , Z , v ′):

T (v)

T (u)

u

v

T (u)

T (v′)
u′

v′

T (u′)

root(Z)

τ(T,Z, v) = τ(T,Z, v′)

τ(T,Z, u) = τ(T,Z, u′)

We define σ′ from σ by just replacing v with v ′ in all the rotations of σ
involving v . skip
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If v has a marked (non-used) T -sibling v ′ with τ(T , Z , v) = τ(T , Z , v ′):

T (v)
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T (u)

T (v′)
u′

v′

T (u′)

root(Z)

τ(T,Z, v) = τ(T,Z, v′)

τ(T,Z, u) = τ(T,Z, u′)

We define σ′ from σ by just replacing v with v ′ in all the rotations of σ
involving v . skip

21



Proof of the main technical lemma: Case 2

All T -siblings v ′ of v with τ(T , Z , v) = τ(T , Z , v ′) are non-marked.

In this case, to define σ′, we need to modify σ in a more global way:

Lemma
There exists a unique vertex v⋆ ∈ ancestors(Z , v) such that

all vertices in T (v⋆) are non-marked,
v⋆ has a marked T-sibling v ′ such that

τ(T , Z , v⋆) = τ(T , Z , v ′), and
no vertex in T (v ′) is used by σ, and

v⋆ is the vertex closest to v satisfying the above properties.
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Proof of the main technical lemma: Case 2
All T -siblings v ′ of v with τ(T , Z , v) = τ(T , Z , v ′) are non-marked.
In this case, to define σ′, we need to modify σ in a more global way:

v′ = ρ(v⋆)

ρ(v)

U ′
i

U ′
i−1

T (v′)

T (v)

U ′
i,τ ρ(u)

T (ρ(v))

v⋆

v

Ui

Ui−1

T (v⋆)

T (v)

Ui,τ u

T (v)

representative function ρ

root(Z)

τ(T,Z, v⋆) = τ(T,Z, v′)
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New results: can we go beyond graph associahedra?

Rotation Distance problem: distances on graph associahedra.

Natural generalization: distances on hypergraphic polytopes.

Computing distances on hypergraphic polytopes is NP-hard.
[Cardinal, Steiner. 2023]

Is the problem FPT?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025+)
Computing distances on hypergraphic polytopes is W [2]-hard
parameterized by the distance.

We present a parameterized reduction from k-Dominating Set.
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Fix a hypergraph H. We define the hypergraphic polytope of H as:

Vertices: all acyclic orientations of H.
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Conclusions and further research

Theorem

The Rotation Distance problem can be solved in time f (k) · |V (G)|,

with f (k) = kk·22..
.2O(k2)

,

where the tower of exponentials has height at most (3k + 1)4k = O(k2).

It should be possible to improve f (k) (dominated by the number of types).

Rotation Distance paths general graphs
NP-hard open ✓
FPT ✓ ✓[this talk]
Polynomial kernel ✓ open

Combinatorial Shortest Path on Polymatroids:
NP-hard. [Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. 2023]
Is it also FPT?
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Gràcies!
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