

Computing Distances on Graph Associahedra is Fixed-parameter Tractable

Luís Felipe I. Cunha

Univ. Federal Fluminense, Niterói, Brazil

Ignasi Sau

LIRMM, Univ. Montpellier, CNRS, France

Uéverton S. Souza

UFF+IMPA, Niterói+Rio de Janeiro, Brazil

Mario Valencia-Pabon

Univ. Lorraine, LORIA, Nancy, France

Seminaire AIGCo, LIRMM, Montpellier

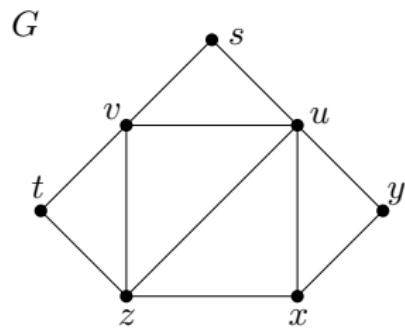
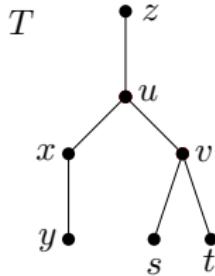
January 15, 2026

Originated in II Fortaleza Workshop em Combinatória (ForWorC 2023)

Available at [arXiv:2504.18338](https://arxiv.org/abs/2504.18338) (ICALP 2025)

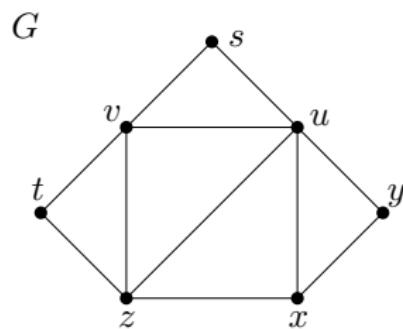
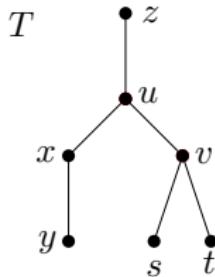
Elimination trees

Tree T obtained from a graph G by picking recursively a vertex in each connected component of the current graph:



Elimination trees (or forests)

Tree T obtained from a graph G by picking recursively a vertex in each connected component of the current graph:

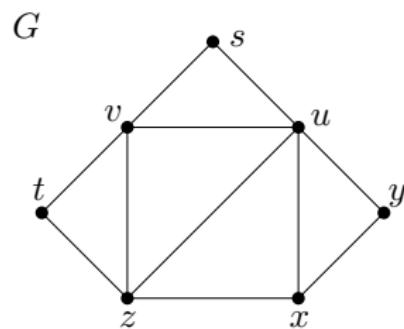
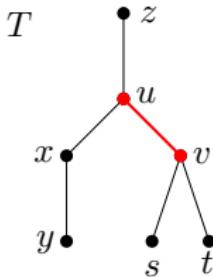


Elimination trees have been studied extensively in many contexts:

graph theory, combinatorial optimization, polyhedral combinatorics, data structures, VLSI design, ...

Elimination trees (or forests)

Tree T obtained from a graph G by picking recursively a vertex in each connected component of the current graph:

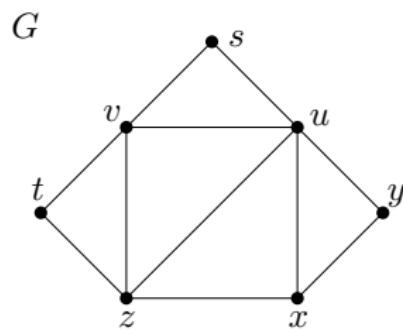
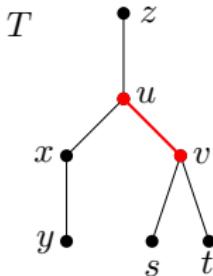
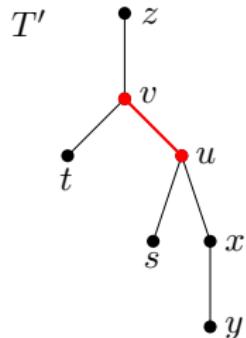


Elimination trees have been studied extensively in many contexts:

graph theory, combinatorial optimization, polyhedral combinatorics, data structures, VLSI design, ...

Elimination trees (or forests)

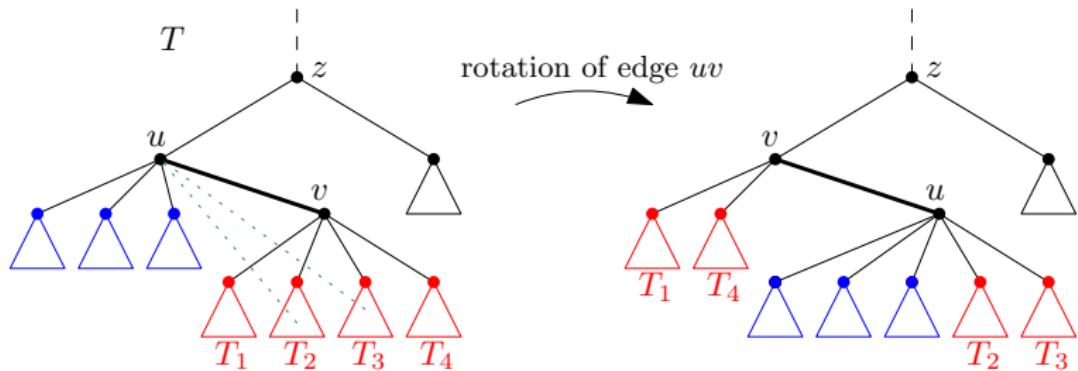
Tree T obtained from a graph G by picking recursively a vertex in each connected component of the current graph:



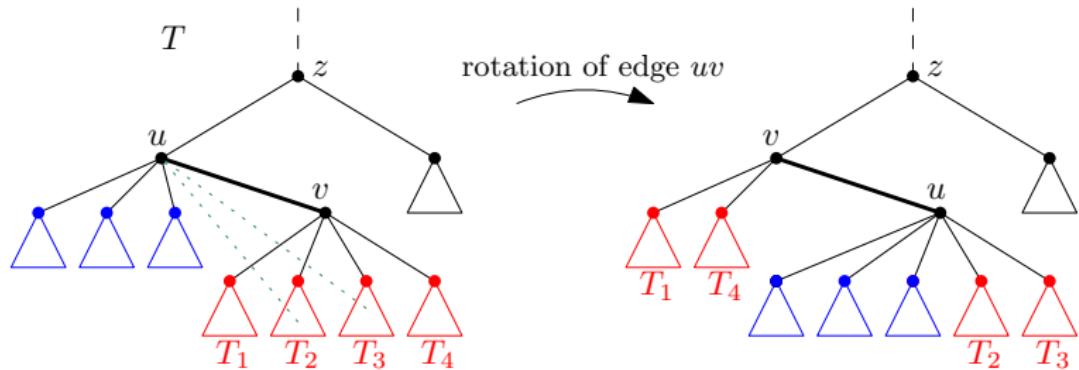
Elimination trees have been studied extensively in many contexts:

graph theory, combinatorial optimization, polyhedral combinatorics, data structures, VLSI design, ...

Rotation distance between elimination trees



Rotation distance between elimination trees



The **rotation distance** between two elimination trees (forests) T, T' of a graph G , denoted by $\text{dist}(T, T')$, is the **minimum number of rotations** it takes to transform T into T' .

Graph associahedra

For any graph G , the flip graph of elimination forests of G under edge rotations is the skeleton of a polytope: graph associahedron $\mathcal{A}(G)$.

Object introduced by

[Carr, Devadoss, Postnikov. 2006-2009]

Graph associahedra

For any graph G , the flip graph of elimination forests of G under edge rotations is the skeleton of a polytope: graph associahedron $\mathcal{A}(G)$.

Object introduced by

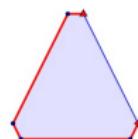
[Carr, Devadoss, Postnikov. 2006-2009]

Famous particular cases of $\mathcal{A}(G)$ depending on the underlying graph G :

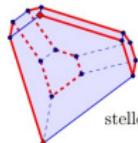
G	$\mathcal{A}(G)$
path	(standard) associahedron
complete graph	permutohedron
cycle	cyclohedron
star	stellohedron
matching	hypercube

Illustration of some famous examples

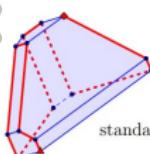
$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$



$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$

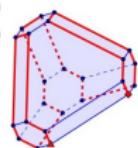


$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$



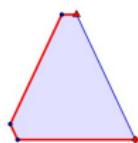
standard associahedron

$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$

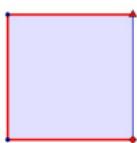


permutohedron

$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$

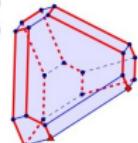


$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$



hypercube

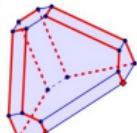
$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$



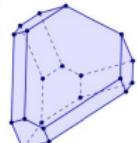
$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$

$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$

$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$



$\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}$

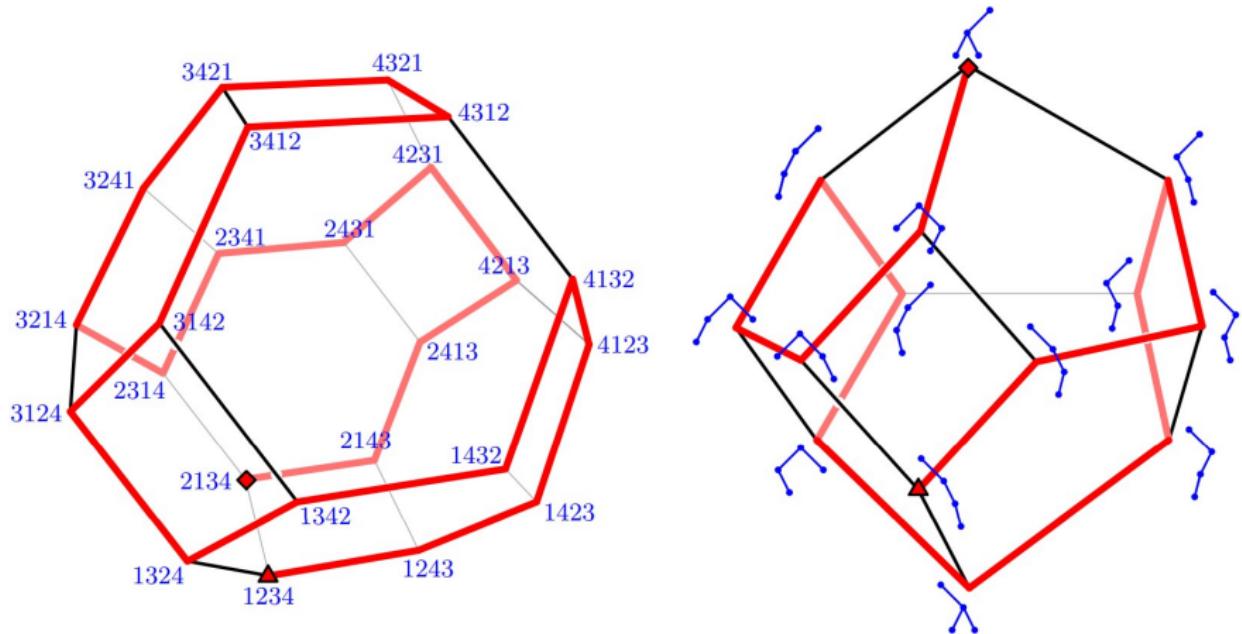


cyclohedron

Shamelessly stolen from this very nice article:

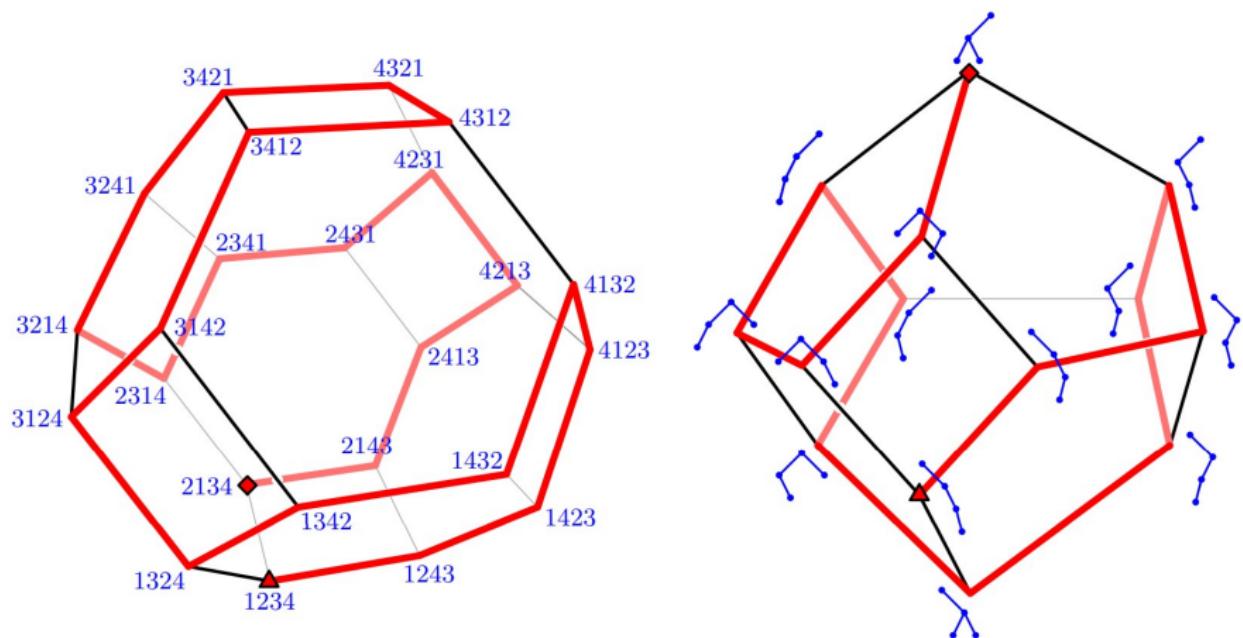
[Cardinal, Merino, Mütze. 2022]

Zooming in: permutohedron and (standard) associahedron



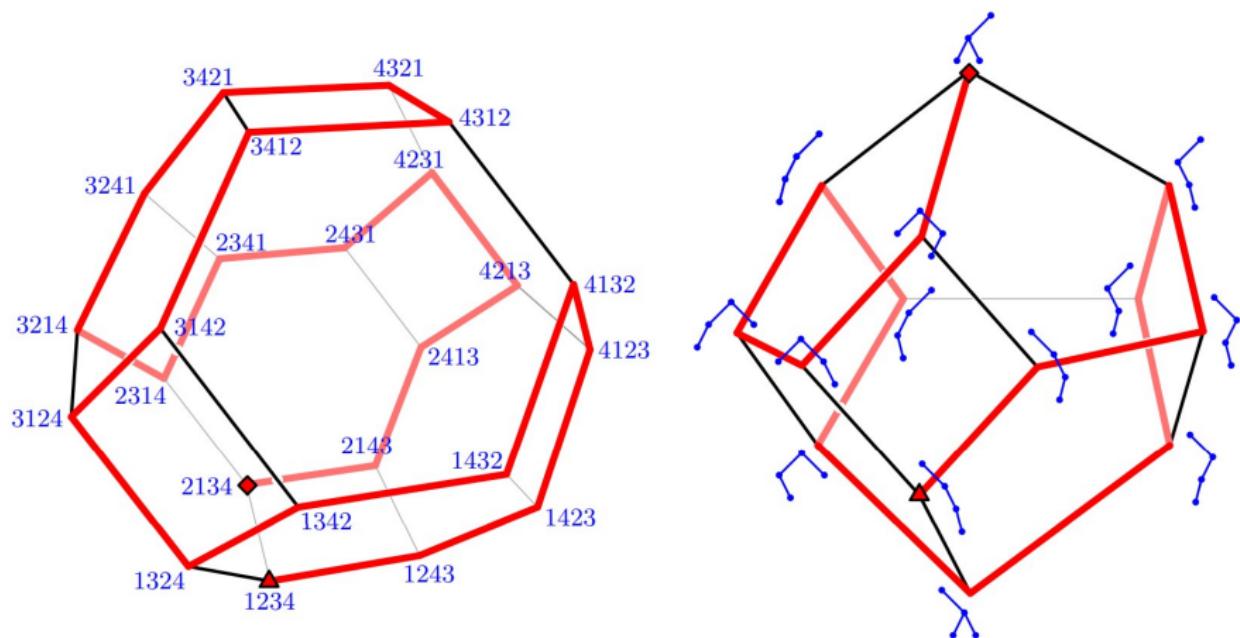
Shamelessly stolen from this very nice article: [\[Cardinal, Merino, Mütze. 2022\]](#)

Zooming in: permutohedron and (standard) associahedron



The (standard) associahedron has a rich history and literature, connecting computer science, combinatorics, algebra, and topology.

Zooming in: permutohedron and (standard) associahedron



Binary trees are in **bijection** with many other **Catalan objects**:
triangulations of a convex polygon, well-formed parenthesis, Dyck paths, ...

Intensively studied: diameter of graph associahedra

Determining the **diameter** exactly, or upper/lower bounds, or estimates:

- If G is a **path**: [Sleator, Tarjan, Thurston. 1998]
[Pournin. 2014]
- If G is a **star**: [Manneville, Pilaud. 2010]
- If G is a **cycle**: [Pournin. 2017]
- If G is a **tree**: [Manneville, Pilaud. 2010]
[Cardinal, Langerman, Pérez-Lantero. 2018]
- If G is a **complete bipartite** or **trivially perfect** graph:
[Cardinal, Pournin, Valencia-Pabon. 2022]
- If G is a **caterpillar**: [Berendsohn. 2022]
- If G has bounded **treedepth** or **treewidth**: [Cardinal, Pournin, Valencia-Pabon. 2022]

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Only few cases known to be solvable in polynomial time:

- If G is a complete graph: [Folklore]
- If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
- If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Only few cases known to be solvable in polynomial time:

- If G is a complete graph: [Folklore]
- If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
- If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.

Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Only few cases known to be solvable in polynomial time:

- If G is a complete graph: [Folklore]
- If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
- If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.

This is **not** the problem we solve!

Back to the general case

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Back to the general case

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Is the problem NP-hard for a general graph G ?

[Cardinal, Kleist, Klemz, Lubiwi, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Back to the general case

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Is the problem NP-hard for a general graph G ?

[Cardinal, Kleist, Klemz, Lubiwi, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!

[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

Back to the general case

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Is the problem NP-hard for a general graph G ?

[Cardinal, Kleist, Klemz, Lubiwi, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!

[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

[Cardinal, Steiner. 2023]

Back to the general case

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Question: Is the rotation distance between T and T' at most k ?

Is the problem NP-hard for a general graph G ?

[Cardinal, Kleist, Klemz, Lubiwi, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!

[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

[Cardinal, Steiner. 2023]

This motivates the study of the **parameterized complexity** of the problem.

Preliminaries: parameterized complexity in one slide

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: **total size n , parameter k** .

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: *total size n , parameter k* .

- **XP** problem: solvable in time $f(k) \cdot n^{g(k)}$.

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: *total size n , parameter k* .

- **XP** problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: *total size n , parameter k* .

- **XP** problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- **FPT** problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c .

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: *total size n , parameter k* .

- **XP** problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- **FPT** problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c .
 - Example: $\mathcal{O}(2^k \cdot n^2)$.

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: *total size n , parameter k* .

- **XP** problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- **FPT** problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c .
 - Example: $\mathcal{O}(2^k \cdot n^2)$.
- **W[i]-hard** problem, for $i \geq 1$: strong evidence that it is *not* FPT.

Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: *total size n , parameter k* .

- **XP** problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- **FPT** problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c .
 - Example: $\mathcal{O}(2^k \cdot n^2)$.
- **W[i]-hard** problem, for $i \geq 1$: strong evidence that it is *not* FPT.
- **para-NP-hard** problem: NP-hard for a fixed value of the parameter.

Statement of the parameterized problem

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Parameter: k .

Question: Is the rotation distance between T and T' at most k ?

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Parameter: k .

Question: Is the rotation distance between T and T' at most k ?

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Parameter: k .

Question: Is the rotation distance between T and T' at most k ?

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

with $f(k) = k^{k \cdot 2^2}$.

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G , two elimination trees T and T' of G , and a positive integer k .

Parameter: k .

Question: Is the rotation distance between T and T' at most k ?

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,
with
$$f(k) = k^{k \cdot 2^{2^{\dots^{2^{\mathcal{O}(k^2)}}}}},$$

where the tower of exponentials has height at most $(3k + 1)4k = \mathcal{O}(k^2)$.

Prior to our work, only the case where G is a path was known to be FPT.

[Cleary, St. John. 2009] [Lucas. 2010] [Kanj, Sedgwick, Xia. 2017] [Li, Xia. 2023]

Main ideas of the FPT algorithm

Goal: find an ℓ -rotation sequence σ from T to T' , for some $\ell \leq k$.

Main ideas of the FPT algorithm

Goal: find an ℓ -rotation sequence σ from T to T' , for some $\ell \leq k$.

High level: identify a subset of marked vertices $M \subseteq V(T)$, of size $\leq f(k)$, so that we can assume that the desired ℓ -rotation sequence σ uses only vertices in M .

Main ideas of the FPT algorithm

Goal: find an ℓ -rotation sequence σ from T to T' , for some $\ell \leq k$.

High level: identify a subset of marked vertices $M \subseteq V(T)$, of size $\leq f(k)$, so that we can assume that the desired ℓ -rotation sequence σ uses only vertices in M .

Once this is proved, an FPT algorithm follows directly by applying brute force and guessing all possible rotations using only vertices in M .

Main ideas of the FPT algorithm

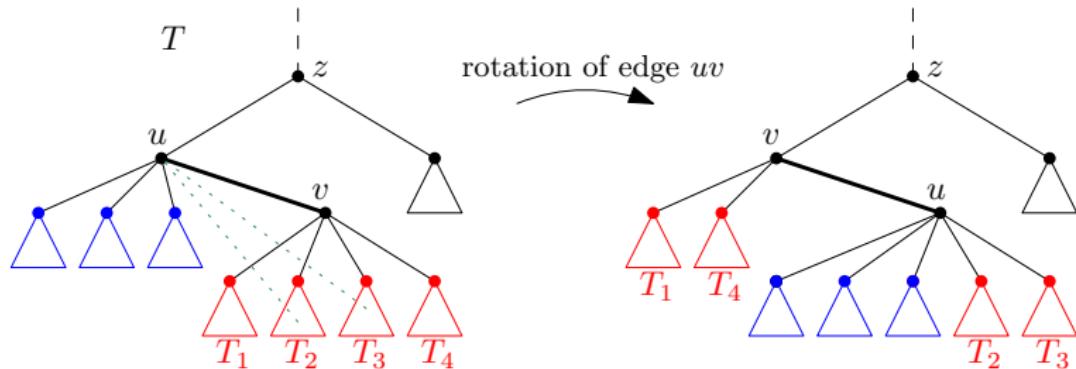
Goal: find an ℓ -rotation sequence σ from T to T' , for some $\ell \leq k$.

High level: identify a subset of marked vertices $M \subseteq V(T)$, of size $\leq f(k)$, so that we can assume that the desired ℓ -rotation sequence σ uses only vertices in M .

Once this is proved, an FPT algorithm follows directly by applying brute force and guessing all possible rotations using only vertices in M .

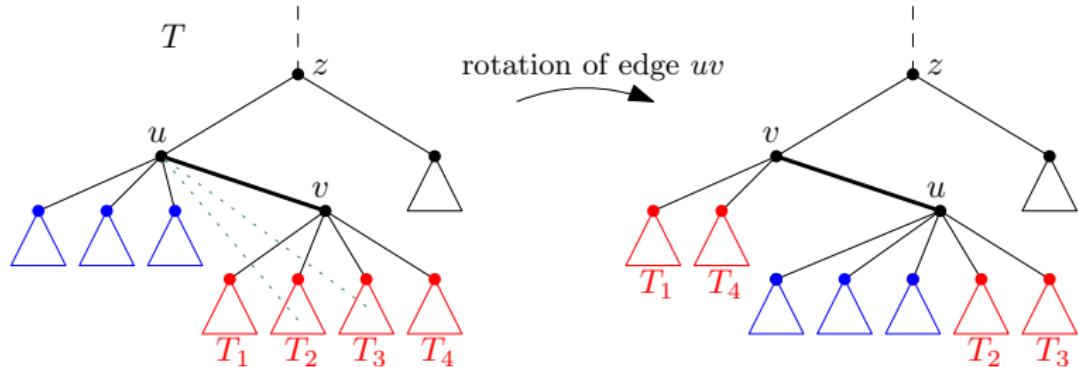
Let us see how we find such a “small” set $M \subseteq V(T)$ of marked vertices...

There are few children-bad vertices



Observation: a rotation may change the set of **children** of at most **three** vertices (but the parent of arbitrarily many vertices).

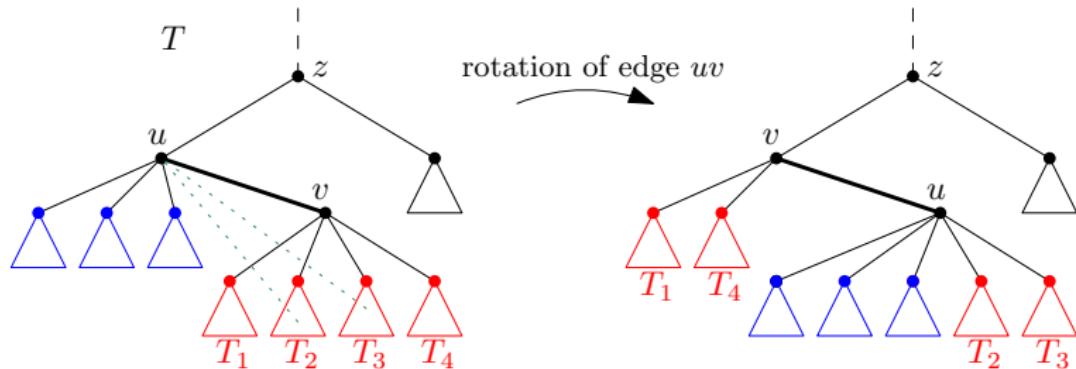
There are few children-bad vertices



Observation: a rotation may change the set of **children** of at most **three** vertices (but the parent of arbitrarily many vertices).

A vertex $v \in V(T)$ is (T, T') -children-bad if its set of children in T is **different** from its set of children in T' .

There are few children-bad vertices



Observation: a rotation may change the set of **children** of at most **three** vertices (but the parent of arbitrarily many vertices).

A vertex $v \in V(T)$ is (T, T') -children-bad if its set of children in T is different from its set of children in T' .

We may assume that there are **at most $3k$** (T, T') -children-bad vertices.

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

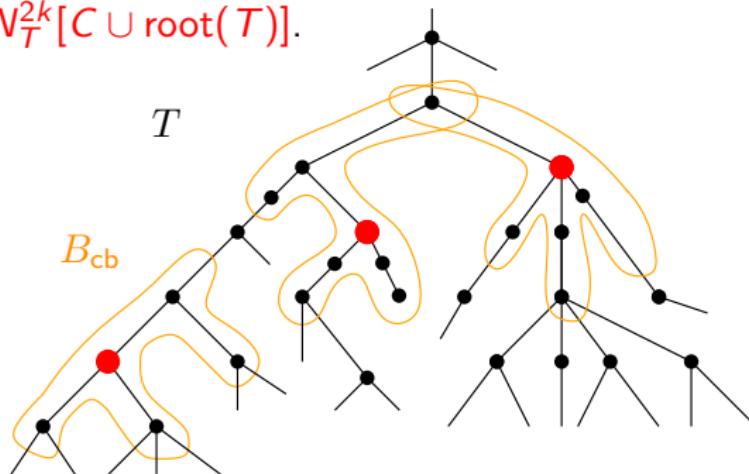
Let $C \subseteq V(T)$ be the set of (T, T') -children-bad vertices.

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Let $C \subseteq V(T)$ be the set of (T, T') -children-bad vertices.

We define $B_{cb} = N_T^{2k}[C \cup \text{root}(T)]$.

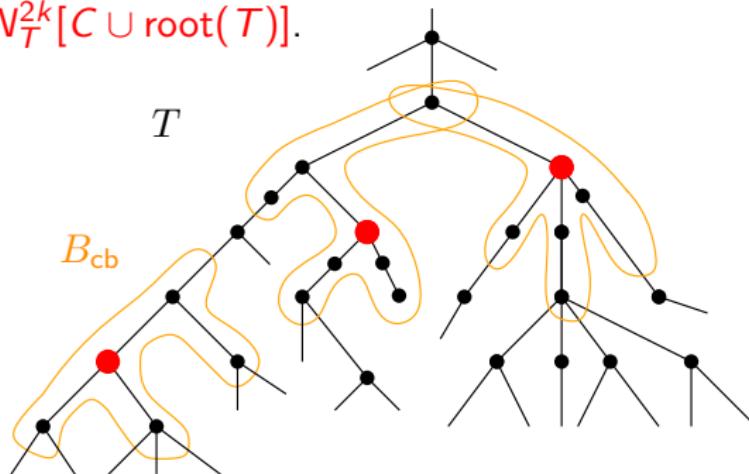


Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Let $C \subseteq V(T)$ be the set of (T, T') -children-bad vertices.

We define $B_{cb} = N_T^{2k}[C \cup \text{root}(T)]$.



Lemma

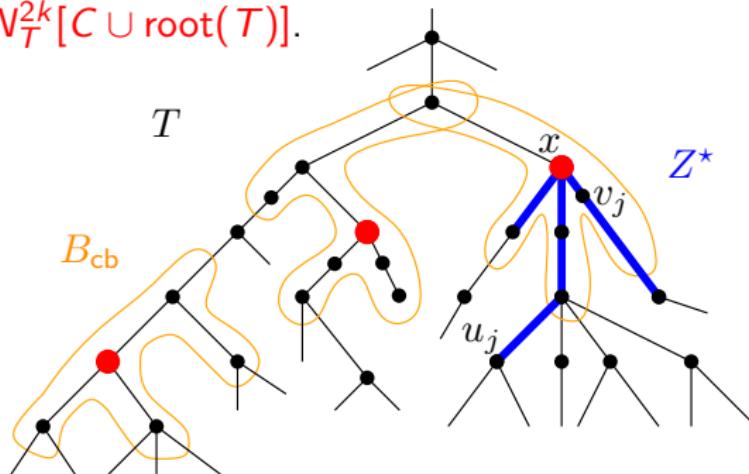
If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in B_{cb} .

Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Let $C \subseteq V(T)$ be the set of (T, T') -children-bad vertices.

We define $B_{cb} = N_T^{2k}[C \cup \text{root}(T)]$.



Lemma

If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in B_{cb} .

If $\Delta(T)$ is bounded (in particular, if $\Delta(G)$ is bounded), we are done!

Towards the marking algorithm: trace of a vertex

Only **obstacle** to get our FPT algorithm: **high-degree** vertices in $T[B_{cb}]$.

Towards the marking algorithm: trace of a vertex

Only **obstacle** to get our FPT algorithm: **high-degree** vertices in $T[B_{cb}]$.

Fix a **connected component** Z of $T[B_{cb}]$ (considered as a rooted tree).

Towards the marking algorithm: trace of a vertex

Only **obstacle** to get our FPT algorithm: **high-degree** vertices in $T[B_{cb}]$.

Fix a **connected component** Z of $T[B_{cb}]$ (considered as a rooted tree).

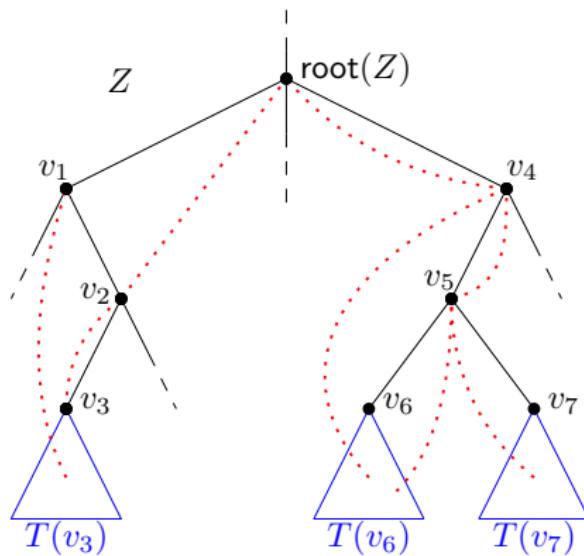
$\text{trace}(T, Z, v)$: “abstract” neighborhood of $T(v)$ in its **ancestors** in Z .

Towards the marking algorithm: trace of a vertex

Only **obstacle** to get our FPT algorithm: **high-degree** vertices in $T[B_{cb}]$.

Fix a **connected component** Z of $T[B_{cb}]$ (considered as a rooted tree).

$\text{trace}(T, Z, v)$: “abstract” neighborhood of $T(v)$ in its **ancestors** in Z .



$$\text{trace}(T, Z, v_1) = (1)$$

$$\text{trace}(T, Z, v_2) = (1, 1)$$

$$\text{trace}(T, Z, v_3) = (1, 1, 0)$$

$$\text{trace}(T, Z, v_4) = (1)$$

$$\text{trace}(T, Z, v_5) = (1, 0)$$

$$\text{trace}(T, Z, v_6) = (1, 1, 0)$$

$$\text{trace}(T, Z, v_7) = (1, 0, 0)$$

Defining the type of a vertex: $\tau(T, Z, v)$

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Defining the type of a vertex: $\tau(T, Z, v)$

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Same type: same “variety of traces among children in Z ”

Defining the type of a vertex: $\tau(T, Z, v)$

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Same type: same “variety of traces among children in Z ” \rightarrow recursive!

Defining the type of a vertex: $\tau(T, Z, v)$

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Same type: same “variety of traces among children in Z ” \rightarrow recursive!

Problem: **#children** may be unbounded, and we want **#types $\leq f(k)$** .

Defining the type of a vertex: $\tau(T, Z, v)$

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Same type: same “variety of traces among children in Z ” \rightarrow recursive!

Problem: **#children** may be unbounded, and we want **#types $\leq f(k)$** .

Lemma

Let σ be an ℓ -rotation sequence from T to T' , for some $\ell \leq k$. For every vertex $v \in V(T)$, there are **at most k vertices $u_1, \dots, u_k \in \text{children}(T, v)$** such that **$\sigma$ uses a vertex in each of the rooted subtrees $T(u_1), \dots, T(u_k)$** .

Defining the type of a vertex: $\tau(T, Z, v)$

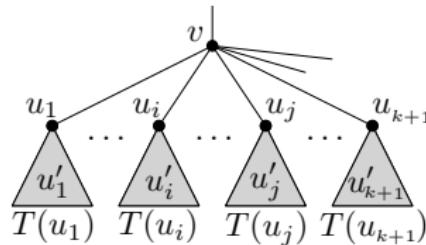
Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Same type: same “variety of traces among children in Z ” \rightarrow recursive!

Problem: **#children** may be **unbounded**, and we want **#types $\leq f(k)$** .

Lemma

Let σ be an ℓ -rotation sequence from T to T' , for some $\ell \leq k$. For every vertex $v \in V(T)$, there are **at most k vertices $u_1, \dots, u_k \in \text{children}(T, v)$** such that **$\sigma$ uses a vertex in each of the rooted subtrees $T(u_1), \dots, T(u_k)$** .



Defining the type of a vertex: $\tau(T, Z, v)$

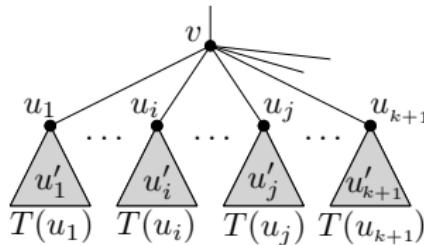
Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then $T(v)$ and $T(v')$ interchangeable.

Same type: same “variety of traces among children in Z ” \rightarrow recursive!

Problem: **#children** may be **unbounded**, and we want **#types $\leq f(k)$** .

Lemma

Let σ be an ℓ -rotation sequence from T to T' , for some $\ell \leq k$. For every vertex $v \in V(T)$, there are **at most k vertices $u_1, \dots, u_k \in \text{children}(T, v)$** such that σ uses a vertex in each of the rooted subtrees $T(u_1), \dots, T(u_k)$.



Crucial: enough to keep track of “**at least $k + 1$** ”, not the **actual number**.

Type of a vertex: formal definition

$\tau(T, Z, v)$ is recursively defined as follows:

Type of a vertex: formal definition

$\tau(T, Z, v)$ is recursively defined as follows:

$\text{type-children}(T, Z, v) := \{\tau(T, Z, u) \mid u \in \text{children}(Z, v)\}$:
set of types occurring in the children of v .

Type of a vertex: formal definition

$\tau(T, Z, v)$ is recursively defined as follows:

$\text{type-children}(T, Z, v) := \{\tau(T, Z, u) \mid u \in \text{children}(Z, v)\}$:
set of types occurring in the children of v .

- If v is a leaf of Z , then

$$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v)).$$

Type of a vertex: formal definition

$\tau(T, Z, v)$ is recursively defined as follows:

$\text{type-children}(T, Z, v) := \{\tau(T, Z, u) \mid u \in \text{children}(Z, v)\}$:
set of types occurring in the children of v .

- If v is a **leaf** of Z , then

$$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v)).$$

- If v is **not** a **leaf**, then

$$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v), \text{ where}$$

Type of a vertex: formal definition

$\tau(T, Z, v)$ is recursively defined as follows:

$\text{type-children}(T, Z, v) := \{\tau(T, Z, u) \mid u \in \text{children}(Z, v)\}$:
set of types occurring in the children of v .

- If v is a **leaf** of Z , then

$$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v)).$$

- If v is **not a leaf**, then

$$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v), \text{ where}$$

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that,
for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$

Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$

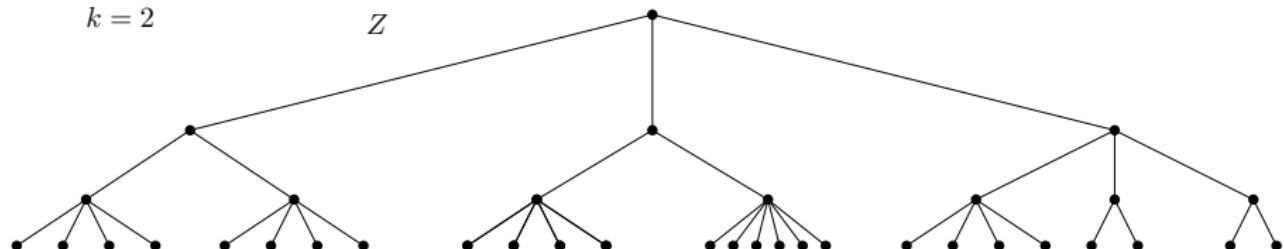
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



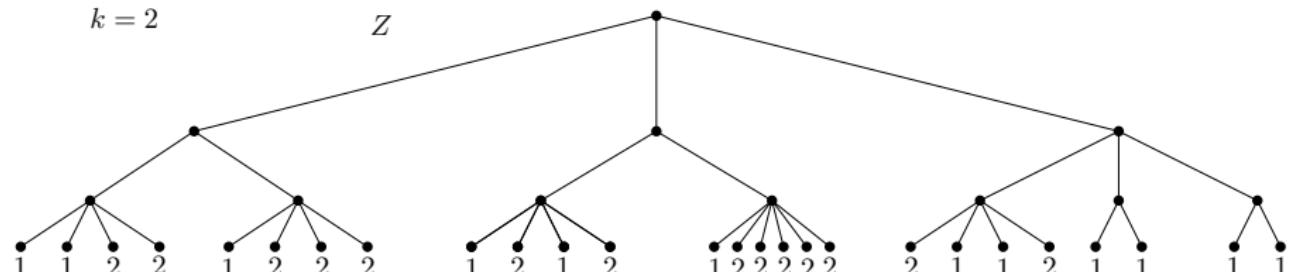
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k+1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



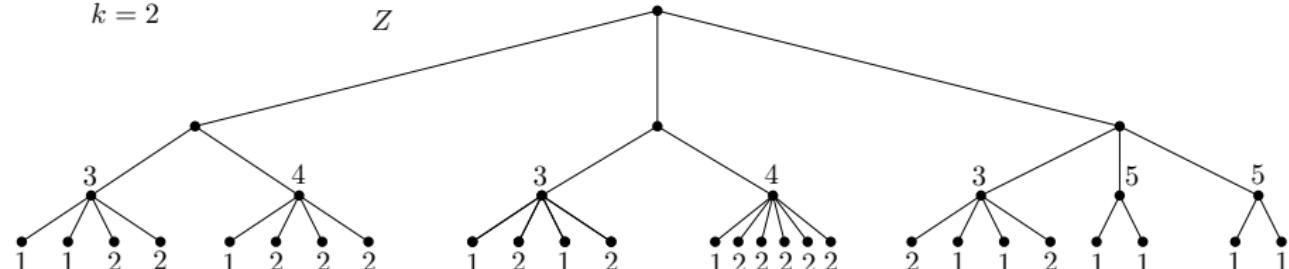
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



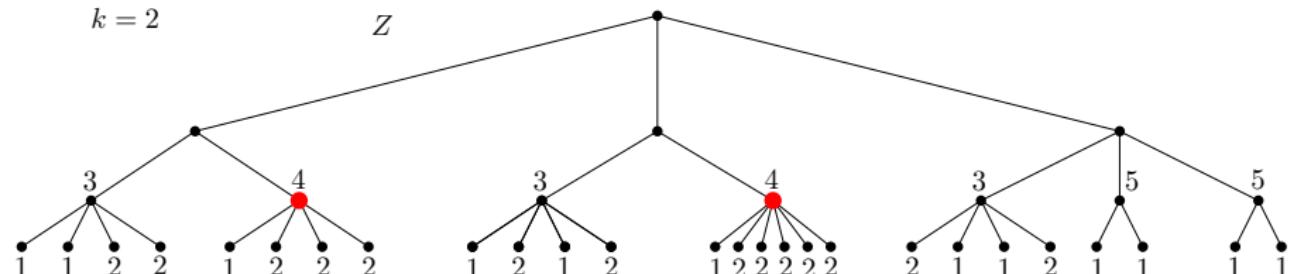
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



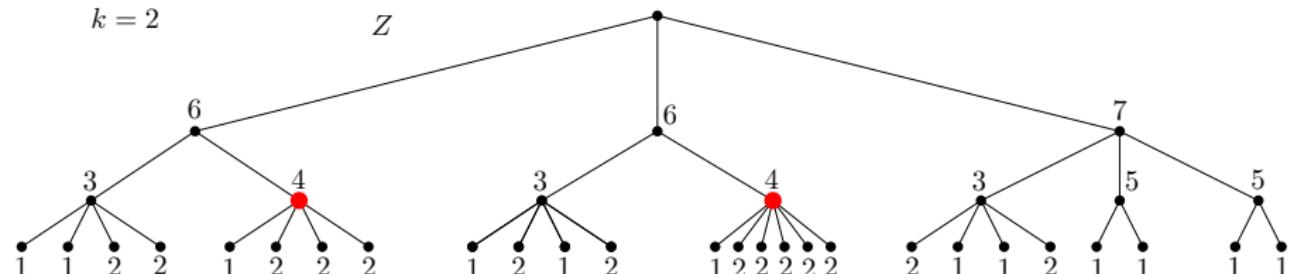
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



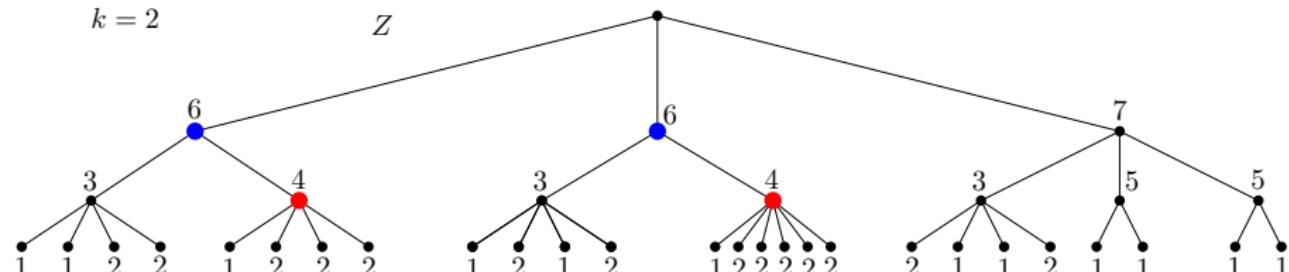
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k + 1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



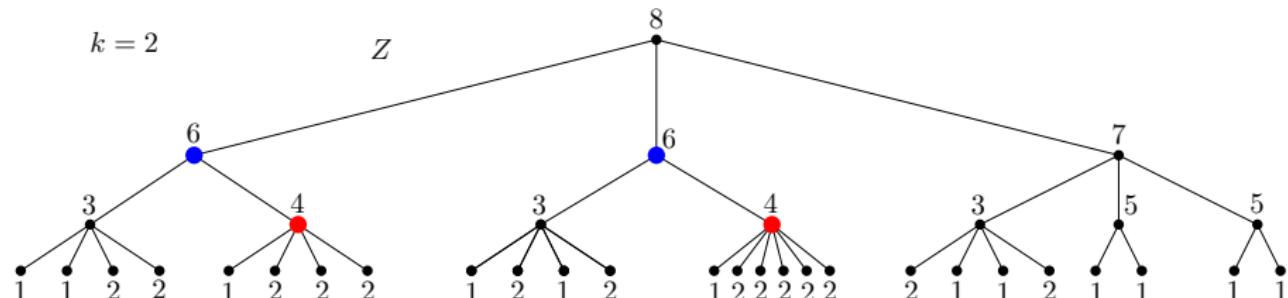
Type of a vertex: example

If v is not a leaf, then

$\tau(T, Z, v) = (\text{want-parent}(T, T', v), \text{trace}(T, Z, v), f_v)$, where

$f_v : \text{type-children}(T, Z, v) \rightarrow [k + 1]$ is a mapping defined such that, for every $\tau \in \text{type-children}(T, Z, v)$,

$$f_v(\tau) = \min\{k+1, |\{u \in \text{children}(Z, v) \mid \tau(T, Z, u) = \tau\}|\}.$$



Number of types bounded by a function of k

Lemma

$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$,

Lemma

$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with

$$g(k) = k^{2^{2^{\dots^{2^{\mathcal{O}(k^2)}}}}}, \text{ where the tower has height } \text{diam}(Z) = \mathcal{O}(k^2).$$

Lemma

$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with
$$g(k) = k^{2^{\lfloor \log_2 k^2 \rfloor}} \cdot 2^{\mathcal{O}(k^2)}$$
, where the tower has height $\text{diam}(Z) = \mathcal{O}(k^2)$.

Marking algorithm: for every vertex $v \in V(Z)$, pre-mark up to $k + 1$ children of each type, and then prune from the root.

Number of types bounded by a function of $k \rightarrow$ marking

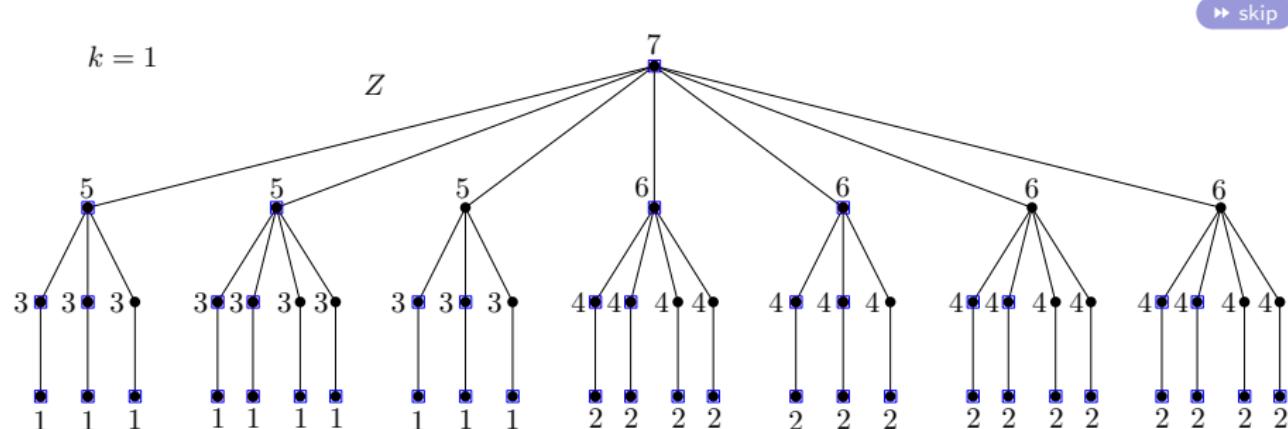
Lemma

$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with

$$g(k) = k^{2^{\mathcal{O}(k^2)}}$$

, where the tower has height $\text{diam}(Z) = \mathcal{O}(k^2)$.

Marking algorithm: for every vertex $v \in V(Z)$, pre-mark up to $k + 1$ children of each type, and then prune from the root.



Number of types bounded by a function of $k \rightarrow$ marking

Lemma

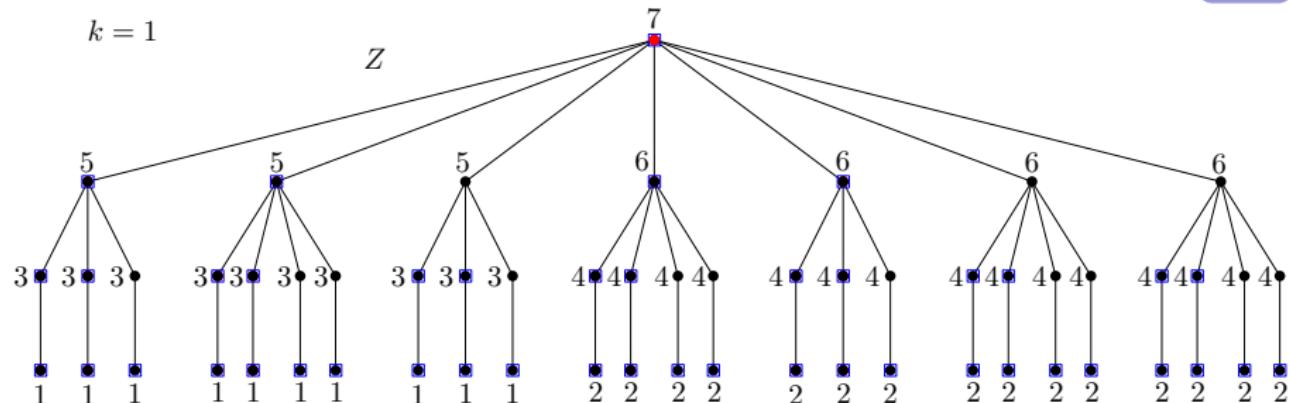
$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with

$$g(k) = k^{2^{\mathcal{O}(k^2)}}$$

, where the tower has height $\text{diam}(Z) = \mathcal{O}(k^2)$.

Marking algorithm: for every vertex $v \in V(Z)$, pre-mark up to $k + 1$ children of each type, and then prune from the root.

▶ skip



Number of types bounded by a function of $k \rightarrow$ marking

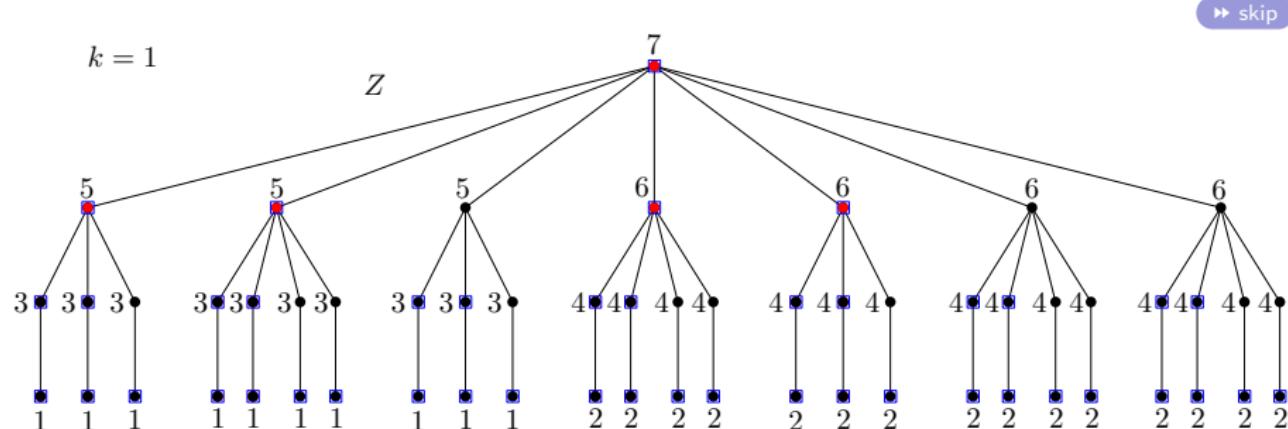
Lemma

$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with

$$g(k) = k^{2^{\mathcal{O}(k^2)}}$$

, where the tower has height $\text{diam}(Z) = \mathcal{O}(k^2)$.

Marking algorithm: for every vertex $v \in V(Z)$, pre-mark up to $k + 1$ children of each type, and then prune from the root.



Number of types bounded by a function of $k \rightarrow$ marking

Lemma

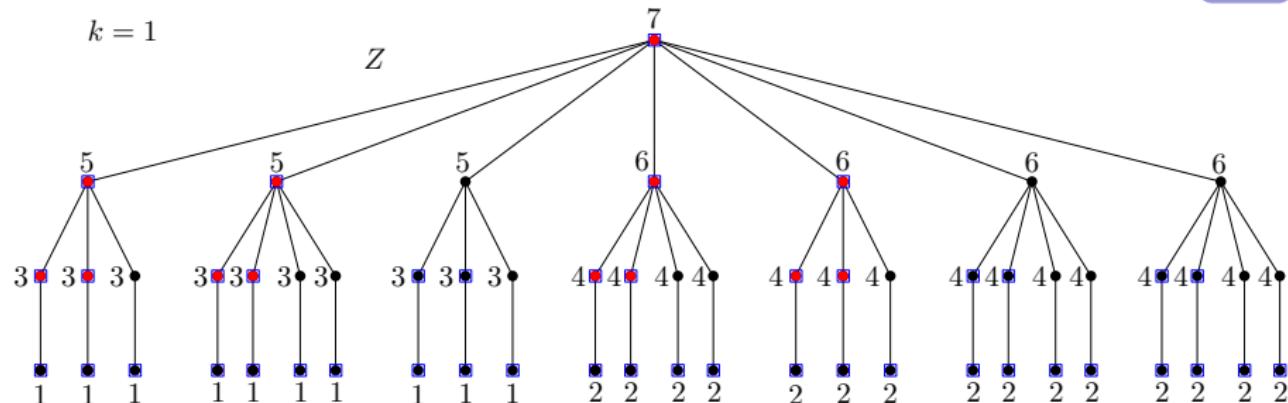
$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with

$$g(k) = k^{2^{\mathcal{O}(k^2)}}$$

, where the tower has height $\text{diam}(Z) = \mathcal{O}(k^2)$.

Marking algorithm: for every vertex $v \in V(Z)$, pre-mark up to $k + 1$ children of each type, and then prune from the root.

▶ skip



Number of types bounded by a function of $k \rightarrow$ marking

Lemma

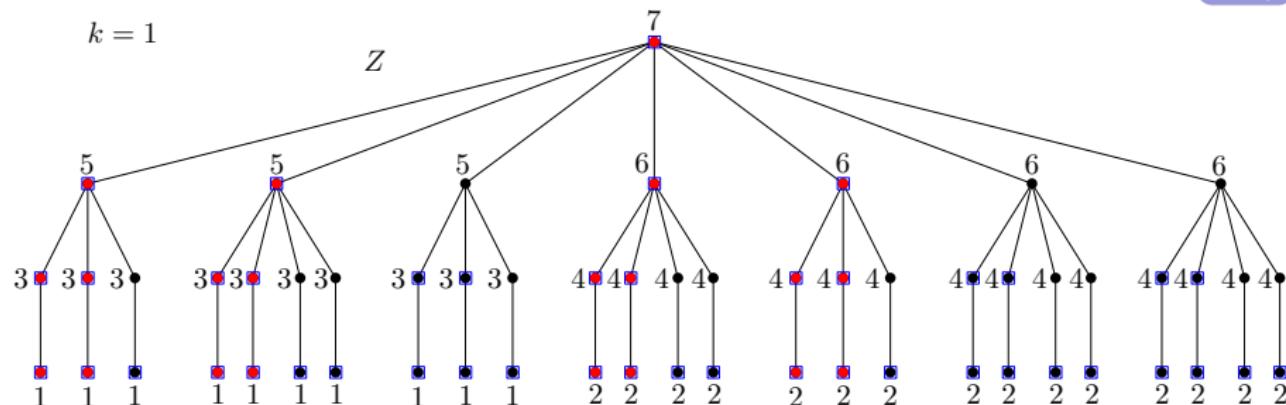
$\{\tau(T, Z, v) \mid v \in V(Z)\}$ has size bounded by a function $g(k)$, with

$$g(k) = k^{2^{\mathcal{O}(k^2)}}$$

, where the tower has height $\text{diam}(Z) = \mathcal{O}(k^2)$.

Marking algorithm: for every vertex $v \in V(Z)$, pre-mark up to $k + 1$ children of each type, and then prune from the root.

▶ skip



The set of marked vertices satisfies what we want

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function $h(k)$, with the same asymptotic growth as the function $g(k)$ given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

The set of marked vertices satisfies what we want

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function $h(k)$, with the same asymptotic growth as the function $g(k)$ given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in M .

▶ skip

The set of marked vertices satisfies what we want

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function $h(k)$, with the same asymptotic growth as the function $g(k)$ given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in M .

► skip

Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .

The set of marked vertices satisfies what we want

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function $h(k)$, with the same asymptotic growth as the function $g(k)$ given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in M .

► skip

Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .
- Goal: define another sequence σ' using $<$ non-marked vertices.

The set of marked vertices satisfies what we want

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function $h(k)$, with the same asymptotic growth as the function $g(k)$ given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in M .

► skip

Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .
- Goal: define another sequence σ' using < non-marked vertices.
- Let $v \in V(T)$ be a downmost non-marked vertex used by σ .

The set of marked vertices satisfies what we want

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function $h(k)$, with the same asymptotic growth as the function $g(k)$ given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\text{dist}(T, T') \leq k$, then there exists an ℓ -rotation sequence from T to T' , with $\ell \leq k$, using only vertices in M .

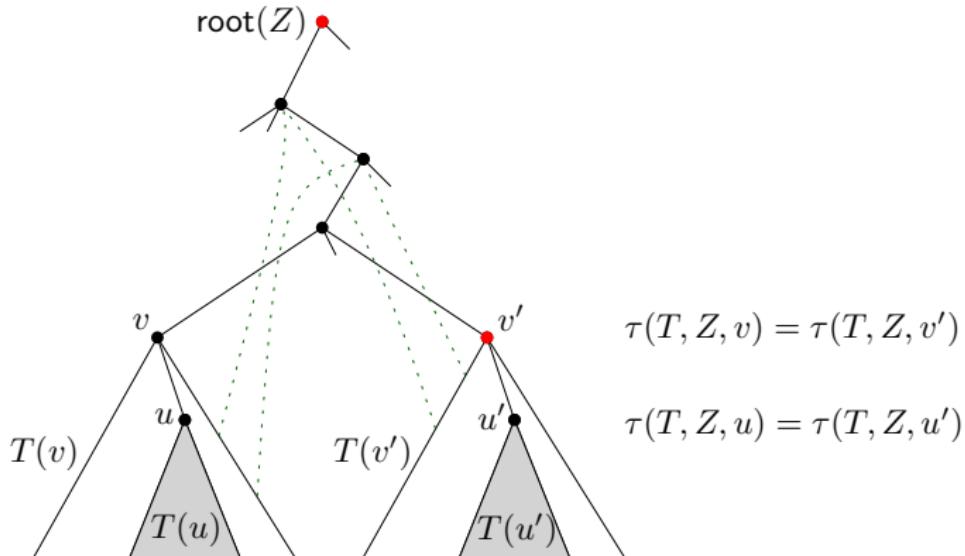
► skip

Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .
- Goal: define another sequence σ' using < non-marked vertices.
- Let $v \in V(T)$ be a downmost non-marked vertex used by σ .
- We distinguish two cases...

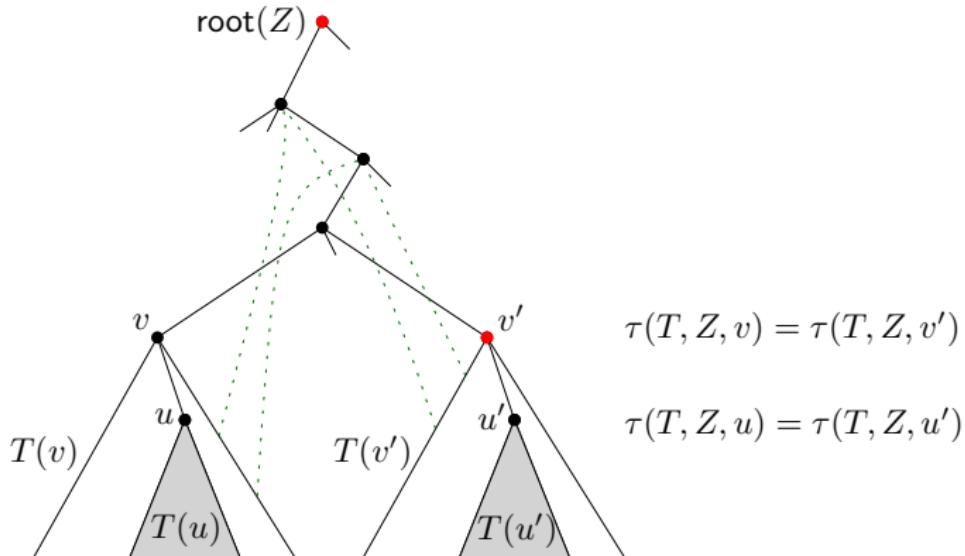
Proof of the main technical lemma: Case 1

If v has a marked (non-used) T -sibling v' with $\tau(T, Z, v) = \tau(T, Z, v')$:



Proof of the main technical lemma: Case 1

If v has a marked (non-used) T -sibling v' with $\tau(T, Z, v) = \tau(T, Z, v')$:



We define σ' from σ by just replacing v with v' in all the rotations of σ involving v .

Proof of the main technical lemma: Case 2

All T -siblings v' of v with $\tau(T, Z, v) = \tau(T, Z, v')$ are non-marked.

Proof of the main technical lemma: Case 2

All T -siblings v' of v with $\tau(T, Z, v) = \tau(T, Z, v')$ are non-marked.

In this case, to define σ' , we need to modify σ in a **more global way**:

Proof of the main technical lemma: Case 2

All T -siblings v' of v with $\tau(T, Z, v) = \tau(T, Z, v')$ are non-marked.

In this case, to define σ' , we need to modify σ in a **more global way**:

Lemma

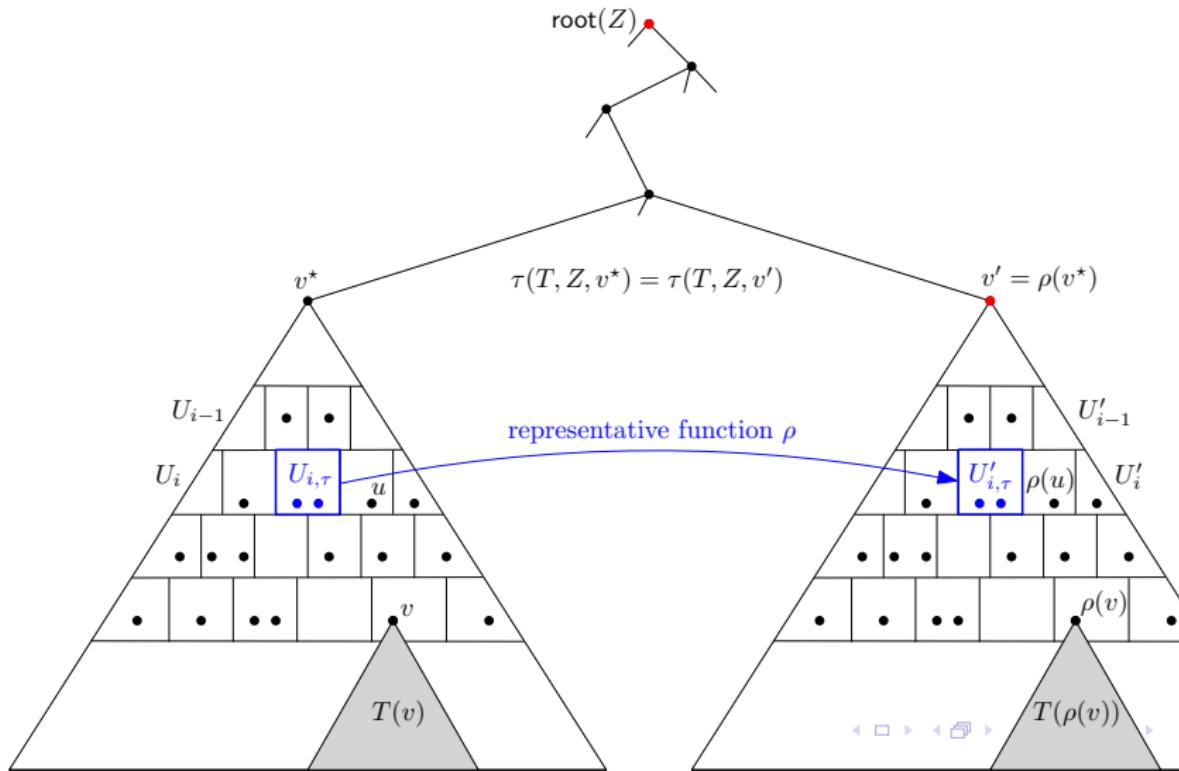
There exists a **unique vertex** $v^* \in \text{ancestors}(Z, v)$ such that

- all vertices in $T(v^*)$ are **non-marked**,
- v^* has a **marked** T -**sibling** v' such that
 - $\tau(T, Z, v^*) = \tau(T, Z, v')$, and
 - **no vertex** in $T(v')$ is **used** by σ , and
- v^* is the vertex **closest** to v satisfying the above properties.

Proof of the main technical lemma: Case 2

All T -siblings v' of v with $\tau(T, Z, v) = \tau(T, Z, v')$ are non-marked.

In this case, to define σ' , we need to modify σ in a **more global way**:



New results: can we go beyond graph associahedra?

New results: can we go beyond graph associahedra?

ROTATION DISTANCE problem: distances on graph associahedra.

New results: can we go beyond graph associahedra?

ROTATION DISTANCE problem: distances on graph associahedra.

Natural generalization: distances on hypergraphic polytopes.

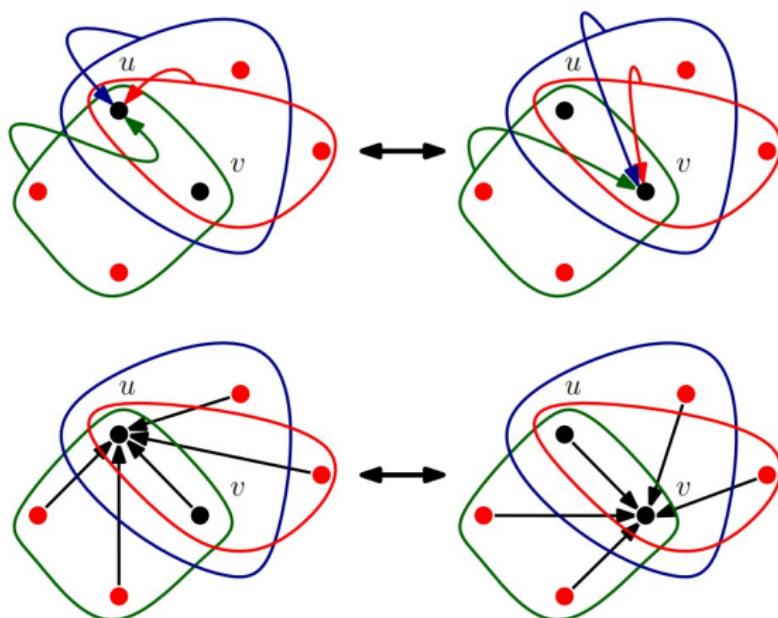
New results: can we go beyond graph associahedra?

Fix a hypergraph H . We define the hypergraphic polytope of H as:

New results: can we go beyond graph associahedra?

Fix a hypergraph H . We define the **hypergraphic polytope** of H as:

- **Vertices:** all **acyclic orientations** of H .
- **Edges:** if the two corresponding rotations are related by a **flip**.



New results: can we go beyond graph associahedra?

Computing distances on [hypergraphic polytopes](#) is **NP-hard**.

[Cardinal, Steiner. 2023]

New results: can we go beyond graph associahedra?

Computing distances on [hypergraphic polytopes](#) is **NP-hard**.

[Cardinal, Steiner. 2023]

Is the problem **FPT**?

New results: can we go beyond graph associahedra?

Computing distances on **hypergraphic polytopes** is **NP-hard**.

[Cardinal, Steiner. 2023]

Is the problem **FPT**?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025+)

*Computing distances on **hypergraphic polytopes** is **$W[2]$ -hard** parameterized by the distance.*

New results: can we go beyond graph associahedra?

Computing distances on *hypergraphic polytopes* is **NP-hard**.

[Cardinal, Steiner. 2023]

Is the problem **FPT**?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025+)

*Computing distances on *hypergraphic polytopes* is **W[2]-hard** parameterized by the distance.*

We present a parameterized reduction from *k*-DOMINATING SET.

Conclusions and further research

Conclusions and further research

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

$$\text{with } f(k) = k^{k \cdot 2^{2^{\cdot \cdot 2^{O(k^2)}}}},$$

where the tower of exponentials has height at most $(3k + 1)4k = \mathcal{O}(k^2)$.

Conclusions and further research

Theorem

The [ROTATION DISTANCE](#) problem can be solved in time $f(k) \cdot |V(G)|$,

with $f(k) = k^{k \cdot 2^k}$,

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

It should be possible to improve $f(k)$ (dominated by the number of types).

Conclusions and further research

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

$$\text{with } f(k) = k^{k \cdot 2^{2^{\cdot 2^{\cdot \cdot \cdot 2^{\cdot 2^{\cdot O(k^2)}}}}}},$$

where the tower of exponentials has height at most $(3k + 1)4k = \mathcal{O}(k^2)$.

It should be possible to improve $f(k)$ (dominated by the number of types).

ROTATION DISTANCE	paths	general graphs
NP-hard	open	✓
FPT	✓	✓ [this talk]
Polynomial kernel	✓	open

Conclusions and further research

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

It should be possible to improve $f(k)$ (dominated by the number of types).

ROTATION DISTANCE	paths	general graphs
NP-hard	open	✓
FPT	✓	✓ [this talk]
Polynomial kernel	✓	open

COMBINATORIAL SHORTEST PATH ON POLYMATROIDS:

- NP-hard. [Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. 2023]
- Is it also FPT?

Gràcies!