FPT algorithm for a generalized cut problem and some applications

EunJung Kim1 \quad Sang-Il Oum2 \\
Christophe Paul3 \quad Ignasi Sau3 \quad Dimitrios M. Thilikos3

Séminaire AlGCo, January 2015

1 CNRS, LAMSADE, Paris (France)

2 KAIST, Daejeon (South Korea)

3 CNRS, LIRMM, Montpellier (France)
Outline of the talk

1. Introduction
2. Sketch of the FPT algorithm
3. Some applications
4. Conclusions
Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions
Some words on parameterized complexity

- **Idea:** given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more “tractable”.

Example: the size of a **Vertex Cover**.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

 $$f(k) \cdot n^{O(1)},$$

 for some function f.

Examples: k-**Vertex Cover**, k-**Longest Path**.
Many cut problems have been proved to be FPT

Cut problem: given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.
Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- **Min Cut**: polynomial by classical max-flow min-cut theorem.
Many cut problems have been proved to be FPT

Cut problem: given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- **Min Cut**: polynomial by classical max-flow min-cut theorem.

- **Multiway Cut**: FPT by using important separators. [Marx '06]

- **Steiner Cut**: Improved FPT algorithm by using randomized contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk '12]

- **Min Bisection**: Finally, FPT. [Cygan, Lokshtanov, Pilipczuk, Saurabh '13]
Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- **Min Cut**: polynomial by classical max-flow min-cut theorem.
- **Multiway Cut**: FPT by using important separators. [Marx '06]
- **Multicut**: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé '06]
- **Steiner Cut**: Improved FPT algorithm by using randomized contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk '12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov, Pilipczuk, Saurabh '13]
Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- **Min Cut**: polynomial by classical max-flow min-cut theorem.
- **Multiway Cut**: FPT by using important separators. [Marx '06]
- **Multicut**: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé '06]
- **Steiner Cut**: Improved FPT algorithm by using randomized contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk'12]
Many cut problems have been proved to be FPT

- **Cut problem**: given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- **Min Cut**: polynomial by classical max-flow min-cut theorem.

- **Multiway Cut**: FPT by using important separators. [Marx '06]

- **Multicut**: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé '06]

- **Steiner Cut**: Improved FPT algorithm by using randomized contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12]

- **Min Bisection**: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk², Saurabh '13]
An \textit{r-allocation} of a set S is an r-tuple $\mathcal{V} = (V_1, \ldots, V_r)$ of possibly empty sets that are pairwise disjoint and whose union is the set S.

Elements of \mathcal{V}: \textit{parts} of \mathcal{V}.

We denote by $\mathcal{V}^{(i)}$ the i-th part of \mathcal{V}, i.e., $\mathcal{V}^{(i)} = V_i$.
An r-allocation of a set S is an r-tuple $\mathcal{V} = (V_1, \ldots, V_r)$ of possibly empty sets that are pairwise disjoint and whose union is the set S.

Elements of \mathcal{V}: parts of \mathcal{V}.

We denote by $\mathcal{V}^{(i)}$ the i-th part of \mathcal{V}, i.e., $\mathcal{V}^{(i)} = V_i$.

Let $G = (V, E)$ be a graph and let \mathcal{V} is an r-allocation of V:

$|\delta(\mathcal{V}^{(i)}, \mathcal{V}^{(j)})|$: #edges in G with one endpoint in $\mathcal{V}^{(i)}$ and one in $\mathcal{V}^{(j)}$.
Definition of the problem: **List Allocation**

List Allocation

Input: A tuple \(I = (G, r, \lambda, \alpha) \), where \(G \) is an \(n \)-vertex graph, \(r \in \mathbb{Z}_{\geq 1} \), \(\lambda : V(G) \rightarrow 2^r \), and \(\alpha : \binom{r}{2} \rightarrow \mathbb{Z}_{\geq 0} \).
Definition of the problem: \textbf{List Allocation}

\textbf{List Allocation}

\textbf{Input:} A tuple $l = (G, r, \lambda, \alpha)$, where G is an n-vertex graph, $r \in \mathbb{Z}_{\geq 1}$, $\lambda : V(G) \rightarrow 2^r$, and $\alpha : \binom{2^r}{2} \rightarrow \mathbb{Z}_{\geq 0}$.

\textbf{Parameter:} $k = \sum \alpha$.
Definition of the problem: **List Allocation**

List Allocation

Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an n-vertex graph, $r \in \mathbb{Z}_{\geq 1}$, $\lambda : V(G) \rightarrow 2^r$, and $\alpha : \binom{r}{2} \rightarrow \mathbb{Z}_{\geq 0}$.

Parameter: $k = \sum \alpha$.

Question: Decide whether there exists an r-allocation \mathcal{V} of $V(G)$ s.t.

- $\forall \{i, j\} \in \binom{r}{2}$, $|\delta(\mathcal{V}(i), \mathcal{V}(j))| = \alpha(i, j)$ and
- $\forall v \in V(G), \forall i \in [r]$, if $v \in \mathcal{V}(i)$ then $i \in \lambda(v)$.
Our main result

Theorem

List Allocation can be solved in time \(2^{O(k^2 \log k)} \cdot n^4 \cdot \log n\).

- *List Allocation* generalizes, in particular, the *Edge Multiway Cut-Uncut* problem.

- Our algorithm is strongly inspired by the *edge contraction* technique.

[Chitnis, Cygan, Hajiaghayi, Pilipczuk '12]
Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions
We use a series of FPT reductions:

Problem $A \xrightarrow{\text{FPT}}$ Problem B: If problem B is FPT, then problem A is FPT.
High-level ideas of the FPT algorithm

- We use a series of FPT reductions:
 \[\text{Problem } A \xrightarrow{\text{FPT}} \text{Problem } B: \]
 If problem \(B \) is FPT, then problem \(A \) is FPT.

- At some steps, we obtain instances whose size is bounded by some function \(f(k) \).

- Then we will use that the \textsc{List Allocation} problem is in XP:

Lemma

There exists an algorithm that, given an instance \(I = (G, r, \lambda, \alpha) \) of \textsc{List Allocation}, computes all possible solutions in time \(n^{O(k)} \cdot r^{O(k+\ell)} \), where \(\ell \) is the number of connected components of \(G \).
Some preliminaries

- Let G be a connected graph. A partition (V_1, V_2) of $V(G)$ is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \leq k$, and $G[V_1]$ and $G[V_2]$ are both connected.
Some preliminaries

- Let G be a connected graph. A partition (V_1, V_2) of $V(G)$ is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \leq k$, and $G[V_1]$ and $G[V_2]$ are both connected.

- A graph G is (q, k)-connected if it does not contain any (q, k)-separation.
Some preliminaries

- Let G be a connected graph. A partition (V_1, V_2) of $V(G)$ is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \leq k$, and $G[V_1]$ and $G[V_2]$ are both connected.

- A graph G is (q, k)-connected if it does not contain any (q, k)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk'12)

There exists an algorithm that given a n-vertex connected graph G and two integers q, k, either finds a (q, k)-separation, or reports that no such separation exists, in time $\min\{q, k\}^{O(\log(q+k))} n^3 \log n$.
Series of FPT reductions

List Allocation (LA)
Series of FPT reductions

List Allocation (LA)

\[\downarrow \text{FPT} \]

Connected List Allocation (CLA)

Same input + graph G is connected and $r \leq 2k$
Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

Same input + graph G is $(f_1(k), k)$-connected, for $f_1(k) := 2^k \cdot (2k)^{2k}$
Series of FPT reductions

\textbf{List Allocation (LA)}
\[\downarrow \text{FPT} \]
\textbf{Connected List Allocation (CLA)}
\[\downarrow \text{FPT} \]
\textbf{Highly Connected List Allocation (HCLA)}

Same input + graph G is $(f_1(k), k)$-connected, for $f_1(k) := 2^k \cdot (2k)^{2k}$

\textbf{Claim (Unique big part)}

For any solution \mathcal{V} of HCLA there exists a unique index $j \in [r]$ such that

$$\sum_{i \in [r] \setminus j} |\mathcal{V}^{(i)}| \leq k \cdot f_1(k).$$

- Part $\mathcal{V}^{(j)}$ is called the \textbf{big part}.
- We say that \mathcal{V} is $k \cdot f_1(k)$-bounded out of j.
Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm `shrink`, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):

 1. If G has a $(f_1(k), k)$-separation (V_1, V_2):
 - Without loss of generality, let V_1 be the part with the smallest number of boundary vertices, and let $B' = B$.
 - So $|B'| \leq 2k$.
 - Call recursively `shrink` with input $(G[V_1], B')$, and update the graph.

 2. Otherwise, we find a set of marginal vertices, and we identify them.

 Idea: We generate all possible behaviors of the boundary, and for each of them we compute a solution of HCLA, using our "black box".
Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 1. If G has a $(f_1(k), k)$-separation (V_1, V_2):
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):

 1. If G has a $(f_1(k), k)$-separation (V_1, V_2):
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.

 2. Otherwise, we find a set of marginal vertices, and we identify them.

 Idea We generate all possible behaviors of the boundary, and for each of them we compute a solution of HCLA, using our “black box”.

![Diagram of a graph with parts and vertices labeled V_1, V_2, B, and $f_1(k)$]
Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm \texttt{shrink}, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):

 1. If G has a $(f_1(k), k)$-separation (V_1, V_2):
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively \texttt{shrink} with input $(G[V_1], B')$, and update the graph.

 2. Otherwise, we find a set of marginal vertices, and we identify them.

 Idea By the high connectivity (\text{Claim}), each such solution has a unique big part $\mathcal{V}^{(j)}$: these are the marginal vertices for this behavior.
Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm `shrink`, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):

 1. If G has a $(f_1(k), k)$-separation (V_1, V_2):
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively `shrink` with input $(G[V_1], B')$, and update the graph.

 2. Otherwise, we find a set of marginal vertices, and we identify them.

 Idea If the graph is big enough, there are vertices that are marginal for all behaviors \Rightarrow they can be safely identified. Return the graph.
Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 1. If G has a $(f_1(k), k)$-separation (V_1, V_2):
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 2. Otherwise, we find a set of marginal vertices, and we identify them.

 Idea If the graph is big enough, there are vertices that are marginal for all behaviors \Rightarrow they can be safely identified. Return the graph.

Lemma

The above algorithm returns in FPT time an equivalent instance of CLA of size at most $f_2(k) := k \cdot (f_1(k))^2 + 2k + 2$. (Then we apply the XP algorithm.)
Series of FPT reductions

List Allocation (LA) ↓ FPT

Connected List Allocation (CLA) ↓ FPT

Highly Connected List Allocation (HCLA)
Series of FPT reductions

List Allocation (LA)

\[\downarrow \text{FPT} \]

Connected List Allocation (CLA)

\[\downarrow \text{FPT} \]

Highly Connected List Allocation (HCLA)

\[\downarrow \text{FPT} \]

Split Highly Connected List Allocation (SHCLA)

Same input + set \(S \subseteq V(G) \) and a solution \(\mathcal{V} \) additionally needs to satisfy that there exists some \(j \in [r] \) such that

A. \(\mathcal{V} \) is \(k \cdot f_1(k) \)-bounded out of \(j \) and

B. \(\partial \mathcal{V}(j) \subseteq S \subseteq \mathcal{V}(j) \).
Crucial ingredient: Splitter Lemma

- Splitters were first introduced by [Naor, Schulman, Srinivasan '95]
- We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk '12)

> There exists an algorithm that given a set U of size n and two integers $a, b \in [0, n]$, outputs a set $F \subseteq 2^U$ where $|F| = \min\{a, b\}^O(\log(a+b)) \cdot \log n$ such that for every two sets $A, B \subseteq U$, where $A \cap B = \emptyset$, $|A| \leq a$, $|B| \leq b$, there exists a set $S \in F$ where $A \subseteq S$ and $B \cap S = \emptyset$, in $\min\{a, b\}^O(\log(a+b)) \cdot n \log n$ steps.
We use the **Splitter Lemma** with universe $U = V(G)$, $a = k$, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of $V(G)$.

Idea

We want a set $S \subseteq V(G)$ that "splits" these two sets: $A = \partial V_G(j)$ and $B = \bigcup_{i \in [r]} \{j\} V_G(i)$.

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the Claim).

It holds that I is a **Yes**-instance of HCLA if and only if for some $S \in F$, (I, S) is a **Yes**-instance of SHCLA.
Reduction from HCLA to SHCLA: we use splitters

- We use the **Splitter Lemma** with universe $U = V(G)$, $a = k$, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of $V(G)$.
- **Idea** We want a set $S \subseteq V(G)$ that “splits” these two sets:

 $$A = \partial V^{(j)} \quad \text{and} \quad B = \bigcup_{i \in [r]\setminus\{j\}} V^{(i)}.$$

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the **Claim**).
We use the **Splitter Lemma** with universe $U = V(G)$, $a = k$, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of $V(G)$.

Idea We want a set $S \subseteq V(G)$ that “splits” these two sets:

$$A = \partial V^{(j)} \text{ and } B = \bigcup_{i \in [r]\setminus\{j\}} V^{(i)}.$$

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the Claim).

It holds that I is a **Yes**-instance of **HCLA** if and only if for some $S \in \mathcal{F}$, (I, S) is a **Yes**-instance of **SHCLA**.
An algorithm to solve SHCLA

- Try all $j \in [r]$ so that $V^{(j)}$ is the big part: assume $\partial V^{(j)} \subseteq S \subseteq V^{(j)}$.

Lemma

The SHCLA problem can be solved in time $2^{O(k^2 \cdot \log k)} \cdot n$.
An algorithm to solve SHCLA

- Try all $j \in [r]$ so that $\mathcal{V}(j)$ is the big part: assume $\partial \mathcal{V}(j) \subseteq S \subseteq \mathcal{V}(j)$.
- Partition the connected components of $G \setminus S$ into 3 sets:
 - \mathcal{W}: those that are small ($\leq f_1(k)$) and that can go entirely in $\mathcal{V}(j)$.
 - \mathcal{Z}: those that are big ($> f_1(k)$) and that can go entirely in $\mathcal{V}(j)$.
 - \mathcal{Y}: those that cannot go entirely in $\mathcal{V}(j)$.

Lemma

The SHCLA problem can be solved in time $2^{O(k^2 \log k)} \cdot n$.

\[\text{Lemma} \]

The SHCLA problem can be solved in time $2^{O(k^2 \log k)} \cdot n$.

\[\text{Lemma} \]

The SHCLA problem can be solved in time $2^{O(k^2 \log k)} \cdot n$.

\[\text{Lemma} \]
An algorithm to solve SHCLA

- Try all $j \in [r]$ so that $\mathcal{V}(j)$ is the big part: assume $\partial \mathcal{V}(j) \subseteq S \subseteq \mathcal{V}(j)$.
- Partition the connected components of $G \setminus S$ into 3 sets:
 - \mathcal{W}: those that are small ($\leq f_1(k)$) and that can go entirely in $\mathcal{V}(j)$.
 - \mathcal{Z}: those that are big ($> f_1(k)$) and that can go entirely in $\mathcal{V}(j)$.
 - \mathcal{Y}: those that cannot go entirely in $\mathcal{V}(j)$.

Lemma

The SHCLA problem can be solved in time $2^{O(k^2 \cdot \log k)} \cdot n$.

17/25
Piecing everything together

List Allocation (LA)

↓ FPT reduction

Connected List Allocation (CLA)

↓ FPT reduction

Highly Connected List Allocation (HCLA)

↓ FPT reduction

Split Highly Connected List Allocation (SHCLA)

↓ FPT algorithm to solve SHCLA

Theorem

List Allocation can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.
Generalization of **Digraph Homomorphism**

Arc-Bounded List Digraph Homomorphism

Input: Two digraphs G and H, a list $\lambda : V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of arcs in G mapped to each arc of H.

Parameter: $k = \sum \alpha$.

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems.

[D ´ıaz, Serna, Thilikos '08]

Corollary
The **Arc-Bounded List Digraph Homomorphism** problem is **FPT**.
Generalization of **Digraph Homomorphism**

Arc-Bounded List Digraph Homomorphism

Input: Two digraphs G and H, a list $\lambda : V(G) \rightarrow 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of arcs in G mapped to each arc of H.

Parameter: $k = \sum \alpha$.
Generalization of **Digraph Homomorphism**

Arc-Bounded List Digraph Homomorphism

Input: Two digraphs G and H, a list $\lambda : V(G) \rightarrow 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of arcs in G mapped to each arc of H.

Parameter: $k = \sum \alpha$.

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α.

- It generalizes several homomorphism problems.

[Díaz, Serna, Thilikos ’08]
Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism

Input: Two digraphs G and H, a list $\lambda : V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of arcs in G mapped to each arc of H.

Parameter: \(k = \sum \alpha \).

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α.

- It generalizes several homomorphism problems. [Díaz, Serna, Thilikos '08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.
Graph partitioning problem

Min-Max Graph Partitioning

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with $|T| = r$.
Min-Max Graph Partitioning

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with $|T| = r$.

Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{P_1, \ldots, P_r\}$ of $V(G)$ such that $\max_{i \in [r]} |\delta(P_i, V(G) \setminus P_i)| \leq w$ and for every $i \in [r], |P_i \cap T| = 1$.

Important in approximation.

[Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]

The "Min-Sum" version is exactly the Multiway Cut problem.

[Marx '06]

Corollary The Min-Max Graph Partitioning problem is FPT.
Graph partitioning problem

Min-Max Graph Partitioning

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with $|T| = r$.

Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{P_1, \ldots, P_r\}$ of $V(G)$ such that $\max_{i \in [r]} |\delta(P_i, V(G) \setminus P_i)| \leq w$ and for every $i \in [r]$, $|P_i \cap T| = 1$.

- Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]
- The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]
Graph partitioning problem

Min-Max Graph Partitioning

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with $|T| = r$.

Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{P_1, \ldots, P_r\}$ of $V(G)$ s.t. $\max_{i \in [r]} |\delta(P_i, V(G) \setminus P_i)| \leq w$ and for every $i \in [r]$, $|P_i \cap T| = 1$.

- Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]
- The “Min-Sum” version is exactly the Multiway Cut problem. [Marx '06]

Corollary

The Min-Max Graph Partitioning problem is FPT.
2-approximation for **Tree-cut width**

- **Tree-cut width** is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion. [Wollan '14]

- **Tree-cut decompositions** are a variation of tree decompositions based on edge cuts instead of vertex cuts.

- Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider'14]
2-approximation for **Tree-cut width**

- **Tree-cut width** is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an **immersion**. [Wollan '14]

- **Tree-cut decompositions** are a variation of tree decompositions based on edge cuts instead of vertex cuts.

- Tree-cut width also has **algorithmic applications**. [Ganian, Kim, Szeider'14]

- We prove that following result:

Corollary

*There exists an algorithm that, given a graph G and a $k \in \mathbb{Z}_{\geq 0}$, in time $2^{O(k^2 \cdot \log k)} \cdot n^5 \cdot \log n$ either outputs a tree-cut decomposition of G with width at most $2k$, or correctly reports that the tree-cut width of G is strictly larger than k.***
1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions
Conclusions and further research

Some open problems:

- Improve the running time of our algorithms.
Some open problems:

- Improve the running time of our algorithms.
- Can we find more applications of List Allocation?
Conclusions and further research

Some open problems:

- Improve the running time of our algorithms.
- Can we find more applications of List Allocation?
- Find an explicit (exact) FPT algorithm for tree-cut width.
Conclusions and further research

Some open problems:

- Improve the running time of our algorithms.
- Can we find more applications of List Allocation?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding \((q, k)\)-separations: \cite{Montejano, S. '15}
 - FPT when parameterized by both \(q\) and \(k\).
 - \(W[1]\)-hard when parameterized by \(q\).
 - No polynomial kernel when parameterized by \(k\).
Conclusions and further research

Some open problems:

- Improve the running time of our algorithms.

- Can we find more applications of `List Allocation`?

- Find an explicit (exact) FPT algorithm for `tree-cut width`.

- Recent work on finding (q, k)-separations:
 - FPT when parameterized by both q and k.
 - W[1]-hard when parameterized by q.
 - No polynomial kernel when parameterized by k.
 - ★ FPT when parameterized by k?

[Montejano, S. '15]
Gràcies!