
FPT algorithm for a generalized cut problem
and some applications

EunJung Kim1 Sang-Il Oum2

Christophe Paul3 Ignasi Sau3 Dimitrios M. Thilikos3

Séminaire AlGCo, January 2015

1 CNRS, LAMSADE, Paris (France)

2 KAIST, Daejeon (South Korea)

3 CNRS, LIRMM, Montpellier (France)

Réunion AGAPE Orléans. 30 janvier 2013

1/25

Outline of the talk

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

2/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

3/25

Some words on parameterized complexity

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.

4/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’06]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’06]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’06]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’06]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’06]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’06]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov,Pilipczuk2, Saurabh ’13]

5/25

Definition of the problem – preliminaries

An r -allocation of a set S is an r -tuple V = (V1, . . . ,Vr) of possibly
empty sets that are pairwise disjoint and whose union is the set S .

Elements of V: parts of V.

We denote by V(i) the i-th part of V, i.e., V(i) = Vi .

Let G = (V ,E) be a graph and let V is an r -allocation of V :

|δ(V(i),V(j))|: #edges in G with one endpoint in V(i) and one in V(j).

6/25

Definition of the problem – preliminaries

An r -allocation of a set S is an r -tuple V = (V1, . . . ,Vr) of possibly
empty sets that are pairwise disjoint and whose union is the set S .

Elements of V: parts of V.

We denote by V(i) the i-th part of V, i.e., V(i) = Vi .

Let G = (V ,E) be a graph and let V is an r -allocation of V :

|δ(V(i),V(j))|: #edges in G with one endpoint in V(i) and one in V(j).

6/25

Definition of the problem: List Allocation

List Allocation
Input: A tuple I = (G , r , λ, α), where G is an n-vertex graph,
r ∈ Z>1, λ : V (G)→ 2[r], and α :

([r]
2

)
→ Z>0.

Parameter: k =
∑
α.

Question: Decide whether there exists an r -allocation V of V (G) s.t.

∀{i , j} ∈
([r]

2

)
, |δ(V(i),V(j))| = α(i , j) and

∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v).

7/25

Definition of the problem: List Allocation

List Allocation
Input: A tuple I = (G , r , λ, α), where G is an n-vertex graph,
r ∈ Z>1, λ : V (G)→ 2[r], and α :

([r]
2

)
→ Z>0.

Parameter: k =
∑
α.

Question: Decide whether there exists an r -allocation V of V (G) s.t.

∀{i , j} ∈
([r]

2

)
, |δ(V(i),V(j))| = α(i , j) and

∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v).

7/25

Definition of the problem: List Allocation

List Allocation
Input: A tuple I = (G , r , λ, α), where G is an n-vertex graph,
r ∈ Z>1, λ : V (G)→ 2[r], and α :

([r]
2

)
→ Z>0.

Parameter: k =
∑
α.

Question: Decide whether there exists an r -allocation V of V (G) s.t.

∀{i , j} ∈
([r]

2

)
, |δ(V(i),V(j))| = α(i , j) and

∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v).

7/25

Our main result

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

List Allocation generalizes, in particular, the
Edge Multiway Cut-Uncut problem.

Our algorithm is strongly inspired by the edge contraction technique.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

8/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

9/25

High-level ideas of the FPT algorithm

We use a series of FPT reductions:

Problem A
FPT−−→ Problem B: If problem B is FPT, then problem A is FPT.

At some steps, we obtain instances whose size is bounded by some
function f (k).

Then we will use that the List Allocation problem is in XP:

Lemma

There exists an algorithm that, given an instance I = (G , r , λ, α) of List
Allocation, computes all possible solutions in time nO(k) · rO(k+`),
where ` is the number of connected components of G .

10/25

High-level ideas of the FPT algorithm

We use a series of FPT reductions:

Problem A
FPT−−→ Problem B: If problem B is FPT, then problem A is FPT.

At some steps, we obtain instances whose size is bounded by some
function f (k).

Then we will use that the List Allocation problem is in XP:

Lemma

There exists an algorithm that, given an instance I = (G , r , λ, α) of List
Allocation, computes all possible solutions in time nO(k) · rO(k+`),
where ` is the number of connected components of G .

10/25

Some preliminaries

Let G be a connected graph. A partition (V1,V2) of V (G) is a
(q, k)-separation if |V1|, |V2| > q, |δ(V1,V2)| 6 k , and G [V1] and
G [V2] are both connected.

A graph G is (q, k)-connected if it does not contain any
(q, k)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers q, k, either finds a (q, k)-separation, or reports that no such separation

exists, in time min{q, k}O(log(q+k))n3 log n.

11/25

Some preliminaries

Let G be a connected graph. A partition (V1,V2) of V (G) is a
(q, k)-separation if |V1|, |V2| > q, |δ(V1,V2)| 6 k , and G [V1] and
G [V2] are both connected.

A graph G is (q, k)-connected if it does not contain any
(q, k)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers q, k, either finds a (q, k)-separation, or reports that no such separation

exists, in time min{q, k}O(log(q+k))n3 log n.

11/25

Some preliminaries

Let G be a connected graph. A partition (V1,V2) of V (G) is a
(q, k)-separation if |V1|, |V2| > q, |δ(V1,V2)| 6 k , and G [V1] and
G [V2] are both connected.

A graph G is (q, k)-connected if it does not contain any
(q, k)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers q, k, either finds a (q, k)-separation, or reports that no such separation

exists, in time min{q, k}O(log(q+k))n3 log n.

11/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

12/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

Same input + graph G is connected and r 6 2k

↓ FPT

Highly Connected List Allocation (HCLA)

12/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

Same input + graph G is (f1(k), k)-connected, for f1(k) := 2k · (2k)2k

Claim (Unique big part)

For any solution V of HCLA there exists a unique index j ∈ [r] such that∑
i∈[r]\j

|V(i)| 6 k · f1(k).

• Part V(j) is called the big part.
• We say that V is k · f1(k)-bounded out of j .

12/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

Same input + graph G is (f1(k), k)-connected, for f1(k) := 2k · (2k)2k

Claim (Unique big part)

For any solution V of HCLA there exists a unique index j ∈ [r] such that∑
i∈[r]\j

|V(i)| 6 k · f1(k).

• Part V(j) is called the big part.
• We say that V is k · f1(k)-bounded out of j .

12/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, we find a set of marginal vertices, and we identify them.

Idea We generate all possible behaviors of the boundary, and for each
of them we compute a solution of HCLA, using our “black box”.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.

2 Otherwise, we find a set of marginal vertices, and we identify them.

Idea We generate all possible behaviors of the boundary, and for each
of them we compute a solution of HCLA, using our “black box”.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, we find a set of marginal vertices, and we identify them.

Idea We generate all possible behaviors of the boundary, and for each
of them we compute a solution of HCLA, using our “black box”.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, we find a set of marginal vertices, and we identify them.

Idea By the high connectivity (Claim), each such solution has a

unique big part V(j): these are the marginal vertices for this behavior.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, we find a set of marginal vertices, and we identify them.

Idea If the graph is big enough, there are vertices that are marginal
for all behaviors ⇒ they can be safely identified. Return the graph.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.

2 Otherwise, we find a set of marginal vertices, and we identify them.

Idea If the graph is big enough, there are vertices that are marginal
for all behaviors ⇒ they can be safely identified. Return the graph.

Lemma
The above algorithm returns in FPT time an equivalent instance of CLA of size

at most f2(k) := k · (f1(k))2 + 2k + 2. (Then we apply the XP algorithm.)

13/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

↓ FPT

Split Highly Connected List Allocation (SHCLA)

14/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

↓ FPT

Split Highly Connected List Allocation (SHCLA)

Same input + set S ⊆ V (G) and a solution V additionally needs to satisfy
that there exists some j ∈ [r] such that

A. V is k · f1(k)-bounded out of j and
B. ∂V(j) ⊆ S ⊆ V(j).

14/25

Crucial ingredient: Splitter Lemma

Splitters were first introduced by [Naor, Schulman, Srinivasan ’95]

We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a set U of size n and two integers
a, b ∈ [0, n], outputs a set F ⊆ 2U where |F| = min{a, b}O(log(a+b)) · log n
such that for every two sets A,B ⊆ U, where A ∩ B = ∅, |A| 6 a, |B| 6 b,
there exists a set S ∈ F where A ⊆ S and B ∩ S = ∅, in
min{a, b}O(log(a+b)) · n log n steps.

15/25

Reduction from HCLA to SHCLA: we use splitters

We use the Splitter Lemma with universe U = V (G), a = k , and
b = k · f1(k), obtaining a family F of subsets of V (G).

Idea We want a set S ⊆ V (G) that “splits” these two sets:

A = ∂V(j) and B =
⋃

i∈[r]\{j}

V(i).

For some j ∈ [r]: |A| 6 k and |B| 6 k · f1(k) (by the Claim).

It holds that I is a Yes-instance of HCLA if and only if for some
S ∈ F , (I ,S) is a Yes-instance of SHCLA.

16/25

Reduction from HCLA to SHCLA: we use splitters

We use the Splitter Lemma with universe U = V (G), a = k , and
b = k · f1(k), obtaining a family F of subsets of V (G).

Idea We want a set S ⊆ V (G) that “splits” these two sets:

A = ∂V(j) and B =
⋃

i∈[r]\{j}

V(i).

For some j ∈ [r]: |A| 6 k and |B| 6 k · f1(k) (by the Claim).

It holds that I is a Yes-instance of HCLA if and only if for some
S ∈ F , (I ,S) is a Yes-instance of SHCLA.

16/25

Reduction from HCLA to SHCLA: we use splitters

We use the Splitter Lemma with universe U = V (G), a = k , and
b = k · f1(k), obtaining a family F of subsets of V (G).

Idea We want a set S ⊆ V (G) that “splits” these two sets:

A = ∂V(j) and B =
⋃

i∈[r]\{j}

V(i).

For some j ∈ [r]: |A| 6 k and |B| 6 k · f1(k) (by the Claim).

It holds that I is a Yes-instance of HCLA if and only if for some
S ∈ F , (I ,S) is a Yes-instance of SHCLA.

16/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

W: those that are small (6 f1(k)) and that can go entirely in V(j).
Z: those that are big (> f1(k)) and that can go entirely in V(j).
Y: those that cannot go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.

17/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

W: those that are small (6 f1(k)) and that can go entirely in V(j).
Z: those that are big (> f1(k)) and that can go entirely in V(j).
Y: those that cannot go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.

17/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

W: those that are small (6 f1(k)) and that can go entirely in V(j).
Z: those that are big (> f1(k)) and that can go entirely in V(j).
Y: those that cannot go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.
17/25

Piecing everything together

List Allocation (LA)

↓ FPT reduction

Connected List Allocation (CLA)

↓ FPT reduction

Highly Connected List Allocation (HCLA)

↓ FPT reduction

Split Highly Connected List Allocation (SHCLA)

↓ FPT algorithm to solve SHCLA

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

18/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

19/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of arcs in
G mapped to each arc of H.

Parameter: k =
∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of arcs in
G mapped to each arc of H.
Parameter: k =

∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of arcs in
G mapped to each arc of H.
Parameter: k =

∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of arcs in
G mapped to each arc of H.
Parameter: k =

∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .

Parameter: k = w · r .
Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.

21/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .
Parameter: k = w · r .

Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.

21/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .
Parameter: k = w · r .
Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.

21/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .
Parameter: k = w · r .
Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.
21/25

2-approximation for Tree-cut width

Tree-cut width is a graph invariant fundamental in the structure of
graphs not admitting a fixed graph as an immersion. [Wollan ’14]

Tree-cut decompositions are a variation of tree decompositions based
on edge cuts instead of vertex cuts.

Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider’14]

We prove that following result:

Corollary

There exists an algorithm that, given a graph G and a k ∈ Z>0, in time
2O(k2·log k) · n5 · log n either outputs a tree-cut decomposition of G with
width at most 2k, or correctly reports that the tree-cut width of G is
strictly larger than k.

22/25

2-approximation for Tree-cut width

Tree-cut width is a graph invariant fundamental in the structure of
graphs not admitting a fixed graph as an immersion. [Wollan ’14]

Tree-cut decompositions are a variation of tree decompositions based
on edge cuts instead of vertex cuts.

Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider’14]

We prove that following result:

Corollary

There exists an algorithm that, given a graph G and a k ∈ Z>0, in time
2O(k2·log k) · n5 · log n either outputs a tree-cut decomposition of G with
width at most 2k, or correctly reports that the tree-cut width of G is
strictly larger than k.

22/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

23/25

Conclusions and further research

Some open problems:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k.
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k.

F FPT when parameterized by k?

24/25

Conclusions and further research

Some open problems:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k.
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k.

F FPT when parameterized by k?

24/25

Conclusions and further research

Some open problems:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k.
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k.

F FPT when parameterized by k?

24/25

Conclusions and further research

Some open problems:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k .
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k .

F FPT when parameterized by k?

24/25

Conclusions and further research

Some open problems:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k .
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k .

F FPT when parameterized by k?

24/25

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

25/25

	Introduction
	Sketch of the FPT algorithm
	Some applications
	Conclusions

