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Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

.

.
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Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

If there exists such f for all G , then H satisfies the Erdős-Pósa property.

min # vertices covering all H ∈ H 6 f (max # of disjoint H ∈ H ) ?
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Minors and models in graphs

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

H-model in G : collection {Su : u ∈ V (H)} s.t.

the Su’s are vertex-disjoint connected subgraphs of G , and
there is an edge between Su and Sv in G for every edge uv ∈ E (H).

A K5-model

The Su’s are called vertex images.
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Packing and covering H-models

Let H be a fixed graph. For a graph G , we define:

packH(G ) := packing number
= max. number of vertex-disjoint H-models in G

coverH(G ) := covering number
= min. number of vertices hitting all H-models in G .

Clearly, coverH(G ) > packH(G ) ∀G .

For which H coverH(G ) 6 f (packH(G )) ∀G , for some function f ?

This is called the (vertex) Erdős-Pósa property for H-minors.
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Erdős-Pósa property of H-minors

There exists a complete characterization:

coverH(G ) 6 f (packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]
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The property does NOT hold if H is not planar

H = K5
Take a

√
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n triangulated toroidal grid G :
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Therefore, the result of Robertson and Seymour is best possible.
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Erdős-Pósa property of H-minors

Complete characterization:

coverH(G ) 6 f (packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

Is it the end of the story? NO!

Known upper bounds coverH 6 f (packH) were huge:

f (packH) = O(2packH
2
)

This is because Robertson and Seymour’s proof uses the excluded grid

theorem from Graph Minors.

Natural question: which is the best possible function fH(packH)?
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Lower bound when H has a cycle

Let’s see that if H has a cycle, then fH(k) = Ω(k log k):

Let G be an n-vertex (cubic) graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
coverH(G ) = Ω(n).

On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V (F )| = O(log n), and therefore
packH(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).

11/32



Lower bound when H has a cycle

Let’s see that if H has a cycle, then fH(k) = Ω(k log k):

Let G be an n-vertex (cubic) graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
coverH(G ) = Ω(n).

On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V (F )| = O(log n), and therefore
packH(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).

11/32



Lower bound when H has a cycle

Let’s see that if H has a cycle, then fH(k) = Ω(k log k):

Let G be an n-vertex (cubic) graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
coverH(G ) = Ω(n).

On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V (F )| = O(log n), and therefore
packH(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).

11/32



Lower bound when H has a cycle

Let’s see that if H has a cycle, then fH(k) = Ω(k log k):

Let G be an n-vertex (cubic) graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
coverH(G ) = Ω(n).

On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V (F )| = O(log n), and therefore
packH(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).

11/32



Lower bound when H has a cycle

Let’s see that if H has a cycle, then fH(k) = Ω(k log k):

Let G be an n-vertex (cubic) graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
coverH(G ) = Ω(n).

On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V (F )| = O(log n), and therefore
packH(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).

11/32



Lower bound when H has a cycle

Let’s see that if H has a cycle, then fH(k) = Ω(k log k):

Let G be an n-vertex (cubic) graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
coverH(G ) = Ω(n).

On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V (F )| = O(log n), and therefore
packH(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).

11/32



Brief state of the art of Erdős-Pósa property for minors

There exists a function fH(k) ⇔ H is planar [Robertson, Seymour ’86]

The known upper bound was huge: fH(k) = O(2k
2
).

If H has a cycle, we have a lower bound: fH(k) = Ω(k log k).

Erdős and Pósa original result for H = cycle:
fH(k) = O(k log k). (optimal) [Erdős, Pósa ’65]

fH(k) = O(k) when H = forest (optimal). [Fiorini, Joret, Wood ’12]

F Recent breakthrough:

For all graphs H, fH(k) = O(k polylogk) . [Chekuri, Chuzhoy ’13]

Question For H with a cycle, when the optimal fH(k) = O(k log k)
can be attained?
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There exists a function fH(k) ⇔ H is planar [Robertson, Seymour ’86]

The known upper bound was huge: fH(k) = O(2k
2
).

If H has a cycle, we have a lower bound: fH(k) = Ω(k log k).
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Pumpkins

c-pumpkin:

c

? Can be seen as a natural generalization of a cycle.

? The c-pumpkin is sometimes denoted as θc in the literature.

(N.B: “graph” = multigraph)
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Graphs with no c-pumpkin minor

c = 1: empty graphs

c = 2: forests

c = 3: no two cycles share an edge

etc.
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Covering pumpkins

c-pumpkin cover:
vertex subset X ⊆ V (G ) s.t. G − X has no c-pumpkin minor

X
c = 3

coverθc (G ): min. size of a c-pumpkin cover

? For c = 1: Minimum Vertex Cover
? For c = 2: Minimum Feedback Vertex Set
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Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G , each containing a c-pumpkin
minor

c = 2

packθc (G ): max. cardinality of a c-pumpkin packing

? For c = 1: Maximum Matching
? For c = 2: Maximum Cycle Packing
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Results on Erdős-Pósa property for pumpkins

• Before the upper bound of fH(k) = O(k polylogk) appeared:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fθc (k) = O(k2).

.

• We solve it optimally:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fθc (k) = O(k log k).

.
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For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fθc (k) = O(k2).

? Their proof uses tree decompositions and brambles.

• We solve it optimally:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fθc (k) = O(k log k).

? Our proof follows and generalizes Erdős-Pósa’s proof for the case c = 2.
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Ingredients of the proof for c-pumpkins

1. Find relevant reduction rules that preserve the covering and packing
numbers of a graph.

For c = 2 remove degree-1 vertices and dissolve degree-2 vertices.

2. Prove that every n-vertex reduced graph contains a c-pumpkin model
of size O(log n).

For c = 2 If δ(G ) > 3, then girth(G ) < 2 log n.

3. Define an appropriate subgraph H of the graph G such that if
|V (H)| > d · k log k for some constant d (depending only on c), then H
contains k vertex-disjoint c-pumpkin-models.

For c = 2 H = maximal subgraph of G s.t. every vertex has degree 2 or 3.

18/32
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Ingredients of the proof for c-pumpkins (2)

4. Piece everything together:
Given G ,

G

We can prove that ∃ a set X ∪ U ⊆ V (H), with |X | = O(k),
intersecting every c-pumpkin-model in G .

As |X | = O(k), it suffices to show that |U| = O(k log k),
unless H contains k disjoint c-pumpkin-models.

This follows from steps 2+3 applied to the graph H.
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unless H contains k disjoint c-pumpkin-models.
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What about if we restrict the class of graphs?

coverH(G ) 6 fH(packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

For general G , if H may contain a cycle:

fH(k) = Ω(k log k) and fH(k) = O(k polylogk)

F If H is planar and G belongs to a minor-closed graph class, then

fH(k) = O(k) (optimal). [Fomin, Saurabh, Thilikos ’10]

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

There exists a function g : N→ N such that for every two positive integers
c , q, in every graph G excluding Kq as a minor it holds that

fθc (k) 6 g(c) · k · log q.

I For q fixed, this yields the linear bound for the case of H = θc .

I For q = k · (c + 1), this yields the bound of [Fiorini, Joret, S. ’13]

20/32



What about if we restrict the class of graphs?

coverH(G ) 6 fH(packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

For general G , if H may contain a cycle:

fH(k) = Ω(k log k) and fH(k) = O(k polylogk)

F If H is planar and G belongs to a minor-closed graph class, then

fH(k) = O(k) (optimal). [Fomin, Saurabh, Thilikos ’10]

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

There exists a function g : N→ N such that for every two positive integers
c , q, in every graph G excluding Kq as a minor it holds that

fθc (k) 6 g(c) · k · log q.

I For q fixed, this yields the linear bound for the case of H = θc .

I For q = k · (c + 1), this yields the bound of [Fiorini, Joret, S. ’13]

20/32



What about if we restrict the class of graphs?

coverH(G ) 6 fH(packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

For general G , if H may contain a cycle:

fH(k) = Ω(k log k) and fH(k) = O(k polylogk)

F If H is planar and G belongs to a minor-closed graph class, then

fH(k) = O(k) (optimal). [Fomin, Saurabh, Thilikos ’10]

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

There exists a function g : N→ N such that for every two positive integers
c , q, in every graph G excluding Kq as a minor it holds that

fθc (k) 6 g(c) · k · log q.

I For q fixed, this yields the linear bound for the case of H = θc .

I For q = k · (c + 1), this yields the bound of [Fiorini, Joret, S. ’13]

20/32



What about if we restrict the class of graphs?

coverH(G ) 6 fH(packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

For general G , if H may contain a cycle:

fH(k) = Ω(k log k) and fH(k) = O(k polylogk)

F If H is planar and G belongs to a minor-closed graph class, then

fH(k) = O(k) (optimal). [Fomin, Saurabh, Thilikos ’10]

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

There exists a function g : N→ N such that for every two positive integers
c , q, in every graph G excluding Kq as a minor it holds that

fθc (k) 6 g(c) · k · log q.

I For q fixed, this yields the linear bound for the case of H = θc .

I For q = k · (c + 1), this yields the bound of [Fiorini, Joret, S. ’13]

20/32



What about if we restrict the class of graphs?

coverH(G ) 6 fH(packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

For general G , if H may contain a cycle:

fH(k) = Ω(k log k) and fH(k) = O(k polylogk)

F If H is planar and G belongs to a minor-closed graph class, then

fH(k) = O(k) (optimal). [Fomin, Saurabh, Thilikos ’10]

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

There exists a function g : N→ N such that for every two positive integers
c , q, in every graph G excluding Kq as a minor it holds that

fθc (k) 6 g(c) · k · log q.

I For q fixed, this yields the linear bound for the case of H = θc .

I For q = k · (c + 1), this yields the bound of [Fiorini, Joret, S. ’13]

20/32



Main open problem

coverH(G ) 6 fH(packH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’86]

For general G , if H may contain a cycle:

fH(k) = Ω(k log k) and fH(k) = O(k polylogk)

Conjecture

For all non-acyclic planar H, we have fH(k) = O(k log k). (optimal)
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Next section is...

1 Motivation

2 Vertex version for minors

3 Edge version for minors

4 Vertex version for topological minors
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Packing and covering H-models – vertex version

Let H be a fixed graph. For a graph G , we define:

packH(G ) := packing number
= max. number of vertex-disjoint H-models in G

coverH(G ) := covering number
= min. number of vertices hitting all H-models in G .

Clearly, coverH(G ) > packH(G )∀G .

For which H coverH(G ) 6 f (packH(G )) ∀G , for some function f ?

This is called the (vertex) Erdős-Pósa property for H-minors.
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Packing and covering H-models – edge version

Let H be a fixed graph. For a graph G , we define:

packH(G ) := packing number
= max. number of edge-disjoint H-models in G

coverH(G ) := covering number
= min. number of edges hitting all H-models in G .

Clearly, coverH(G ) > packH(G ) ∀G .

For which H coverH(G ) 6 f (packH(G )) ∀G , for some function f ?

This is called the (edge) Erdős-Pósa property for H-minors.
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What is known for the edge version?

For the vertex version:

there exists fH(k) ⇔ H is planar

For the edge version:

there exists fH(k) ⇒ H is planar

??? there exists fH(k) ⇐ H is planar ???
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Particular cases of the planar graph H

H = cycle: Erdős and Pósa’s original proof can be adapted to the edge version:

f e
θ2

(k) = O(k log k) [Graph Theory, Chapter 7. Diestel ’05]

Again, we focus on c-pumpkins:

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

There exists a function g : N→ N such that for every two positive integers
c , q, in every graph G excluding Kq as a minor it holds that

f e
θc (k) 6 g(c) · k · log q.

Theorem (Chatzidimitriou, Raymond, S., Thilikos ’14)

packθc , packe
θc , coverθc , and covere

θc
have a (deterministic and poly-time)

f (c) · log(OPT)-approximation algorithm.

Improves a O(log n)-approx. for the vertex version. [Joret, Paul, S., Saurabh, Thomassé ’11]
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Next section is...

1 Motivation

2 Vertex version for minors

3 Edge version for minors

4 Vertex version for topological minors
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Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg 6 2.

Therefore: H minor of G ⇒ H topological minor of G .

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs .
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Topological models in graphs

H is a topological minor of G if H can be obtained from a subgraph of G
by contracting edges with at least one endpoint of deg 6 2.

H-topological model in G : collection {vu : u ∈ V (H)} ⊆ V (G ) s.t.

∀ uw ∈ E (H), there exists in G a path between vu and vw , and
all these paths are pairwise vertex-disjoint.

A K5-topological model = a subdivision of K5
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What is known for topological minors?

Erdős-Pósa property for the vertex version for minors:

there exists fH(k) ⇔ H is planar

Erdős-Pósa property for the vertex version for topological minors?

there exists fH(k) ⇒ H is planar [Robertson, Seymour ’84]

Is planarity sufficient?

No! It does not hold even if H = tree. [Thomassen ’88]

That is, there are trees T , such the collection of subdivisions of T does
not satisfy the Erdős-Pósa property (even restricted to planar graphs).
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Planarity is not sufficient for topological minors

z1T1
z2T2

z3T3

Let T1,T2,T3 be non-isomorphic trees whose vertices have degree 4 or 1,
and let zi be a vertex of degree 4 in Ti .
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Planarity is not sufficient for topological minors

T

Let T be defined as above. We claim that the collection of subdivisions of
T does not satisfy the Erdős-Pósa property (even in planar graphs).
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Planarity is not sufficient for topological minors

We start with the wall of size k , we subdivide the above edges, and we
add attached copies of the trees T1,T2,T3 defined before.
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Planarity is not sufficient for topological minors

T1 T1T1

T2 T2T2

T3

T3

T3

T3

T3

This (planar) graph contains only one vertex-disjoint subdivision of T (i.e.,
the packing number is one), but the covering number is arbitrarily large.
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Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE
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