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Packing and covering

Konig's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING
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Packing and covering

Konig's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

If there exists such f for all G, then H satisfies the Erdos-Pésa property.

min # vertices covering all < f(max # of disjoint ) ?
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Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.
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Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

H-model in G: collection {S, : u € V(H)} s.t.
@ the S,'s are vertex-disjoint connected subgraphs of G, and
@ there is an edge between S, and S, in G for every edge uv € E(H).

A Ks-model

The S,'s are called vertex images.
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Packing and covering H-models

Let H be a fixed graph. For a graph G, we define:

packy(G) := packing number
= max. number of vertex-disjoint H-models in G

covery(G) := covering number
= min. number of vertices hitting all H-models in G.

Clearly, covery(G) > packy(G) VG.
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Let H be a fixed graph. For a graph G, we define:

packy(G) := packing number
= max. number of vertex-disjoint H-models in G

covery(G) := covering number
= min. number of vertices hitting all H-models in G.

Clearly, covery(G) > packy(G) VG.

For which H ‘coverH(G) < f(packH(G))‘VG, for some function f 7

This is called the (vertex) Erdés-Pésa property for H-minors.
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Erdés-Pdsa property of H-minors

There exists a complete characterization:

‘ COVerH(G) < f(paCkH(G)) VG = His planar [Robertson, Seymour '86)
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The property does NOT hold if H is not planar

Heks X Take a /n x \/n triangulated toroidal grid G:

do O O O O O O d

e g O O O O O O e

fo—0—0—0—0—0—0f
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The property does NOT hold if H is not planar

H = Ks X Take a /n x /n triangulated toroidal grid G:
0 06 o o o o°
bo—0 00 0 0 —0b
co0 0/>—I o —oc
d o—0 o 0—0 d
e 0 1—4/; o—o0e
fo— 00000 0f

packy(G) =1 but covery(G) = 0O(/n)
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The property does NOT hold if H is not planar

H=Ks X H not planar X

Therefore, the result of Robertson and Seymour is best possible.
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ErdGs-Pdsa property of H-minors

Complete characterization:

‘ COVerH(G) < f(packH(G)) VG <~ H is planar ‘ [Robertson, Seymour '86]

Is it the end of the story?  NO!

@ Known upper bounds covery < f(packy) were huge:
f(packy) = O(2P%H")

This is because Robertson and Seymour's proof uses the excluded grid
theorem from Graph Minors.

e Natural question: which is the best possible function fiy(packy)?
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Lower bound when H has a cycle

Let's see that if H has a cycle, then fy(k) = Q(k log k):
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Let's see that if H has a cycle, then fy(k) = Q(k log k):

@ Let G be an n-vertex (cubic) graph with tw(G) = Q(n) and
glrth( G) = Q(|Og n) . (such graphs are well-known to exist)

@ Any H-minor-free graph F satisfies tw(F) < d for some constant d,
as His p|anar. [Robertson, Seymour '86]

@ Thus tw(G — X) < d for any H-hitting set X, and therefore
covery(G) = Q(n).

@ On the other hand, every subgraph F of G containing an H-model
has a cycle, so |V(F)| = O(log n), and therefore
packy(G) = O(n/logn).

@ This implies that (easy to check) 3 constant b > 0 such that
fu(k) > b-klogk  (i.e., fu(k) = Q(klogk)).
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Brief state of the art of Erdés-Pdsa property for minors

@ There exists a function fi(k) < H is planar [Robertson, Seymour '86]

The known upper bound was huge: fi;(k) = O(2~").
If H has a cycle, we have a lower bound: fy(k) = Q(klog k).
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Brief state of the art of Erdés-Pdsa property for minors

@ There exists a function fy(k) < H is planar [Robertson, Seymour '86]

The known upper bound was huge: fi(k) = O(25).
If H has a cycle, we have a lower bound: ’ (k) = Q(klog k) ‘
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Brief state of the art of Erdés-Pdsa property for minors

@ There exists a function fy(k) < H is planar [Robertson, Seymour '86]

The known upper bound was huge: fi(k) = O(25).
If H has a cycle, we have a lower bound: ’ (k) = Q(klog k) ‘

@ Erdés and Pésa original result for H = cycle:
fu(k) = O(klog k). (optimal) [Erdss, Pésa '65]

o fH(k) = O(k) When H = forest (optlmal) [Fiorini, Joret, Wood '12]

% Recent breakthrough:
For all graphs H, ’ fu(k) = O(k polylogk) ‘ [Chekuri, Chuzhoy '13]

For H with a cycle, when the optimal (k) = O(k log k)

can be attained?

12/32



Pumpkins
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Pumpkins @

c-pumpkin:

* Can be seen as a natural generalization of a cycle.
* The c-pumpkin is sometimes denoted as 0. in the literature.
(N.B: “graph” = multigraph)

13/32



Graphs with no c-pumpkin minor
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Graphs with no c-pumpkin minor

@ ¢ = 1: empty graphs
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Graphs with no c-pumpkin minor

@ ¢ = 1: empty graphs

(o}
o
;{ (o}

g AT

@ ¢ = 2: forests

14/32



Graphs with no c-pumpkin minor

@ ¢ = 1: empty graphs

(o]
o
; { (o]
@ ¢ = 2: forests

g AT

@ ¢ = 3: no two cycles share an edge

% >

@ etc.
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Covering pumpkins

c-pumpkin cover:
vertex subset X C V(G) s.t. G — X has no c-pumpkin minor
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Covering pumpkins

c-pumpkin cover:
vertex subset X C V(G) s.t. G — X has no c-pumpkin minor

covery_(G): min. size of a c-pumpkin cover

* For ¢ = 1: MINIMUM VERTEX COVER
* For ¢ = 2: MINIMUM FEEDBACK VERTEX SET
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Packing pumpkins

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin
minor
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Packing pumpkins

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin
minor

packy_(G): max. cardinality of a c-pumpkin packing

x For ¢ = 1: MAXIMUM MATCHING
* For ¢ = 2: MAXIMUM CYCLE PACKING
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Results on Erdos-Pésa property for pumpkins

e Before the upper bound of fiy(k) = O(k polylogk) appeared:
Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer ¢ > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fy_(k) = O(k?).
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Results on Erdos-Pésa property for pumpkins

e Before the upper bound of fiy(k) = O(k polylogk) appeared:
Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer ¢ > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fy_(k) = O(k?).

* Their proof uses tree decompositions and brambles.

e We solve it optimally:

Theorem (Fiorini, Joret, S. '13)

For any fixed integer ¢ > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
cover of size at most fy_(k) = O(k log k).

* Our proof follows and generalizes Erdés-Pésa’s proof_for the case c.= 2.
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Ingredients of the proof for c-pumpkins

1. Find relevant reduction rules that preserve the covering and packing
numbers of a graph.

For ¢ = 2| remove degree-1 vertices and dissolve degree-2 vertices.
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Ingredients of the proof for c-pumpkins

1. Find relevant reduction rules that preserve the covering and packing
numbers of a graph.

For ¢ = 2| remove degree-1 vertices and dissolve degree-2 vertices.

2. Prove that every n-vertex reduced graph contains a c-pumpkin model
of size O(log n).

If §(G) = 3, then girth(G) < 2log n.

3. Define an appropriate subgraph H of the graph G such that if
|\V(H)| = d - klog k for some constant d (depending only on c), then H
contains k vertex-disjoint c-pumpkin-models.

H = maximal subgraph of G s.t. every vertex has degree 2 or 3.
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Ingredients of the proof for c-pumpkins (2)

4. Piece everything together:
e Given G,
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Ingredients of the proof for c-pumpkins (2)

4. Piece everything together:
e Given G, we consider the subgraph H defined in step 3:

G

o We can prove that 3 a set X U U C V/(H), with |X| = O(k),
intersecting every c-pumpkin-model in G.

o As |X| = O(k), it suffices to show that |U| = O(k log k),
unless H contains k disjoint c-pumpkin-models.

e This follows from steps 2+3 applied to the graph H.

19/32



What about if we restrict the class of graphs?

COVerH(G) § fH(paCkH(G)) VG < His planar [Robertson, Seymour '86]

For general G, if H may contain a cycle:

fu(k) = Q(klog k) and fy(k) = O(k polylogk)
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Theorem (Chatzidimitriou, Raymond, S., Thilikos '14)

There exists a function g : N — N such that for every two positive integers
c,q, in every graph G excluding K, as a minor it holds that

fo.(k) < g(c)-k-logg.

» For g fixed, this yields the linear bound for the case of H = ..
» For g = k- (c+ 1), this yields the bound of [Fiotini, Joret, S. '13]

20/32



Main open problem

COVerH(G) < fH(paCkH(G)) VG < His planar [Robertson, Seymour '86]

For general G, if H may contain a cycle:
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Main open problem

‘ COVerH(G) < fH(paCkH(G)) VG < His p|anar‘ [Robertson, Seymour '86]

For general G, if H may contain a cycle:

fu(k) = Q(klog k) and fy(k) = O(k polylogk)

For all non-acyclic planar H, we have fy(k) = O(klog k).  (optimal)
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© Edge version for minors
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Packing and covering H-models — vertex version

Let H be a fixed graph. For a graph G, we define:

packy(G) := packing number
= max. number of vertex-disjoint H-models in G

covery(G) := covering number
= min. number of vertices hitting all H-models in G.

Clearly, covery(G) > packy(G)VG.

For which H ‘coverH(G) < f(packH(G))‘VG, for some function f 7

This is called the (vertex) Erdés-Pésa property for H-minors.
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Packing and covering H-models — edge version

Let H be a fixed graph. For a graph G, we define:

packy(G) := packing number
= max. number of edge-disjoint H-models in G

covery(G) := covering number
= min. number of edges hitting all H-models in G.

Clearly, covery(G) > packy(G) VG.

For which H ‘coverH(G) < f(packH(G))‘VG, for some function f 7

This is called the (edge) Erd6s-Pésa property for H-minors.
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What is known for the edge version?

For the vertex version:

there exists fy(k) < H is planar

25/32



What is known for the edge version?

For the vertex version:

‘there exists fy(k) < His pIanar‘

For the edge version:

‘there exists fy(k) = H is pIanar‘

25/32



What is known for the edge version?

For the vertex version:

‘there exists fy(k) < His pIanar‘

For the edge version:

‘there exists fy(k) = H is pIanar‘

’there exists fy(k) < His planar‘ 77

25/32



Particular cases of the planar graph H

H = cycle: Erd6s and Pésa’s original proof can be adapted to the edge version:

f()e2 (k) = O(k IOg k) [Graph Theory, Chapter 7. Diestel '05]
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fee2 (k) = O(k |Og k) [Graph Theory, Chapter 7. Diestel '05]

Again, we focus on c-pumpkins:

Theorem (Chatzidimitriou, Raymond, S., Thilikos '14)

There exists a function g : N — N such that for every two positive integers
c,q, in every graph G excluding Ky as a minor it holds that

fy (k) < g(c)-k-loggq.

Theorem (Chatzidimitriou, Raymond, S., Thilikos '14)

pack,_, packj_, cover, , and coverj have a (deterministic and poly-time)
f(c) - log(OPT)-approximation algorithm.

Improves a O(log n)-approx. for the vertex version. [Joret,Paul, S., Saurabh, Thomassé /1]
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@ Vertex version for topological minors
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Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.
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Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

@ H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg < 2.

@ Therefore: ’H minor of G < H topological minor of G ‘

o Fixed H: ‘H—minor—free graphs C H-topological-minor-free graphs ‘
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Topological models in graphs

H is a topological minor of G if H can be obtained from a subgraph of G
by contracting edges with at least one endpoint of deg < 2.

H-topological model in G: collection {v, : u € V(H)} C V(G) s.t.
e V uw € E(H), there exists in G a path between v, and v, and
@ all these paths are pairwise vertex-disjoint.

A Ks-topological model = a subdivision of Ks
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What is known for topological minors?

ErdGs-Pdsa property for the vertex version for minors:

‘there exists fy(k) < H is planar

Erd6s-Pdsa property for the vertex version for topological minors?
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What is known for topological minors?

ErdGs-Pdsa property for the vertex version for minors:

‘there exists fy(k) < His planar‘

Erd6s-Pdsa property for the vertex version for topological minors?

‘there eX|StS fH(k) = H |S p|anar‘ [Robertson, Seymour '84]

Is planarity sufficient?
No! It does not hold even if H = tree. [Thomassen '88]

That is, there are trees T, such the collection of subdivisions of T does
not satisfy the Erdés-Pdsa property (even restricted to planar graphs).
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Planarity is not sufficient for topological minors

T & T R L

Let Ty, T», T3 be non-isomorphic trees whose vertices have degree 4 or 1,
and let z; be a vertex of degree 4 in T;.

31/32



Planarity is not sufficient for topological minors

Let T be defined as above. We claim that the collection of subdivisions of
T does not satisfy the Erdés-Pdsa property (even in planar graphs).
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Planarity is not sufficient for topological minors

We start with the wall of size k, we subdivide the above edges, and we
add attached copies of the trees Ty, T, T3 defined before.
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Planarity is not sufficient for topological minors
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This (planar) graph contains only one vertex-disjoint subdivision of T (i.e.,
the packing number is one), but the covering number is arbitrarily large.
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Planarity is not sufficient for topological minors
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This (planar) graph contains only one vertex-disjoint subdivision of T (i.e.,
the packing number is one), but the covering number is arbitrarily large.
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Gracies!

A X
// CATALONIA, THE NEXT STATE IN EUROPE
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