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Definition of the problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMDd ):

Input: an undirected graph G = (V ,E) and an integer d ≥ 3.

Output: a subset S ⊆ V with δ(G[S]) ≥ d , s.t. |S| is minimum.

For d = 2 it is the GIRTH problem (find the length of a shortest
cycle), which is in P.

We will see that for d ≥ 3, MSMDd does not accept any
constant-factor approximation (in particular, it is NP-complete).
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Motivation 1: relation with the DENSE-k -SUBGRAPH

Density ρ(G) of a graph G = (V ,E):

ρ(G) :=
|E(G)|
|V (G)|

More generally, for S ⊂ V (G):

ρ(S) := ρ(G[S])

DENSE k -SUBGRAPH problem:

DENSE k -SUBGRAPH (DkS):
Input: a graph G = (V ,E) and a positive integer k .
Output: a subset S ⊆ V with |S| = k , maximizing ρ(S).

(U. Feige, D. Peleg and G. Kortsarz, Algorithmica’01)
(S. Khot, FOCS’04)
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Motivation 1: relation with the DENSE-k -SUBGRAPH

(II)
Suppose that we want to find an induced subgraph G[S] of size at
most k and density at least ρ.
We can suppose that S is minimal, i.e. there is no subset of S with
density greater than ρ(S).

1) All the vertices of G[S] have degree at least ρ/2.
If there exists a vertex v with degree strictly smaller than ρ/2, then the removal of v
results in a smaller subgraph with higher density.

2) If we have a subgraph G[S] with minimum degree at least ρ, then S
is a subset with density at least ρ/2.

So, modulo a constant factor, looking for a densest subgraph of
G with size at most k is as hard as looking for the greatest ρ such
that there exists a subgraph of G with size at most k and minimum
degree at least ρ.
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Motivation 2: relation with TRAFFIC GROOMING

Roughly, (one model of) TRAFFIC GROOMING consists in finding
subgraphs with high density and bounded number of edges.

I.e., we want to find subgraphs with high average degree (and
bounded number of edges).

Density and average degree of a graph differ by a factor 2.

So, if we can find small subgraphs with prescribed minimum
degree, we can also find small subgraphs with good density.
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Hardness result
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Preliminaries: hardness of approximation

Class APX (Approximable):

an NP-complete optimization problem is in APX if it can be
approximated within a constant factor.

Example: VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-complete optimization problem is in PTAS if it can be
approximated within a constant factor 1 + ε, for all ε > 0
(the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK
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Idea of the proof for d = 3

(1) First we will see that MSMD3 /∈ PTAS.

(2) Then we will see that MSMD3 /∈ APX.
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(1) MSMD3 is not in PTAS

Reduction from VERTEX COVER:

Instance H of VERTEX COVER → Instance G of MSMD3

We will see that

PTAS for G ⇒ PTAS for H

And so,
@ PTAS for MSMD3

We can suppose |E(H)| = 3 · 2m
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We build a complete ternary tree with |E(H)| = 3 · 2m leaves:

T

E(H)
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We add a copy of the set of leaves E(H):

T

E(H)

E(H)
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We join both sets with a Hamiltonian cycle (for technical reasons):

T

E(H)

E(H)
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We add all the vertices of H:

T

E(H)

E(H)

V(H)
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We add the incidence relations between E(H) and V (H)→ G:

T

E(H)

E(H)

V(H)
Ignasi Sau-Valls (COST 293) Degree-Constrained Subgraph Problems 9th May 2008 15 / 32



(1) MSMD3 is not in PTAS

If we touch a vertex of G \ V (H), we have to touch all the vertices
of G \ V (H)

Thus, MSMD3 in G is equivalent to minimize the number of
selected vertices in V (H)

→ this is exactly VERTEX COVER in H !!

Thus,

OPTMSMD3(G) = OPTVC(H) + |V (G \ V (H))| =

= OPTVC(H) + 9 · 2m

This clearly proves that

PTAS for MSMD3 ⇒ PTAS for VERTEX COVER
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(2) MSMD3 is not in APX

Let α > 1 be the factor of inapproximability of MSMD3

We use a technique called error amplification:

I We build a sequence of families of graphs Gk , such that MSMD3 is
hard to approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...
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For any vertex v (note its degree by dv ):

v
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We will replace the vertex v with a graph Gv , built as follows:

Gv
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We begin by placing a copy of G (described before):

Gv
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We select dv vertices of degree 3 in T ⊂ G:

x1
x2

xdv

Gv
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We replace each of these vertices xi with a C4:

x1x2

xdv

Gv
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In each C4, we join 3 of the vertices to the neighbors of xi :

x1x2

xdv

Gv
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We join the dv vertices of degree 2 to the dv neighbors of v :

x1x2

xdv

Gv
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This construction for all v ∈ G defines G2:

x1x2

xdv

Gv
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(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk
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Approximation algorithm for minor
free graphs
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The problem is in P for graphs of small treewidth

Lemma

Let G be a graph on n vertices with treewidth at most t, and let d be a
positive integer. Then in time O((d + 1)t(t + 1)d2

n) we can either
• find a smallest subgraph of minimum degree at least d in G, or
• conclude that no such subgraph exists.

Corollary
Let G be an n-vertex graph with treewidth O(log n), and let d be a
positive integer. Then in polynomial time one can either
• find a smallest subgraph of minimum degree at least d in G, or
• conclude that no such subgraph exists.
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Nice partition of M-minor-free graphs

Theorem

For a fixed graph M, there is a constant cM such that for any integer
k ≥ 1 and for every M-minor-free graph G, the vertices of G can be
partitioned into k + 1 sets such that any k of the sets induce a graph of
treewidth at most cMk.
Furthermore, such a partition can be found in polynomial time.

(E. Demaine, M.T. Hajiaghayi and K.C. Kawarabayashi, FOCS’05)
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Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition V (G) in polynomial
time into log n + 1 sets V0, . . . ,Vlog n such that any log n of the sets
induce a graph of treewidth at most cM log n, where cM is a
constant depending only on the excluded graph M.

(2) Run the dynamic programming algorithm of the Lemma on all the
subgraphs Gi = G[V \ Vi ] of log n sets, i = 0, . . . , log n.

(3) This procedure finds all the solutions of size at most log n.
(4) If no solution is found, output the whole graph G.

This algorithm provides an O(n/ log n)-approximation for MSMDd
in minor-free graphs, for all d ≥ 3.
The running time of the algorithm is polynomial in n, since in step
(2), for each Gi , the dynamic programming algorithm runs in
O((d + 1)ti (ti + 1)d2

n) time, where ti is the treewidth of Gi , which
is at most cM log n.
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(3) This procedure finds all the solutions of size at most log n.
(4) If no solution is found, output the whole graph G.

This algorithm provides an O(n/ log n)-approximation for MSMDd
in minor-free graphs, for all d ≥ 3.
The running time of the algorithm is polynomial in n, since in step
(2), for each Gi , the dynamic programming algorithm runs in
O((d + 1)ti (ti + 1)d2

n) time, where ti is the treewidth of Gi , which
is at most cM log n.
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Conclusions
We have proved that MSMDd , d ≥ 3, is not in APX.
We have an O(n/ log n)-approximation for minor free graphs.

Parameterized version of MSMDd :

Input: an undirected graph G = (V ,E), an integer d ≥ 3, and a
parameter k .

Question: does there exist S ⊆ V , with |S| ≤ k , such that
δ(G[S]) ≥ d?

MSMDd , d ≥ 3, is W[1]-hard.

(and thus the problem is not likely to be FPT in general graphs)

FPT algorithms for minor free graphs.

(for instance: planar graphs, graphs of bounded local treewidth,
graphs of bounded genus,...)

Open problem: find approximation algorithms for general graphs.
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Thanks!
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