Dynamic programming in sparse graphs

Ignasi Sau
CNRS, LIRMM, Montpellier, France

Université Libre de Bruxelles, March 29 2012

Joint work with:

Juanjo Rué
Instituto de Ciencias Matematicas, Madrid, Spain

Dimitrios M. Thilikos
Department of Mathematics, NKU of Athens, Greece

a Motivation

9 Graphs on surfaces
@ Preliminaries
@ Main ideas of our approach

9 Extension to H-minor-free graphs

Q Some recent results

a Motivation

Some words on parameterized complexity

@ Idea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

Some words on parameterized complexity

@ Idea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

@ Given a (NP-hard) problem with input of size n and a parameter k,
a fixed-parameter tractable (FPT) algorithm runs in

f(k) - n°M" for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

FPT and single-exponential algorithms

@ Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic can
be solved in time f(k) - n®") in graphs with tw < k.

FPT and single-exponential algorithms

@ Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic can
be solved in time f(k) - n®") in graphs with tw < k.

ek
@ Problem: f(k) can be huge!!l (for instance, f(k) = 03¢)

FPT and single-exponential algorithms

@ Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic can
be solved in time f(k) - n®") in graphs with tw < k.

ek
@ Problem: f(k) can be huge!!l (for instance, f(k) = 03¢)

@ A single-exponential parameterized algorithm is a FPT algo s.t.

f(k) = 200K,

FPT and single-exponential algorithms

@ Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic can
be solved in time f(k) - n®") in graphs with tw < k.

ek
@ Problem: f(k) can be huge!!l (for instance, f(k) = 03¢)

@ A single-exponential parameterized algorithm is a FPT algo s.t.

f(k) = 200K,

Objective:
build a framework to obtain single-exponential algorithms
for a class of NP-hard problems in sparse graphs.

Branch decompositions and branchwidth

u 1 Xe.z T
3
G - ; 1 ‘
Y] y 5 4 6 2

A branch decomposition of a graph Gis a pair (T, p):

@ T is atree where all internal vertices have degree 3.
@ 4 is a bijection between the leaves of T and E(G).

Branch decompositions and branchwidth

Each edge e € T partitions E(G) into two sets A. and Be.

Branch decompositions and branchwidth

mid(e)={v, x}
u 1 X 6 2
@
G 2 3 5
\Y; y

For each e € E(T), we define mid(e) = V(Ag) N V(Be).

Branch decompositions and branchwidth

mid(e)={u, v, X}

u 1 Xe.z T
3
G - 5 1 ‘
\Y; y 5 4 6 2

The width of (T,) is maxecg(r) mid(e)|.

Branch decompositions and branchwidth

u 1 Xe.z T
3
G ; 1 ‘
\Y; y 5 4 6 2

The branchwidth of a graph G, bw(G), is the minimum width over all
branch decompositions of G:

bw(G) = min max |mid(e)|.
(T.u) ecE(T)

Branch decompositions and branchwidth

u 1 Xe.z T
3
G ; ‘ 6
\Y; y 1 2 4 5

The branchwidth of a graph G, bw(G), is the minimum width over all
branch decompositions of G:

bw(G) = min max |mid(e)|.
(T.u) ecE(T)

Branch decompositions and branchwidth

mid(e)={v, x}
u 1 X 5 oZ T
3
G - ; ‘ 6
\Y; y 1 2 4 5

The branchwidth of a graph G, bw(G), is the minimum width over all
branch decompositions of G:

bw(G) = min max |mid(e)|.
(T.u) ecE(T)

Branch decompositions and branchwidth

bw(G) = 2
u X
1 6 ,Z T
3
G - 5 ‘ ‘
\Y; y 1 2 4 5

The branchwidth of a graph G, bw(G), is the minimum width over all
branch decompositions of G:

bw(G) = min max |mid(e)|.
(T.u) ecE(T)

Branch decompositions and branchwidth

bw(G) =2
u X
1 6 2 T
3
G - ; ‘ 6
Y} y 1 2 4 5

We have the following relationship for graphs G such that |[E(G)| > 3:

bw(G) < tw(G)+1 < gbw(G).

[Robertson i Seymour. JCTSB’91]

9 Graphs on surfaces

Next subsection is...

9 Graphs on surfaces
@ Preliminaries

Surfaces

@ SURFACE = TOPOLOGICAL SPACE, LOCALLY “FLAT”

Graphs on surfaces

Embedded graph: graph drawn on a surface, with no edge-crossings.

@ The Euler genus of a graph G, denoted by eg(G), is the least
Euler genus of the surfaces in which G can be embedded.

Dynamic programming (DP)

@ Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

@ For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

Dynamic programming (DP)

@ Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

@ For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

@ The size of the tables reflects the dependence on |mid(e)| < k in
the running time of the DP.

@ The precise definition of the tables of the DP depends on each
particular problem.

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

@ A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

@ A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kK©(K) — 20(klogk)

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

@ A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kK©(K) — 20(klogk)

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT 06].

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

@ A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kK©(K) — 20(klogk)

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT 06].

© Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

@ A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kK©(K) — 20(klogk)

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT 06].

© Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2°(k109k)

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

@ A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 299,

@ A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kK©(K) — 20(klogk)

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT 06].

© Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2°(k109k)

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...

Next subsection is...

9 Graphs on surfaces

@ Main ideas of our approach

Nooses

Let G be a graph embedded in a surface . A noose is a subset of
homeomorphic to S that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface . A noose is a subset of ¥
homeomorphic to S that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface . A noose is a subset of ¥
homeomorphic to S that meets G only at vertices.

/ /Vk ey

Nooses

Let G be a graph embedded in a surface . A noose is a subset of
homeomorphic to S that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface . A noose is a subset of
homeomorphic to S that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface . A noose is a subset of
homeomorphic to S that meets G only at vertices.

> /\‘

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA05]:

e Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94)

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA05]:

e Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94)

o Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA05]:

e Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94)

o Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).

e In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA05]:

e Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94)

o Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).

e In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

=0

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA05]:

e Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94)

o Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).

e In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

=0

e Exactly the number of non-crossing partitions over k elements,
which is given by the k-th Catalan number:

1 [(2k 4k .
ON(k) = k+1<k> ~ T A

“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT06]:

e Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

e Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT06]:

e Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

e Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

e Drawbacks of this technique:

% It depends on each particular problem.

% Cannot (a priori) be applied to the class of connected
packing-encodable problems.

Sphere cut ~» surface cut

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Sphere cut ~» surface cut

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

e Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

Sphere cut ~» surface cut

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

e Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

e That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

e Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.

Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(¥X) = g.

A surface cut decomposition of G is a branch decomposition (T,) of
G and a subset A C V(G), with |A| = O(g), s.t. forall e € E(T)

Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(¥X) = g.

A surface cut decomposition of G is a branch decomposition (T,) of
G and a subset A C V(G), with |A| = O(g), s.t. forall e € E(T)

@ either Imid(e) \ A| <2,

Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(¥X) = g.

A surface cut decomposition of G is a branch decomposition (T,) of
G and a subset A C V(G), with |A| = O(g), s.t. forall e € E(T)

@ either Imid(e) \ A| <2,
@ or

* the vertices in mid(e) \ A are contained in a set A/ of O(g) nooses;

Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(¥X) = g.

A surface cut decomposition of G is a branch decomposition (T,) of
G and a subset A C V(G), with |A| = O(g), s.t. forall e € E(T)

@ either Imid(e) \ A| <2,
@ or
* the vertices in mid(e) \ A are contained in a set A/ of O(g) nooses;

* these nooses intersect in O(g) vertices;

Surface cut decompositions (simpiiied version)

Let G be a graph embedded in a surface ¥, with eg(¥X) = g.

A surface cut decomposition of G is a branch decomposition (T,) of
G and a subset A C V(G), with |A| = O(g), s.t. forall e € E(T)

@ either Imid(e) \ A| <2,

@ or
* the vertices in mid(e) \ A are contained in a set A/ of O(g) nooses;
* these nooses intersect in O(g) vertices;

* L\ Unen N contains exactly two connected components.

Main results

@ Surface cut decompositions can be efficiently computed:
Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) < k, one can construct in 23000k . 13 time a surface cut
decomposition (T,) of G of width at most 27k + O(q).

Main results

@ Surface cut decompositions can be efficiently computed:
Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) < k, one can construct in 23000k . 13 time a surface cut
decomposition (T,) of G of width at most 27k + O(q).

@ DP on surface cut decompositions is single-exponential:
Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) < k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2°(1°99-k+logk-g)

Main results

@ Surface cut decompositions can be efficiently computed:
Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) < k, one can construct in 23000k . 13 time a surface cut
decomposition (T,) of G of width at most 27k + O(q).

@ DP on surface cut decompositions is single-exponential:
Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) < k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2°(1°99-k+logk-g)

e Upper bound of [Dorn, Fomin, Thilikos. SWAT 06]: 20(@k+logk-¢?),

e This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.

How to use this framework?

@ We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2°(K) . n,

20

How to use this framework?

@ We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2°(K) . n,

@ How to use this framework?

@ Let P be a connected packing-encodable problem on a
surface-embedded graph G.

20

How to use this framework?

@ We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2°(K) . n,

@ How to use this framework?

@ Let P be a connected packing-encodable problem on a
surface-embedded graph G.

@ As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

20

How to use this framework?

@ We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2°(K) . n,

@ How to use this framework?

@ Let P be a connected packing-encodable problem on a
surface-embedded graph G.

@ As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

© Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

20

How to use this framework?

@ We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2°(K) . n,

@ How to use this framework?

@ Let P be a connected packing-encodable problem on a
surface-embedded graph G.

@ As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

© Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

© The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.

20

9 Extension to H-minor-free graphs

21

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

22

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

@ Some (simplified) preliminaries:
@ h-clique-sum of two graphs G; and Go:
choose cliques K; C Gy and K> C Gy with |V(K7)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.

22

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

@ Some (simplified) preliminaries:

@ h-clique-sum of two graphs G; and Go:
choose cliques K; C Gy and K> C Gy with |V(K7)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.

@ Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

22

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

@ Some (simplified) preliminaries:
@ h-clique-sum of two graphs G; and Go:
choose cliques K; C Gy and K> C Gy with |V(K7)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.

@ Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

o Vortex of depth hin an embedded graph:
paste a graph of pathwidth at most hin a face of the embedding.

22

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

@ Some (simplified) preliminaries:
@ h-clique-sum of two graphs G; and Go:
choose cliques K; C Gy and K> C Gy with |V(K7)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.

@ Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

o Vortex of depth hin an embedded graph:
paste a graph of pathwidth at most hin a face of the embedding.

@ Structure Theorem [Robertson and Seymour (1983-2012)]:
Fix a graph H.

22

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

@ Some (simplified) preliminaries:
@ h-clique-sum of two graphs G; and Go:
choose cliques K; C Gy and K> C Gy with |V(K7)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.

@ Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

o Vortex of depth hin an embedded graph:
paste a graph of pathwidth at most hin a face of the embedding.

@ Structure Theorem [Robertson and Seymour (1983-2012)]:
Fix a graph H. There exists a constant h = f(|V(H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

22

Structure of minor-free graphs

@ |dea: use the structure of H-minor-free graphs.

@ Some (simplified) preliminaries:
@ h-clique-sum of two graphs G; and Go:
choose cliques K; C Gy and K> C Gy with |V(K7)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.

@ Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

o Vortex of depth hin an embedded graph:
paste a graph of pathwidth at most hin a face of the embedding.

@ Structure Theorem [Robertson and Seymour (1983-2012)]:
Fix a graph H. There exists a constant h = f(|V(H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:
obtained from graphs of genus at most h by adding at most h

apices and at most h vortices of depth at most h.
22

Extension to H-minor-free graphs

@ Strategy: use an extension of surface cut decomposition in each
almost-embeddable graph, and then merge them.

23

Extension to H-minor-free graphs

@ Strategy: use an extension of surface cut decomposition in each
almost-embeddable graph, and then merge them.

@ The clique-sums and the apices are “easy” to deal with, but the
vortices are more complicated...

23

Extension to H-minor-free graphs

@ Strategy: use an extension of surface cut decomposition in each
almost-embeddable graph, and then merge them.

@ The clique-sums and the apices are “easy” to deal with, but the
vortices are more complicated...

@ We can capture their combinatorial behavior with h-triangulations:

23

Extension to H-minor-free graphs

@ Strategy: use an extension of surface cut decomposition in each
almost-embeddable graph, and then merge them.

@ The clique-sums and the apices are “easy” to deal with, but the
vortices are more complicated...

@ We can capture their combinatorial behavior with h-triangulations:

partition in the disk in which no subset of h + 1 blocks pairwise
intersect. (A non-crossing partition is a 1-triangulation.)

23

Extension to H-minor-free graphs

@ Strategy: use an extension of surface cut decomposition in each
almost-embeddable graph, and then merge them.

@ The clique-sums and the apices are “easy” to deal with, but the
vortices are more complicated...

@ We can capture their combinatorial behavior with h-triangulations:

partition in the disk in which no subset of h + 1 blocks pairwise
intersect. (A non-crossing partition is a 1-triangulation.)

@ Itis known that the # of h-triangulations on k elements satisfies

h! _
Th(k) <k—oo —hjz k3h/2 . 4k

23

Example of a 3-triangulation

A 3-triangulation of the disc D14 with four blocks A = {1,6,9,11,13},
B=1{2,4,10}, C={3,7,12,14},and D = {5,8}.

A partition is an h-triangulation iff its incidence graph has clique size < h.

24

H-minor-free cut decompositions

@ In order to define H-minor-free cut decompositions, we first need
a suitable version of the Robertson & Seymour Structure
Theorem, in which every h-almost-embeddable piece is
embedded in a polyhedral way:

25

H-minor-free cut decompositions

@ In order to define H-minor-free cut decompositions, we first need
a suitable version of the Robertson & Seymour Structure
Theorem, in which every h-almost-embeddable piece is
embedded in a polyhedral way: it is 3-vertex-connected, and the
shortest non-contractible noose has length > 3.

25

H-minor-free cut decompositions

@ In order to define H-minor-free cut decompositions, we first need
a suitable version of the Robertson & Seymour Structure
Theorem, in which every h-almost-embeddable piece is
embedded in a polyhedral way: it is 3-vertex-connected, and the
shortest non-contractible noose has length > 3.

@ Then, H-minor-free cut decompositions are defined in the
“natural” way (quite technical)...

25

H-minor-free cut decompositions

@ In order to define H-minor-free cut decompositions, we first need
a suitable version of the Robertson & Seymour Structure
Theorem, in which every h-almost-embeddable piece is
embedded in a polyhedral way: it is 3-vertex-connected, and the
shortest non-contractible noose has length > 3.

@ Then, H-minor-free cut decompositions are defined in the
“natural” way (quite technical)...

@ We just give some intuition about how to deal with the vortices.

25

H-minor-free cut decompositions

@ In order to define H-minor-free cut decompositions, we first need
a suitable version of the Robertson & Seymour Structure
Theorem, in which every h-almost-embeddable piece is
embedded in a polyhedral way: it is 3-vertex-connected, and the
shortest non-contractible noose has length > 3.

@ Then, H-minor-free cut decompositions are defined in the
“natural” way (quite technical)...

@ We just give some intuition about how to deal with the vortices.
@ Connected packing: collection of vertex-disjoint connected

subgraphs of the input graph. We are interested in their
intersection with the middle sets.

25

Vortex patterns

Vortex of depth hin an embedded graph:
paste a graph of pathwidth at most 5 in a face of the embedding.

sy, Cwss
S A
L >

—_/ S q

It can be easily seen that each vortex is a minor of a vortex pattern

(preserving the vertices in the face of the embedding). »

Merging vortices

We may assume that each connected subgraph meets at most one vortex.

73
(Cm s
I 2y, 5 N

X fa e
EA
A
Sy

P

R R am—

B\ <2
e"ﬂh"cﬂ' A, %

> ' "’ \"J"Q >\ «—; =2y

Vi

27

How connected subgraphs can cross a vortex

We may assume that the total number of times that the subgraphs in a
connected packing meet each vortex is Op(k).

28

Simulating the behavior of a vortex

Example (in the plane) of our approach to simulate the behavior of the

vortices. 29

Simulating the behavior of a vortex

There are four nooses Ny, No, N3, N, (drawn with full lines), and one
vortex F of depth 2 (drawn with a dashed circle):

29

Simulating the behavior of a vortex

Black vertices correspond to vertices in the separator S (thus, in the
nooses), while white vertices belong to the base-set of the vortex.

Simulating the behavior of a vortex

The non-crossing packing in X has six connected subgraphs
By, Bo, B3, By, Bs, and Bg.

29

Simulating the behavior of a vortex

The 2-triangulation of the vortex F has two connected subgraphs T;
and To.

29

Simulating the behavior of a vortex

With the two subgraphs 77 and T, corresponding to a 2-triangulation of
the vortex, subgraphs By and Bs (resp. Bs and Bg) get merged.

29

... the final result

Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor, and
has branchwidth at most k, can be solved by a DP algorithm on an
H-minor-free cut decomposition of G with tables of size 29:(%) . nO(1),

30

... the final result

Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor, and
has branchwidth at most k, can be solved by a DP algorithm on an
H-minor-free cut decomposition of G with tables of size 29:(%) . nO(1),

We prove that, given an H-minor-free graph G, an H-minor-free cut
decomposition of G of width O,(bw(G)) can be constructed in Op(n®)
time. Therefore, we conclude the following result.

30

... the final result

Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor, and
has branchwidth at most k, can be solved by a DP algorithm on an
H-minor-free cut decomposition of G with tables of size 29:(%) . nO(1),

We prove that, given an H-minor-free graph G, an H-minor-free cut
decomposition of G of width O,(bw(G)) can be constructed in Op(n®)
time. Therefore, we conclude the following result.

Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor and
has branchwidth at most k, can be solved in 29:(%) . n°(1) steps.

30

Q Some recent results

31

Some recent results

@ For an FPT problem, is it always possible to obtain algorithms with
running time 29() . nO(1)?

32

Some recent results

@ For an FPT problem, is it always possible to obtain algorithms with
running time 29() . nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]
If 3SAT cannot be solved in time 2°("), then DISJOINT PATHS
cannot be solved in time 2°(tWlogtw) . ,O(1) in general graphs.

32

Some recent results

@ For an FPT problem, is it always possible to obtain algorithms with
running time 29() . nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]
If 3SAT cannot be solved in time 2°("), then DISJOINT PATHS
cannot be solved in time 2°(tWlogtw) . ,O(1) in general graphs.

o HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 20(twlogtw) . hO(1) hest possible?

32

Some recent results

@ For an FPT problem, is it always possible to obtain algorithms with
running time 29() . nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]
If 3SAT cannot be solved in time 2°("), then DISJOINT PATHS
cannot be solved in time 2°(tWlogtw) . ,O(1) in general graphs.

o HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 20(twlogtw) . hO(1) hest possible?

@ Randomized algorithms for connected packing-encodable
problems in general graphs in time 20(W) . ,O(1),

[Cygan, Nederlof, (Pilipczuk)?, van Rooij, Wojtaszczyk. FOCS’11]

32

Some recent results

@ For an FPT problem, is it always possible to obtain algorithms with
running time 29() . nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]
If 3SAT cannot be solved in time 2°("), then DISJOINT PATHS
cannot be solved in time 2°(tWlogtw) . ,O(1) in general graphs.

o HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 20(twlogtw) . hO(1) hest possible?

@ Randomized algorithms for connected packing-encodable
problems in general graphs in time 20(W) . ,O(1),

[Cygan, Nederlof, (Pilipczuk)?, van Rooij, Wojtaszczyk. FOCS’11]

@ They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

32

Some recent results

@ For an FPT problem, is it always possible to obtain algorithms with
running time 29() . nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]
If 3SAT cannot be solved in time 2°("), then DISJOINT PATHS
cannot be solved in time 2°(tWlogtw) . ,O(1) in general graphs.

o HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 20(twlogtw) . hO(1) hest possible?

@ Randomized algorithms for connected packing-encodable
problems in general graphs in time 20(W) . ,O(1),

[Cygan, Nederlof, (Pilipczuk)?, van Rooij, Wojtaszczyk. FOCS’11]

@ They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

@ Can these algorithms be derandomized?

32

Gracies!

l*\l\
‘ ll/ CATALONIA, THE NEXT STATE IN EUROPE

33

	Motivation
	Graphs on surfaces
	Preliminaries
	Main ideas of our approach

	Extension to H-minor-free graphs
	Some recent results

