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Some words on parameterized complexity

Idea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.
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FPT and single-exponential algorithms

Courcelle’s theorem (1988):

Graph problems expressible in Monadic Second Order Logic can
be solved in time f (k) · nO(1) in graphs with tw ≤ k .

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

Objective:
build a framework to obtain single-exponential algorithms
for a class of NP-hard problems in sparse graphs.
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Branch decompositions and branchwidth

G
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A branch decomposition of a graph G is a pair (T , µ):

T is a tree where all internal vertices have degree 3.
µ is a bijection between the leaves of T and E(G).
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Branch decompositions and branchwidth
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e

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

6



Branch decompositions and branchwidth
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e

mid(e)={v, x}

For each e ∈ E(T ), we define mid(e) = V (Ae) ∩ V (Be).
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Branch decompositions and branchwidth
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emid(e)={u, v, x}

The width of (T , µ) is maxe∈E(T ) |mid(e)|.
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Branch decompositions and branchwidth
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The branchwidth of a graph G, bw(G), is the minimum width over all
branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T )

|mid(e)|.
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Branch decompositions and branchwidth
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bw(G) = 2

We have the following relationship for graphs G such that |E(G)| ≥ 3:

bw(G) ≤ tw(G) + 1 ≤ 3
2

bw(G).

[Robertson i Seymour. JCTSB’91]
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Surfaces

SURFACE = TOPOLOGICAL SPACE, LOCALLY “FLAT”

9



Graphs on surfaces

Embedded graph: graph drawn on a surface, with no edge-crossings.

The Euler genus of a graph G, denoted by eg(G), is the least
Euler genus of the surfaces in which G can be embedded.
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Dynamic programming (DP)

Applied in a bottom-up fashion on a rooted branch decomposition
of the input graph G.

For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
middle set mid(e).

The size of the tables reflects the dependence on |mid(e)| ≤ k in
the running time of the DP.

The precise definition of the tables of the DP depends on each
particular problem.
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A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?

1 A subset of vertices of mid(e) (not restricted by some global condition).
Examples: VERTEX COVER, DOMINATING SET.
The size of the tables is bounded by 2O(k).

2 A connected pairing of vertices of mid(e).
Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k)...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA’05];
OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT’06].

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.
Again, # of packings in a set of k elements is 2Θ(k log k).

None of the current techniques seemed to fit in this class of
connected packing-encodable problems...
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Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.
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Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA’05]:

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica’94]

Recall that the size of the tables of a DP algorithm depends on how
many ways a partial solution can intersect mid(e).
In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements,
which is given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .
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“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.

16



“Old” idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT’06]:

Perform a planarization of the input graph by splitting the potential
solutions into a number of pieces depending on the surface.

Then, apply the sphere cut decomposition technique to a more
complicated version of the problem where the number of pairings is
still bounded by some Catalan number.

Drawbacks of this technique:

F It depends on each particular problem.

F Cannot (a priori) be applied to the class of connected
packing-encodable problems.

16



Sphere cut  surface cut

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]

That is, we exploit directly the combinatorial structure of the
potential solutions in the surface (without planarization).

Using surface cut decompositions, we provide in a unified way
single-exponential algorithms for connected packing-encodable
problems, and with better genus dependence.
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Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T )

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \⋃N∈N N contains exactly two connected components.
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Main results

1 Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

2 DP on surface cut decompositions is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G
embedded in a surface of Euler genus g, with bw(G) ≤ k, the size of
the tables of a dynamic programming algorithm to solve P on a surface
cut decomposition of G is bounded above by 2O(log g·k+log k ·g).

Upper bound of [Dorn, Fomin, Thilikos. SWAT’06]: 2O(g·k+log k·g2).

This fact is proved using analytic combinatorics, generalizing
Catalan structures to arbitrary surfaces.
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Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

2 DP on surface cut decompositions is single-exponential:
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Catalan structures to arbitrary surfaces.
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How to use this framework?

We presented a framework for the design of DP algorithms on
surface-embedded graphs running in time 2O(k) · n.

How to use this framework?

1 Let P be a connected packing-encodable problem on a
surface-embedded graph G.

2 As a preprocessing step, build a surface cut decomposition of
G, using the 1st Theorem.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time of the algorithm is a
consequence of the 2nd Theorem.
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Next section is...

1 Motivation

2 Graphs on surfaces
Preliminaries
Main ideas of our approach

3 Extension to H-minor-free graphs

4 Some recent results
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Structure of minor-free graphs

Idea: use the structure of H-minor-free graphs.

Some (simplified) preliminaries:
h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour (1983-2012)]:
Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:
obtained from graphs of genus at most h by adding at most h
apices and at most h vortices of depth at most h.
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Extension to H-minor-free graphs

Strategy: use an extension of surface cut decomposition in each
almost-embeddable graph, and then merge them.

The clique-sums and the apices are “easy” to deal with, but the
vortices are more complicated...

We can capture their combinatorial behavior with h-triangulations:

partition in the disk in which no subset of h + 1 blocks pairwise
intersect. (A non-crossing partition is a 1-triangulation.)

It is known that the # of h-triangulations on k elements satisfies

Th(k) ≤k→∞
h!

πh/2 · k
−3h/2 · 4hk
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Example of a 3-triangulation

A 3-triangulation of the disc D14 with four blocks A = {1,6,9,11,13},
B = {2,4,10}, C = {3,7,12,14}, and D = {5,8}.

6 J. Rué, I. Sau, and D. M. Thilikos

same way as h-triangulations generalize triangulations of a disc. In the leftmost side of
Fig. 1 a 3-partition is drawn. We denote by Ph(k) the number of h-packings of a disc
with k vertices.

In the following proposition we find asymptotic estimates for the number of h-
packings of Dk.

Lemma 1. The number of h-packings of Dk satisfies

Ph(k) ≤ 2h(k−2h−1) · Th(k) ≤k→∞
h!

22h2+h · πh/2
· k−3h/2 · 8hk = 2O(hk+h log h).

Proof: We construct an injective application from h-packings of Dk into partial h-
triangulations of Dk. For each block, we consider the first vertex we meet when we move
around Dk starting at vertex 1. From each one of these vertices we draw diagonals to the
rest of the vertices of the block. Then it is obvious that the resulting set of diagonals is
a partial h-triangulation: a pair of diagonals coming from the same block do not cross,
and for each pair of crossing blocks there exists at least a pair of crossing diagonals. See
the rightmost side of Fig. 1 for an explicit construction. As each partial h-triangulation
is obtained from a (maximal) h-triangulation by deleting a subset of edges, and each
(maximal) h-triangulation has h(k − 2h− 1) edges, the result follows. !

3

8

9

13

10

11

12

14

12
B

4C

10

11

12

13

14

12

3

D

A

4

5

6

7

8

9

5

6

7

Fig. 1. A 3-partition of the disc D14 with blocks A = {1, 6, 9, 11, 13}, B = {2, 4, 10}, C =
{3, 7, 12, 14} and D = {5, 8}, the incidence graph of the partition and the associated partial
3-triangulation.

4.2 Non-crossing partitions of a surface with boundary

Extended considerations of this subsection can be found in [?]. Let Σ be a connected
surface with boundary. Such a surface can be constructed by a compact and connected
surface by deleting a finite set of disjoint open discs (see [?]). Denote by ν(Σ), χ(Σ)
the number of connected components of the boundary and the Euler characteristic of
Σ, respectively. We assume k vertices on the boundary of the surface. Vertices on each
boundary are labeled in anticounterclockwise order. In particular, boundary components

A partition is an h-triangulation iff its incidence graph has clique size ≤ h.
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H-minor-free cut decompositions

In order to define H-minor-free cut decompositions, we first need
a suitable version of the Robertson & Seymour Structure
Theorem, in which every h-almost-embeddable piece is
embedded in a polyhedral way: it is 3-vertex-connected, and the
shortest non-contractible noose has length ≥ 3.

Then, H-minor-free cut decompositions are defined in the
“natural” way (quite technical)...

We just give some intuition about how to deal with the vortices.

Connected packing: collection of vertex-disjoint connected
subgraphs of the input graph. We are interested in their
intersection with the middle sets.
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Vortex patterns

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

R5,12

V1

V2

V3

V4 V5
V6

V7

V8

V9

V10
V11V12

It can be easily seen that each vortex is a minor of a vortex pattern
(preserving the vertices in the face of the embedding).
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Merging vortices

Lemma
We may assume that each connected subgraph meets at most one vortex.

F1,2

F1
P F2
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How connected subgraphs can cross a vortex

Lemma
We may assume that the total number of times that the subgraphs in a
connected packing meet each vortex is Oh(k).

F

N

B

F´

u2

u4
u6

u8

u11
u12

v1

v2

v3

v4

P
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Simulating the behavior of a vortex

N3

N4N1

N2

v

F
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1
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v7

v8

v9

v10

v11
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u1

u2
u7

u3

u4

u5

u6

Example (in the plane) of our approach to simulate the behavior of the
vortices.
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Simulating the behavior of a vortex
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There are four nooses N1,N2,N3,N4 (drawn with full lines), and one
vortex F of depth 2 (drawn with a dashed circle).
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Simulating the behavior of a vortex
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Black vertices correspond to vertices in the separator S (thus, in the
nooses), while white vertices belong to the base set of the vortex.
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Simulating the behavior of a vortex
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The non-crossing packing in Σ has six connected subgraphs
B1,B2,B3,B4,B5, and B6. 29



Simulating the behavior of a vortex
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The 2-triangulation of the vortex F has two connected subgraphs T1
and T2. 29



Simulating the behavior of a vortex

N3

N4N1

N2

v

F

B2

B1

B4

T1

B3

B5

B6T2

1
v13

v2

v3

v5
v4

v6

v7

v8

v9

v10

v11

v12

u1

u2
u7

u3

u4

u5

u6

With the two subgraphs T1 and T2 corresponding to a 2-triangulation of
the vortex, subgraphs B1 and B5 (resp. B6 and B6) get merged. 29



... the final result

Theorem
Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor, and
has branchwidth at most k, can be solved by a DP algorithm on an
H-minor-free cut decomposition of G with tables of size 2Oh(k) · nO(1).

We prove that, given an H-minor-free graph G, an H-minor-free cut
decomposition of G of width Oh(bw(G)) can be constructed in Oh(n3)
time. Therefore, we conclude the following result.

Theorem
Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor and
has branchwidth at most k, can be solved in 2Oh(k) · nO(1) steps.

30



... the final result

Theorem
Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor, and
has branchwidth at most k, can be solved by a DP algorithm on an
H-minor-free cut decomposition of G with tables of size 2Oh(k) · nO(1).

We prove that, given an H-minor-free graph G, an H-minor-free cut
decomposition of G of width Oh(bw(G)) can be constructed in Oh(n3)
time. Therefore, we conclude the following result.

Theorem
Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor and
has branchwidth at most k, can be solved in 2Oh(k) · nO(1) steps.

30



... the final result

Theorem
Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor, and
has branchwidth at most k, can be solved by a DP algorithm on an
H-minor-free cut decomposition of G with tables of size 2Oh(k) · nO(1).

We prove that, given an H-minor-free graph G, an H-minor-free cut
decomposition of G of width Oh(bw(G)) can be constructed in Oh(n3)
time. Therefore, we conclude the following result.

Theorem
Every connected packing-encodable problem whose input is an
n-vertex graph G that excludes an h-vertex graph H as a minor and
has branchwidth at most k, can be solved in 2Oh(k) · nO(1) steps.

30



Next section is...

1 Motivation

2 Graphs on surfaces
Preliminaries
Main ideas of our approach

3 Extension to H-minor-free graphs

4 Some recent results

31



Some recent results

1 For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

[Lokshtanov, Marx, Saurabh. SODA’11]
If 3SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) in general graphs.

HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

2 Randomized algorithms for connected packing-encodable
problems in general graphs in time 2O(tw) · nO(1).
[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk. FOCS’11]

They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)
Can these algorithms be derandomized?
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