Dynamic programming in sparse graphs

Ignasi Sau

CNRS, LIRMM, Montpellier, France

Université Libre de Bruxelles, March 29 2012

Joint work with:

Juanjo Rué

Instituto de Ciencias Matemáticas, Madrid, Spain

Dimitrios M. Thilikos

Department of Mathematics, NKU of Athens, Greece

Motivation

Graphs on surfaces

- Preliminaries
- Main ideas of our approach

Motivation

Graphs on surfaces

- Preliminaries
- Main ideas of our approach

3 Extension to H-minor-free graphs

Some words on parameterized complexity

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in

 $f(k) \cdot \mathbf{n}^{\mathcal{O}(1)}$, for some function *f*.

Examples: *k*-Vertex Cover, *k*-Longest Path.

Some words on parameterized complexity

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(k) \cdot n^{\mathcal{O}(1)}$, for some function *f*.

Examples: *k*-Vertex Cover, *k*-Longest Path.

• Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs with $\mathbf{tw} \leq k$.

- **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{56^k}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(k)=2^{\mathcal{O}(k)}.$$

• Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs with $\mathbf{tw} \leq k$.

• **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{5^{6^{k}}}}}$)

• A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(k)=2^{\mathcal{O}(k)}.$$

• Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs with $\mathbf{tw} \leq k$.

- **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{5^{6^{6}}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(\mathbf{k})=2^{\mathcal{O}(\mathbf{k})}.$$

• Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs with $\mathbf{tw} \leq k$.

- **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{5^{6^{n}}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(k) = 2^{\mathcal{O}(k)}.$$

A branch decomposition of a graph G is a pair (T, μ) :

- T is a tree where all internal vertices have degree 3.
- μ is a bijection between the leaves of *T* and *E*(*G*).

Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .

・ロ・・四・・川・・日・

For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.

・ロ・・聞・・思・・思・・ 思・ 今々で

6

The width of (T, μ) is $\max_{e \in E(T)} |\mathbf{mid}(e)|$.

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\mathbf{mid}(e)|.$$

We have the following relationship for graphs *G* such that $|E(G)| \ge 3$:

$$\mathbf{bw}(G) \leq \mathbf{tw}(G) + 1 \leq \frac{3}{2}\mathbf{bw}(G).$$

[Robertson i Seymour. JCTSB'91]

Motivation

Graphs on surfaces

- Preliminaries
- Main ideas of our approach

3 Extension to H-minor-free graphs

Motivation

Graphs on surfaces

Preliminaries

- Main ideas of our approach
- 3 Extension to H-minor-free graphs
- 4 Some recent results

• **SURFACE** = TOPOLOGICAL SPACE, LOCALLY "FLAT"

9

Embedded graph: graph drawn on a surface, with no edge-crossings.

• The Euler genus of a graph G, denoted by eg(G), is the least Euler genus of the surfaces in which G can be embedded.

- Applied in a bottom-up fashion on a rooted branch decomposition of the input graph *G*.
- For each graph problem, DP requires the suitable definition of tables encoding how potential (global) solutions are restricted to a middle set mid(e).
- The size of the tables reflects the dependence on |mid(e)| ≤ k in the running time of the DP.
- The precise definition of the tables of the DP depends on each particular problem.

- Applied in a bottom-up fashion on a rooted branch decomposition of the input graph *G*.
- For each graph problem, DP requires the suitable definition of tables encoding how potential (global) solutions are restricted to a middle set mid(e).
- The size of the tables reflects the dependence on |mid(e)| ≤ k in the running time of the DP.
- The precise definition of the tables of the DP depends on each particular problem.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{O(k)} = 2^{O(klog k)}... OK for planar graphs [Dom, Penninkx, Bodlaender, Fomin. ESA'05]; OK for graphs on surfaces [Dom, Fomin, Thilikos. SWAT'06].
 - Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is 2^{O(k log k)}.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{Θ(k)} = 2^{Θ(k log k)}... OK for planar graphs [Dom, Penninkx, Bodlaender, Fomin. ESA 05]; OK for graphs on surfaces [Dom, Fomin, Thilikos. SWAT06].
 - Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is 2^{Θ(k log k)}.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{O(k)} = 2^{O(k log k)}... OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
 - Connected packing of vertices of **mid**(*e*) into subsets of arbitrary size. **Examples**: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of *k* elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{Θ(k)} = 2^{Θ(k log k)}.... OK for planar graphs [Dom, Penninkx, Bodlaender, Fomin. ESA 05].
 OK for graphs on surfaces [Dom, Fomin, Thilikos. SWAT06].
 - Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples**: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE.
 The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. *ESA'05*]; OK for graphs on surfaces [Dorn, Fomin, Thilikos. *SWAT'06*].

Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is 2^{Θ(k log k)}.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{O(k)} = 2^{O(k log k)}... OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is 2^{Θ(k log k)}.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{Θ(k)} = 2^{Θ(k log k)}...
 OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is 2^{O(k log k)}.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{Θ(k)} = 2^{Θ(k log k)}...
 OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- Solution Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples**: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- A subset of vertices of mid(e) (not restricted by some global condition).
 Examples: VERTEX COVER, DOMINATING SET.
 The size of the tables is bounded by 2^{O(k)}.
- A connected pairing of vertices of mid(e).
 Examples: LONGEST PATH, CYCLE PACKING, HAMILTONIAN CYCLE. The # of pairings in a set of k elements is k^{O(k)} = 2^{O(k log k)}... OK for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; OK for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- Solution Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples**: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

Motivation

Graphs on surfaces

- Preliminaries
- Main ideas of our approach

3 Extension to H-minor-free graphs

Let *G* be a graph embedded in a surface Σ . A noose is a subset of Σ homeomorphic to \mathbb{S}^1 that meets *G* only at vertices.

Nooses

Let *G* be a graph embedded in a surface Σ . A noose is a subset of Σ homeomorphic to \mathbb{S}^1 that meets *G* only at vertices.

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect **mid**(*e*).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$\operatorname{CN}(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi}k^{3/2}} \approx 4^k.$$

$$(\Box) \langle \overline{a} \rangle \langle \overline{a} \rangle$$

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect **mid**(*e*).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$CN(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi}k^{3/2}} \approx 4^k.$$

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect **mid**(*e*).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$CN(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi}k^{3/2}} \approx 4^k.$$

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect **mid**(*e*).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$CN(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi}k^{3/2}} \approx 4^k.$$

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect **mid**(*e*).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$CN(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi}k^{3/2}} \approx 4^k$$

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
 - ★ It depends on each **particular** problem.
 - ★ Cannot (a priori) be applied to the class of connected packing-encodable problems.

イロン イボン イモン イモン 一日

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
 - ★ It depends on each **particular** problem.
 - ★ Cannot (a priori) be applied to the class of connected packing-encodable problems.

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
 [Seymour and Thomas. *Combinatorica'94*]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (**without planarization**).
- Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (**without planarization**).
- Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
 [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without planarization).
- Using surface cut decompositions, we provide in a **unified** way single-exponential algorithms for **connected packing-encodable** problems, and with **better genus** dependence.

A surface cut decomposition of *G* is a branch decomposition (T, μ) of *G* and a subset $A \subseteq V(G)$, with |A| = O(g), s.t. for all $e \in E(T)$

• either $|\mathbf{mid}(e) \setminus A| \leq 2$,

or

- ★ the vertices in $mid(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
- \star these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
- \leftarrow Σ \ $\bigcup_{N \in N}$ N contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition (T, μ) of *G* and a subset $A \subseteq V(G)$, with $|A| = O(\mathbf{g})$, s.t. for all $e \in E(T)$

either |mid(e) \ A| ≤ 2,

• or

- * the vertices in $\operatorname{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
- \star these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
- * $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition (T, μ) of *G* and a subset $A \subseteq V(G)$, with $|A| = O(\mathbf{g})$, s.t. for all $e \in E(T)$

- either |mid(e) \ A| ≤ 2,
- or
 - * the vertices in $mid(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
 - \star these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
 - ★ Σ \ $\bigcup_{N \in N}$ *N* contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition (T, μ) of *G* and a subset $A \subseteq V(G)$, with $|A| = O(\mathbf{g})$, s.t. for all $e \in E(T)$

either |mid(e) \ A| ≤ 2,

or

- * the vertices in $\operatorname{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
- ★ these nooses intersect in O(g) vertices;
- * $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition (T, μ) of *G* and a subset $A \subseteq V(G)$, with $|A| = O(\mathbf{g})$, s.t. for all $e \in E(T)$

either |mid(e) \ A| ≤ 2,

or

- * the vertices in $\operatorname{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
- * these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
- * $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

Main results

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G) $\leq k$, one can construct in $2^{3k+\mathcal{O}(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + \mathcal{O}(\mathbf{g})$.

OP on surface cut decompositions is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem **P** in a graph G embedded in a surface of Euler genus **g**, with **bw**(G) $\leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{\mathcal{O}(\log g \cdot k + \log k \cdot g)}$.

- Upper bound of [Dorn, Fomin, Thilikos. SWAT'06]: 2^{O(g·k+log k·g²)}.
- This fact is proved using analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.

Main results

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G) $\leq k$, one can construct in $2^{3k+\mathcal{O}(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + \mathcal{O}(\mathbf{g})$.

OP on surface cut decompositions is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem **P** in a graph *G* embedded in a surface of Euler genus **g**, with $\mathbf{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve *P* on a surface cut decomposition of *G* is bounded above by $2^{\mathcal{O}(\log \mathbf{g} \cdot k + \log k \cdot \mathbf{g})}$.

- Upper bound of [Dorn, Fomin, Thilikos. *SWAT'06*]: 2^{O(g·k+log k·g²)}.
- This fact is proved using analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.

Main results

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G) $\leq k$, one can construct in $2^{3k+\mathcal{O}(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + \mathcal{O}(\mathbf{g})$.

OP on surface cut decompositions is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem **P** in a graph *G* embedded in a surface of Euler genus **g**, with **bw**(*G*) $\leq k$, the size of the tables of a dynamic programming algorithm to solve *P* on a surface cut decomposition of *G* is bounded above by $2^{\mathcal{O}(\log g \cdot k + \log k \cdot g)}$.

- Upper bound of [Dorn, Fomin, Thilikos. *SWAT'06*]: 2^{O(g·k+log k·g²)}.
- This fact is proved using **analytic combinatorics**, generalizing Catalan structures to arbitrary surfaces.

How to use this framework?

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time 2^{O(k)} ⋅ n.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - Run a "natural" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time 2^{O(k)} ⋅ n.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - 3 Run a "natural" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

イロン イボン イモン トモ

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time 2^{O(k)} ⋅ n.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - 3 Run a "natural" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

イロン イロン イヨン イヨン 三日

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time 2^{O(k)} ⋅ n.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - Run a "natural" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

イロン イロン イヨン イヨン 三日

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time 2^{O(k)} ⋅ n.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - Run a "natural" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

1 Motivation

Graphs on surfaces

- Preliminaries
- Main ideas of our approach

3 Extension to *H*-minor-free graphs

4 Some recent results

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth h in an embedded graph: paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour (1983-2012)]:
 Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour (1983-2012)]: Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.

 Structure Theorem [Robertson and Seymour (1983-2012)]: Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour (1983-2012)]: Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour (1983-2012)]: Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour (1983-2012)]: Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

- Idea: use the structure of *H*-minor-free graphs.
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour (1983-2012)]: Fix a graph *H*. There exists a constant *h* = *f*(|*V*(*H*)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs: obtained from graphs of genus at most *h* by adding at most *h* apices and at most *h* vortices of depth at most *h*.

Extension to *H*-minor-free graphs

- Strategy: use an extension of surface cut decomposition in each almost-embeddable graph, and then merge them.
- The clique-sums and the apices are "easy" to deal with, but the vortices are more complicated...
- We can capture their combinatorial behavior with *h*-triangulations: partition in the disk in which no subset of *h* + 1 blocks pairwise intersect. (*A non-crossing partition is a* 1*-triangulation.*)
- It is known that the # of h-triangulations on k elements satisfies

$$T_h(k) \leq_{k o \infty} rac{h!}{\pi^{h/2}} \cdot k^{-3h/2} \cdot 4^{hk}$$
- Strategy: use an extension of surface cut decomposition in each almost-embeddable graph, and then merge them.
- The clique-sums and the apices are "easy" to deal with, but the vortices are more complicated...
- We can capture their combinatorial behavior with *h*-triangulations: partition in the disk in which no subset of *h* + 1 blocks pairwise intersect. (A non-crossing partition is a 1-triangulation.)
- It is known that the # of h-triangulations on k elements satisfies

$$T_h(k) \leq_{k o \infty} rac{h!}{\pi^{h/2}} \cdot k^{-3h/2} \cdot 4^{hk}$$

- Strategy: use an extension of surface cut decomposition in each almost-embeddable graph, and then merge them.
- The clique-sums and the apices are "easy" to deal with, but the vortices are more complicated...
- We can capture their combinatorial behavior with *h*-triangulations: partition in the disk in which no subset of *h* + 1 blocks pairwise intersect. (A non-crossing partition is a 1-triangulation.)
- It is known that the # of *h*-triangulations on *k* elements satisfies

$$T_h(k) \leq_{k o \infty} rac{h!}{\pi^{h/2}} \cdot k^{-3h/2} \cdot 4^{hk}$$

- Strategy: use an extension of surface cut decomposition in each almost-embeddable graph, and then merge them.
- The clique-sums and the apices are "easy" to deal with, but the vortices are more complicated...
- We can capture their combinatorial behavior with *h*-triangulations: partition in the disk in which no subset of *h* + 1 blocks pairwise intersect. (A non-crossing partition is a 1-triangulation.)
- It is known that the # of h-triangulations on k elements satisfies

$$\mathsf{T}_{\mathsf{h}}(\mathsf{k}) \leq_{k
ightarrow\infty} rac{h!}{\pi^{h/2}} \cdot \mathsf{k}^{-3h/2} \cdot \mathsf{4}^{hk}$$

- Strategy: use an extension of surface cut decomposition in each almost-embeddable graph, and then merge them.
- The clique-sums and the apices are "easy" to deal with, but the vortices are more complicated...
- We can capture their combinatorial behavior with *h*-triangulations: partition in the disk in which no subset of *h* + 1 blocks pairwise intersect. (A non-crossing partition is a 1-triangulation.)
- It is known that the # of h-triangulations on k elements satisfies

$$\mathsf{T}_{h}(k) \leq_{k
ightarrow\infty} rac{h!}{\pi^{h/2}} \cdot k^{-3h/2} \cdot 4^{hk}$$

Example of a 3-triangulation

A 3-triangulation of the disc \mathbb{D}_{14} with four blocks $A = \{1, 6, 9, 11, 13\}$, $B = \{2, 4, 10\}, C = \{3, 7, 12, 14\}$, and $D = \{5, 8\}$.

A partition is an *h*-triangulation iff its incidence graph has clique size $\leq h$.

- In order to define *H*-minor-free cut decompositions, we first need a suitable version of the Robertson & Seymour Structure Theorem, in which every *h*-almost-embeddable piece is embedded in a polyhedral way: it is 3-vertex-connected, and the shortest non-contractible noose has length ≥ 3.
- Then, *H*-minor-free cut decompositions are defined in the "natural" way (quite technical)...
- We just give some intuition about how to deal with the vortices.
- Connected packing: collection of vertex-disjoint connected subgraphs of the input graph. We are interested in their intersection with the middle sets.

- In order to define *H*-minor-free cut decompositions, we first need a suitable version of the Robertson & Seymour Structure Theorem, in which every *h*-almost-embeddable piece is embedded in a polyhedral way: it is 3-vertex-connected, and the shortest non-contractible noose has length ≥ 3.
- Then, *H*-minor-free cut decompositions are defined in the "natural" way (quite technical)...
- We just give some intuition about how to deal with the vortices.
- Connected packing: collection of vertex-disjoint connected subgraphs of the input graph. We are interested in their intersection with the middle sets.

- In order to define *H*-minor-free cut decompositions, we first need a suitable version of the Robertson & Seymour Structure Theorem, in which every *h*-almost-embeddable piece is embedded in a polyhedral way: it is 3-vertex-connected, and the shortest non-contractible noose has length ≥ 3.
- Then, *H*-minor-free cut decompositions are defined in the "natural" way (quite technical)...
- We just give some intuition about how to deal with the vortices.
- Connected packing: collection of vertex-disjoint connected subgraphs of the input graph. We are interested in their intersection with the middle sets.

- In order to define *H*-minor-free cut decompositions, we first need a suitable version of the Robertson & Seymour Structure Theorem, in which every *h*-almost-embeddable piece is embedded in a polyhedral way: it is 3-vertex-connected, and the shortest non-contractible noose has length ≥ 3.
- Then, *H*-minor-free cut decompositions are defined in the "natural" way (quite technical)...
- We just give some intuition about how to deal with the vortices.
- Connected packing: collection of vertex-disjoint connected subgraphs of the input graph. We are interested in their intersection with the middle sets.

- In order to define *H*-minor-free cut decompositions, we first need a suitable version of the Robertson & Seymour Structure Theorem, in which every *h*-almost-embeddable piece is embedded in a polyhedral way: it is 3-vertex-connected, and the shortest non-contractible noose has length ≥ 3.
- Then, *H*-minor-free cut decompositions are defined in the "natural" way (quite technical)...
- We just give some intuition about how to deal with the vortices.
- Connected packing: collection of vertex-disjoint connected subgraphs of the input graph. We are interested in their intersection with the middle sets.

Vortex patterns

Vortex of depth *h* in an embedded graph:

paste a graph of pathwidth at most *h* in a face of the embedding.

It can be easily seen that each vortex is a minor of a vortex pattern (preserving the vertices in the face of the embedding).

Merging vortices

Lemma

We may assume that each connected subgraph meets at most one vortex.

27

How connected subgraphs can cross a vortex

Lemma

We may assume that the total number of times that the subgraphs in a connected packing meet each vortex is $O_h(k)$.

Example (in the plane) of our approach to simulate the behavior of the vortices.

There are four nooses N_1 , N_2 , N_3 , N_4 (drawn with full lines), and one vortex *F* of depth 2 (drawn with a dashed circle).

Black vertices correspond to vertices in the separator *S* (thus, in the nooses), while white vertices belong to the base set of the vortex.

The non-crossing packing in Σ has six connected subgraphs B_1, B_2, B_3, B_4, B_5 , and B_6 .

The 2-triangulation of the vortex *F* has two connected subgraphs T_1 and T_2 .

With the two subgraphs T_1 and T_2 corresponding to a 2-triangulation of the vortex, subgraphs B_1 and B_5 (resp. B_6 and B_6) get merged.

Theorem

Every connected packing-encodable problem whose input is an *n*-vertex graph G that excludes an *h*-vertex graph H as a minor, and has branchwidth at most *k*, can be solved by a DP algorithm on an *H*-minor-free cut decomposition of G with tables of size $2^{O_h(k)} \cdot n^{O(1)}$.

We prove that, given an *H*-minor-free graph *G*, an *H*-minor-free cut decomposition of *G* of width $O_h(\mathbf{bw}(G))$ can be constructed in $O_h(n^3)$ time. Therefore, we conclude the following result.

Theorem

Every connected packing-encodable problem whose input is an *n*-vertex graph G that excludes an *h*-vertex graph H as a minor and has branchwidth at most k, can be solved in $2^{O_h(k)} \cdot n^{O(1)}$ steps.

Theorem

Every connected packing-encodable problem whose input is an *n*-vertex graph G that excludes an *h*-vertex graph H as a minor, and has branchwidth at most *k*, can be solved by a DP algorithm on an *H*-minor-free cut decomposition of G with tables of size $2^{O_h(k)} \cdot n^{O(1)}$.

We prove that, given an *H*-minor-free graph *G*, an *H*-minor-free cut decomposition of *G* of width $O_h(\mathbf{bw}(G))$ can be constructed in $O_h(n^3)$ time. Therefore, we conclude the following result.

Theorem

Every connected packing-encodable problem whose input is an *n*-vertex graph G that excludes an *h*-vertex graph H as a minor and has branchwidth at most k, can be solved in $2^{O_h(k)} \cdot n^{O(1)}$ steps.

Theorem

Every connected packing-encodable problem whose input is an *n*-vertex graph G that excludes an *h*-vertex graph H as a minor, and has branchwidth at most *k*, can be solved by a DP algorithm on an *H*-minor-free cut decomposition of G with tables of size $2^{O_h(k)} \cdot n^{O(1)}$.

We prove that, given an *H*-minor-free graph *G*, an *H*-minor-free cut decomposition of *G* of width $O_h(\mathbf{bw}(G))$ can be constructed in $O_h(n^3)$ time. Therefore, we conclude the following result.

Theorem

Every connected packing-encodable problem whose input is an *n*-vertex graph G that excludes an *h*-vertex graph H as a minor and has branchwidth at most *k*, can be solved in $2^{O_h(k)} \cdot n^{O(1)}$ steps.

1 Motivation

Graphs on surfaces

- Preliminaries
- Main ideas of our approach

• For an FPT problem, is it always possible to obtain algorithms with running time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$?

[Lokshtanov, Marx, Saurabh. *SODA'11*] If 3SAT cannot be solved in time $2^{o(n)}$, then DISJOINT PATHS cannot be solved in time $2^{o(tw \log tw)} \cdot n^{O(1)}$ in general graphs.

 HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ... Is 2^O(tw log tw) · n^O(1) best possible?

Randomized algorithms for connected packing-encodable problems in general graphs in time 2^{O(tw)} · n^{O(1)}.
[Cygan, Nederlof, (Pilipczuk)², van Rooij, Wojtaszczyk. FOCS'11]

- They introduce a DP technique called Cut&Count. (It relies on a probabilistic result called the Isolation Lemma.)
- Can these algorithms be derandomized?

・ロト ・回 ト ・ヨ ト ・ヨ ト ・ ヨ

• For an FPT problem, is it always possible to obtain algorithms with running time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$?

[Lokshtanov, Marx, Saurabh. SODA'11] If 3SAT cannot be solved in time $2^{o(n)}$, then DISJOINT PATHS cannot be solved in time $2^{o(tw \log tw)} \cdot n^{O(1)}$ in general graphs.

• HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ... Is $2^{\mathcal{O}(\text{tw} \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ best possible?

Randomized algorithms for connected packing-encodable problems in general graphs in time 2^{O(tw)} · n^{O(1)}.
[Cygan, Nederlof, (Pilipczuk)², van Rooij, Wojtaszczyk. FOCS'11]

- They introduce a DP technique called Cut&Count. (It relies on a probabilistic result called the Isolation Lemma.)
- Can these algorithms be derandomized?

• For an FPT problem, is it always possible to obtain algorithms with running time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$?

[Lokshtanov, Marx, Saurabh. SODA'11]

If 3SAT cannot be solved in time $2^{o(n)}$, then DISJOINT PATHS cannot be solved in time $2^{o(tw \log tw)} \cdot n^{O(1)}$ in general graphs.

- HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ... Is 2^O(tw log tw) · n^O(1) best possible?
- Randomized algorithms for connected packing-encodable problems in general graphs in time 2^{O(tw)} · n^{O(1)}. [Cygan, Nederlof, (Pilipczuk)², van Rooij, Wojtaszczyk. FOCS'11]
 - They introduce a DP technique called Cut&Count. (It relies on a probabilistic result called the Isolation Lemma.)
 - Can these algorithms be derandomized?

イロン 不通 とうほう 不良とう 間

• For an FPT problem, is it always possible to obtain algorithms with running time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$?

[Lokshtanov, Marx, Saurabh. SODA'11]

If 3SAT cannot be solved in time $2^{o(n)}$, then DISJOINT PATHS cannot be solved in time $2^{o(tw \log tw)} \cdot n^{O(1)}$ in general graphs.

- HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ... Is 2^O(tw log tw) · n^O(1) best possible?
- Randomized algorithms for connected packing-encodable problems in general graphs in time 2^{O(tw)} · n^{O(1)}.
 [Cygan, Nederlof, (Pilipczuk)², van Rooij, Wojtaszczyk. FOCS'11]
 - They introduce a DP technique called Cut&Count. (It relies on a probabilistic result called the Isolation Lemma.)
 - Can these algorithms be derandomized?

イロン 不通 とうほう 不良 とうほう

• For an FPT problem, is it always possible to obtain algorithms with running time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$?

[Lokshtanov, Marx, Saurabh. SODA'11]

If 3SAT cannot be solved in time $2^{o(n)}$, then DISJOINT PATHS cannot be solved in time $2^{o(tw \log tw)} \cdot n^{O(1)}$ in general graphs.

- HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ... Is 2^O(tw log tw) · n^O(1) best possible?
- Randomized algorithms for connected packing-encodable problems in general graphs in time 2^{O(tw)} · n^{O(1)}.
 [Cygan, Nederlof, (Pilipczuk)², van Rooij, Wojtaszczyk. FOCS'11]
 - They introduce a DP technique called Cut&Count. (It relies on a probabilistic result called the Isolation Lemma.)
 - Can these algorithms be derandomized?

• For an FPT problem, is it always possible to obtain algorithms with running time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$?

[Lokshtanov, Marx, Saurabh. SODA'11]

If 3SAT cannot be solved in time $2^{o(n)}$, then DISJOINT PATHS cannot be solved in time $2^{o(tw \log tw)} \cdot n^{O(1)}$ in general graphs.

- HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ... Is 2^O(tw log tw) · n^O(1) best possible?
- Randomized algorithms for connected packing-encodable problems in general graphs in time 2^{O(tw)} · n^{O(1)}.
 [Cygan, Nederlof, (Pilipczuk)², van Rooij, Wojtaszczyk. FOCS'11]
 - They introduce a DP technique called Cut&Count. (It relies on a probabilistic result called the Isolation Lemma.)
 - Can these algorithms be derandomized?

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 三 のへぐ